几种重要的红外光学晶体的生长及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3-5μm波段的激光在民用和军用领域有着广泛的应用,该波段激光主要由固体激光泵浦的中远红外非线性光学晶体产生。ZnGeP2(ZGP)晶体被认为是一种综合性能优良的中远红外非线性光学晶体材料,它热导率较高(0.35W/cm·K),非线性系数较大(d36=75pm/v),透过波段较宽(0.67~13μm),抗光损伤阈值较高,机械性能良好便于加工。而对ZGP晶体进行光学参量振荡(OPO)得到3-5μm激光的泵浦源主要为2μm激光器,因此寻求实现高效2μm激光的材料仍然是一项有意义的研究工作。目前激光二级管(LD)泵浦的Tm, Ho激光器是获得2μm激光的有效途径,也是今后发展的趋势。2μm波段的双掺Tm3+,Ho3+的Y3Ga5O12(YGG)晶体材料表现出优良的特性:①YGG晶体的热学性能良好,晶体生长技术成熟。②Ho3+发射截面大,并可通过敏化离子Tm3+吸收800nm波长附近的泵浦光而获得能量,发生能级5I7→5I8的跃迁,产生2.09μm激光波长。此外2μm波段附近覆盖着H2O、C02等几个重要的分子吸收带,所以该波段的激光在医学、遥感、光通信和军事等诸多领域也有着重要的应用价值和前景。由于实现2μm的激光的量子缺损大,获得高功率激光困难,因此可采用调Q或锁模来获得高峰值功率,而Cr2+:ZnSe是一种室温下实用性较强的可调谐激光介质,它的吸收截面和发射截面较大,且吸收带和发射带较宽,到目前为止它已经实现了锁模、连续、调Q等多种形式的激光运转,所以可用Cr2+:ZnSe作为2μm激光器的被动调Q开关,来获得高峰值功率,进而更好的作用于ZGP-OPO,使其在3-5μm产生更高的输出功率。此外Cr2+:ZnSe的晶体材料发射范围为2~3μm,中心波长在2.5μm附近可连续输出,其本身也可作为一种新的泵浦源作用于ZGP-OPO。
     基于以上方面,新材料Tm, Ho:YGG的激光器可为3~5μm ZGP-OPO提供了一种新的泵浦源,同时Cr2+:ZnSe晶体可作为Tm, Ho:YGG激光器的被动调Q开关来获得高峰值功率,实现高效率的激光运转,从而为ZGP-OPO提供更高质量的服务。因此本论文系统研究了Tm, Ho:YGG晶体、ZGP晶体和Cr2+:ZnSe晶体的生长、热学、光谱和激光性能,主要研究工作如下:
     一、Tm, Ho:YGG系列晶体,ZGP晶体和Cr2+:ZnSe晶体的生长及结构表征
     首次通过光浮区法成功生长了Tm, Ho:YGG系列晶体。先将纯度为99.99%的Tm203、H0203、Y203和Ga203四种氧化物按照不同掺杂浓度Tm, Ho:YGG晶体化学式进行配料、混料和烧结等过程,然后把制作好的料棒放于浮区炉中进行晶体生长,调节各生长参数,最后成功得到五种Tm, Ho:YGG晶体。对这五种晶体进行XRD测试分析,确定生长出的晶体均属于立方晶系,并得到了它们的晶胞参数a(a=b=c)。
     通过坩埚下降法生长ZGP晶体。设计了合适温场梯度的马弗炉,将按化学比例混合好的99.99%的红磷、锗和锌单质放入石英管中抽真空密封,然后放入炉中,通过调节炉膛温度成功得到了ZGP多晶料。然后把研磨好的多晶料装入石英坩埚内密封抽真空,放入合适的温场梯度区间内,调节其生长参数,最后成功得到ZGP单晶。对ZGP晶体在不同氛围下进行热退火处理,并测量退火后晶体的单晶摇摆曲线,得到单晶衍射峰的半峰宽变小了,说明晶体质量得到了改善。
     采用高温扩散法制备了Cr2+:ZnSe晶体。把纯度为99.5%的CrSe粉末镀膜到ZnSe晶片上,然后将其放到石英坩埚中抽真空密封。把带有原料的石英坩埚放到合适温场区的炉膛内,扩散温度设定在800~1000℃,扩散时间设置为5~12.5天,最终得到了一些掺杂浓度不同的Cr2+:ZnSe晶体。对扩散前的ZnSe晶体和扩散后的Cr2+:ZnSe晶体进行了XRD结构分析比较。
     二、Tm, Ho:YGG系列晶体的基本性能研究
     首先测量了Tm, Ho:YGG系列晶体的密度和晶体中各元素的百分含量。通过密度的理论公式和浮力法分别得到了五种Tm, Ho:YGG晶体的理论密度和实验密度值。采用X射线荧光分析仪测量了其中三种晶体中各元素的百分含量,计算了它们的分凝系数,分析了Tm3+和Ho3+分凝系数在掺杂浓度不同的Tm, Ho:YGG系列晶体中变化的原因。
     然后测试了Tm, Ho:YGG系列晶体的比热、热膨胀系数、热扩散系数和热导率。通过在温度范围为25~300℃内的比热测量,得到了该系列晶体比热随温度的升高而变化不大,故推测了它们的德拜温度较低。通过热学机械分析仪测量得到晶体的线性热膨胀系数随温度的升高而升高,呈现出线性关系,同时根据公式及热膨胀率曲线图得到了该系列晶体的密度与温度成反比例关系。采用激光脉冲法测量了Tm, Ho:YGG系列晶体的热扩散系数,根据公式计算了它们的热导率,并解释了热导率随着温度升高而降低的原因。
     最后测量了Tm, Ho:YGG系列晶体的吸收光谱,观察到684nm和788nm处的吸收较强,说明该晶体可以吸收常用二极管激光器的泵浦光。指认了4at%Tm,0.5at%Ho:YGG晶体吸收谱中每个吸收峰所对应的能级跃迁,并根据倒易法计算了该晶体各波长处的发射截面,得到波长2086nm处的发射截面为3.25×10-20cm2。通过Tm3+和Ho3+在1650-2150nm波长范围内的吸收截面和发射截面分析讨论了该晶体中Tm3+和Ho3+之间的能量转移过程。同时也计算了Ho3+在1650-2150nm波长范围内的增益截面,并通过计算最小泵浦功率密度Imin评估了该晶体的激光性能。最后测量Tm, Ho:YGG系列晶体的荧光发射光谱,确切得到了最高发射峰所在的波长范围,与理论计算相对吻合。
     三、ZGP晶体的热学和光学性质测试
     对ZGP晶体进行了热分析,得到了该晶体的差热曲线和热重曲线,结合元素守恒定律和吸热放热过程讨论了两种曲线随温度变化的原因。
     选择真空,P蒸气压力和ZGP晶体粉末三种氛围下对生长得到ZGP晶体进行热退火处理。测量了退火前后的晶体的元素分凝系数、激光损伤阈值、吸收光谱和拉曼光谱,得到结论为:退火前后各元素的分凝系数发生了变化;在激发波长1064nm,脉宽10ns的激光器下ZGP晶体粉末退火后的ZGP晶体的激光损伤阈提高到了96.43MW-cm-2;退火后的晶体近红外波段的吸光度降低了,中远红外波段的透过率相应提高了:不同退火氛围下得到的晶体拉曼振动模的数量发生了变化。上述性质的变化是因为热退火后晶体内的相关缺陷和应力减少从而使得该晶体的质量和性质得到改善和提高。通过化学腐蚀法研究了该晶体的缺陷,发现晶体中存在位错、晶界等缺陷。
     四、ZnSe晶体和Cr2+:ZnSe晶体热学和光学测试
     通过公式计算得到ZnSe晶体的理论密度和平均热膨胀系数分别为5.2637g/cm3和4.7859×10-6/K。测量了常温下该晶体的比热和热导率分别为0.339J/K.g和16.2W/K.m,并观察到ZnSe晶体的热导率随温度升高而降低,而比热随温度变化很小,基本保持一平线。最后测量了ZnSe晶体的吸收光谱,在大于600nm波长范围内的透过率相对较高,在波长2.5μm附近的透过率最高达到70.4%。因此ZnSe晶体是一种热学和光学性质优良的基质晶体。
     通过X射线荧光分析仪对所实验制备的Cr2+:ZnSe晶体进行元素分析,得到了Cr2+的质量百分含量。测量了该晶体的吸收光谱,计算了Cr2+在1.7gm附近的吸收系数,得到扩散温度为950℃,扩散时间为5天得到的Cr2+:ZnSe晶体中[Cr]=1.8064×1019atom/cm3。最后分析了影响扩散过程的主要因素。
     五、4at%Tm,0.5at%Ho:YGG晶体的激光性能测试
     采用中心波长795nm光纤耦合输出的LD激光器对4at%Tm,0.5at%Ho:YGG晶体进行连续激光测试实验,当耦合输出镜(OC)的透过率即OC=5%时,最大输出功率为1.325W,其斜效率为13.5%,光光转换效率为10.8%。当OC=10%时,最大输出功率为0.976W,斜效率为11.3%,光光转换效率为8.5%。同时也测量了两种透过率下该晶体的激发波长,观察到波长位于2086nm处的荧光强度最高,与荧光发射光谱相一致。这是首次实现室温下Tm, Ho:YGG晶体在2086nm处的激光输出,希望将来通过优化掺杂浓度和谐振腔结构获得更高功率和更高转换效率的激光。
3~5μm lasers have many important applications in civil and military fields. Mid-infrared nonlinear optical crystals can produce3~5μm tuning laser by nonlinear frequency conversion technology. ZnGeP2(ZGP) crystal is an excellent mid-infrared nonlinear optical crystal, which has high thermal conductivity (0.35W/cm·K), wide transparency range from about0.7to12μm, high laser damage threshold and high nonlinear optical coefficient (d36=75pm/V). It can make thermal effect low and produce high power. The pump source of ZGP optical parametric oscillator (OPO) is2μm solid-state laser, which is obtained from co-doped Tm:Ho system pumped by laser diode. Tm3+sensitized Ho3+luminescence in Y3Ga5O12YGG) host material plays a very important role in producing2μm lasers. YGG crystal has excellent thermal properties and skilled crystal growth technology. The ground state of Tm3+can be pumped directly into the H4level with an800nm source, which provides enhanced quantum efficiency through an internal cross-relaxation process and subsequently transfers energy to the5I7manifold of the Ho3+, then emits2.09μm laser by5l7→5I8-In addition,2μm lasers are covered with the absorption of several important molecules (H2O, CO2), so it has aroused great interest over a wide range of applications, including medicine, remote sensing, optical communications and military applications. But it has high quantum defect to produce2μm laser, Q-switched or mode locking technique is one of the most efficient methods to obtain high-peak-power. Cr2+:ZnSe is an excellent tunable mid-infrared laser medium at room temperature, which its emission band occurs at2~3μm with a high cross section. Recently, Cr2+:ZnSe has achieved some laser operation, including mode locking, continuous wave and Q-switched. According to the above, in order to obtain3~5μm tuning laser, ZGP-OPO can be pumped by Tm, Ho:YGG laser. Furthermore Tm, Ho: YGG laser can produce much higher peak power by a passive Q-switched Cr2+:ZnSe. In this dissertation, we report the growth of Tm, Ho:YGG, ZGP and Cr2+:ZnSe crystals and study their thermal, optical and laser properties. The outline is shown as follows:
     1、Study on growth and stucture of Tm, Ho:YGG, ZGP and Cr2+:ZnSe crystals
     Tm, Ho:YGG crystals were first obtained by the optical floating zone method, to our knowledge. The mixed raw materials are Tm2O3, HO2O3, Ga2O3, and Y2O3powder with a purity of99.99%, which are sintered and placed at the optical floating zone furnace. Finally, five Tm, Ho:YGG crystals were obtained and measured by XRD method, which belong to cubic system.
     ZGP single crystal was grown by using the vertical Bridgman method under the condition of spontaneous nucleation. First, ZGP polycrystalline material was successfully synthesized by means of directly mixing stoichiometric amounts of high-pure materials (Zn, Ge and P) in sealed quartz ampoule. Second, ZGP polycrystalline material was placed into the quartz crucible, which was evacuated and sealed. Third, the quartz crucible was placed at temperature gradient zone of the furnace and ZGP single crystal was successfully obtained. Thermal annealing experiments were carried out at different conditions. The rocking curves of ZGP wafers were measured and their full width at half maximum (FWHM) became small, which indicated the quality of the ZGP single crystal to be improved.
     Thermal diffusion experiments were performed on ZnSe wafers with99.5%CrSe powder. Quartz ampoules with samples were placed in suitable thermal zone of the furnace and quartz ampoules were evacuated and sealed off. The thermal process was carried out at different temperature (800~1000℃) for durations varing between5and12.5days. Cr2+:ZnSe crystals were measured by XRD method.
     2、some basic properties of Tm, Ho:YGG crystals
     Densities of Tm, Ho:YGG crystals were calculated by some formulas. The compositions of Tm, Ho:YGG crystals were measured by the X-ray Fluorescence analysis method. The change of segregation coefficient of Tm3+, Ho3+in different Tm, Ho:YGG crystals was analyzed.
     Their specific heats, thermal expansion coefficients, thermal diffusion coefficients and thermal conductivities were also measured. Their specific heats changed little at different temperature. Their thermal expansion coefficients were improved with an increasing temperature, but their densities were reduced. Laser flash method was used to measure their thermal diffusion coefficients. According to the formula, their thermal conductivities were calculated.
     The absorption spectra of Tm, Ho:YGG crystals were measured and these absorption bands were assigned to different ionic transitions from the ground state to the excited states. It had a strong absorption in YGG at684and788nm, which meaned that commercially available laser diodes could be used as the pump source for this material. Using the reciprocity principle, the emission cross-section σem(λ) can be calculated via the absorption spectrum. The largest emission cross-section is located at about2086nm with σem=3.25×10-20cm2. We also speculated the energy transfer process involved in the2.0μm emission of Tm, Ho:YGG and calculated the effective gain cross-section spectrum. Meanwhile, the minimum pump intensity required to achieve transparency at the extraction wavelength was calculated. Emission spectra of Tm, Ho:YGG crystals also were measured, which were accorded with theoretical calculation basically.
     3、Thermal and optical properties of ZGP crystal
     Thermo gravimetric (TG) and Differential Thermal Analysis (DTA) curves of ZGP crystal were obtained, which were analyzed by the law of element conservation and endothermic and exothermic processes. ZGP crystals were treated by annealing in vacuum, P vapor and ZGP powder environments. Then, the effective segregation coefficient of each element, Laser damage threshold (LDT), transmission spectra and Raman spectra of annealed ZGP wafers were all measured and discussed. The effective segregation coefficient of each element after annealing was different from that of unannealed crystal. The LDT value of annealed ZGP wafer was observed to increase to96.43MW/cm2, which was measured at a wavelength of1064run and10ns pulse widths. It was found that thermal annealing under different conditions could effectively diminish the content of the related point defects and disordered ZGP and make some characteristics of ZGP improve. Some dislocation and crystal boundary were observed in the eroded crystal by chemical etching method.
     4、Thermal and optical properties of ZnSe and Cr2+:ZnSe crystals
     The density, specific heat, mean thermal expansion coefficient and thermal conductivity of ZnSe crystal were measured to be5.2637g/cm3,0.339J/K·g,4.7859×10-6/K and16.2W/K-m, respectively. It was observed its highest transmittance to be70.4%at2.5μm by the absorption spectra of ZnSe crystal. So ZnSe crystal was an excellent mid-infrared crystal.
     The concentrations of Cr2+in prepared Cr2+:ZnSe crystals were measured by the X-ray Fluorescence analysis method. The absorption coefficient of Cr2+at the wavelength of1.7μm was calculated by the absorption spectra of Cr2+:ZnSe crystal. According to the formula, the density of Cr2+in Cr2+:ZnSe crystal that was prepared during5days at950℃was1.8064×1019atom/cm3. The main factors affecting diffusion process were discussed.
     5、Laser performance of4at%Tm,0.5at%Ho:YGG crystal
     The continuous-wave (CW) laser experiments of4at%Tm,0.5at%Ho:YGG crystal were carried out by a fiber-coupled LD with a central wavelength of about795nm. The transmissivity of output coupler (OC) was5%or10%. The maximum output power is1.325W at room temperature at OC=5%with a slope efficiency (η) of13.5%and optical conversion of10.8%. When the OC is changed to10%, the maximum output power, slope efficiency and optical conversion were respectively0.97W,11.3%and8.5%. With an optical spectrum analyzer, the laser wavelength of the crystal was measured to be about2.086p.m. In the future, better laser performance can be expected from this material by optimizing doping concentrations and optical cavity.
引文
[1]邬承就,光电子技术与信息,1999,12(6),11.
    [2]徐军,激光与光电子学进展,2006,43(9),17.
    [3]谢丽艳,邹玉林,激光晶体研究动态,2006,5,17.
    [4]姜海青,姚熹,车峻,汪敏强,孔凡涛,张良莹,压电与声光,2004,26(5),399.
    [5]Kaminskii A A., Laser &Photon. Rev.,2007,1(2),93.
    [6]Gissen A, Hugel H, Voss A et al., Phontonics Spectra,2007,13,598.
    [7]张怀金,蒋民华,无机材料学报,2008,23(3),417.
    [8]Carny P, Doualan J L, Renard S et al., Opt. Commun.,2004,236 (4-6),395.
    [9]黄存锌,李建保,雷牧云,人工晶体学报,2003,32,276.
    [10]戴世勋,彭波,王训四,沈祥,聂秋华,徐铁峰,光子学报,2008,37,239.
    [11]王克强,韩隆,王建军,吴军勇,吕华昌,红外与激光工程,2007,35,169.
    [12]姜海青,姚熹,车峻,汪敏强,孔凡涛,张良莹,压电与声光,2004,26,399.
    [13]杨勇,徐剑秋,杭寅,激光器,2007,44,50.
    [14]董春明,王善朋,陶绪堂,人工晶体学报,2006,35(4),785.
    [15]Rochat M, Mill L, Willenberg H, et al., Appl. Phys. Lett.,2002,81(8),381.
    [16]Paul D J, Lynch S A, Bates R, et al., Physica E,2003,16,147.
    [17]Tredicucci A, Kohler R, Beltram F, et al., Physica E,2004,21,846.
    [18]Sun G, Soref R A, Khurgin J B, Superlattiices and Microstructures,2005,37, 107.
    [19]姚宝权,王月珠,王骐,激光技术,2002,26(3),217.
    [20]KGlder R, Tredicucci A, Beltram F, et al., Nature,2002,417,156-
    [21]A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, Nature Photon.,2009,3,41.
    [22]杜样琬,高技术要览:激光卷,科学技术出版社,2000.
    [23]于清旭,李红,林钧岫,光电子激光,2003,14(7),669.
    [24]J.F. Pinto, L. Esterowitz, G.H. Rosenblatt, Opt. Lett.,1994,19,883.
    [25]Antoine Godard, C. R. Physique,2007,8,1100.
    [26]A. Diening, S. Kuck, J. Appl. Phys.,2000,87,4063.
    [27]Chen Da-wun, Fincher C L, Rose T S, et al., Opt. Lett.,1999,24,385.
    [28]Chen D W, Fincher C L, Rose T S, et al., Opt. Lett.,1999,24(6),385.
    [29]J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, S. A. Payne, Opt. Lett.,1999,24,1720.
    [30]V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmarkov, M. P. Frolov, Quantum Electron.,2004,34(10), 912.
    [31]A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar'kov, M. P. Frolov, Quantum Electron.,2005,35(9),809.
    [32]J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, Opt. Express,2005,13,10608.
    [33]Matias Velazquez, Jean-Francis Marucco,Patrick Mounaix, Olivier Perez,Alban Ferrier, Richard Moncorge, Crystal Growth & Design,2009,9,1949.
    [34]张明月,程干超,杨立书,史保森,杨琳,夏宇兴,量子电子学,1996,13,332.
    [35]王月珠,姚宝权,王骐,激光技术,2003,26,117.
    [36]姚建铨,非线性光学频率变换及激光调谐技术,科学出版社,1995.
    [37]张克从,王希敏,非线性晶体材料科学,科学出版社,1996.
    [38]Terryj A C, Cui Y, Yang Y, et al. J. Opt. Soc. Am. B,1994,11(5),758.
    [39]姚宝权,王月珠,王骐,激光技术,2002,26,217.
    [40]A. Rosenzweig, B. Morosin, Acta. Cryst.1966,20,758.
    [41]陈万春,马文漪,刘道丹,人工晶体学报,1987,16(2),126.
    [42]M. V. Hobden, J. Warner, Phys. Lett.,1966,22,243.
    [43]Milton M, Mcllveen T J, Opt. Commun.,1992,93,186.
    [44]赵北君,朱世富,李正辉等,科学通报,2001,46(13),1132.
    [45]Hanna D C, Rampal V V, Smith R C, Opt. Commun.,1973,2,151.
    [46]Zhao Beijun, Zhu Shifu, Yu Fengliang, et al., Cryst. Res. Technol.,1998,33, 943.
    [47]Elsaesser T, Seimeier A, et al., Appl. Phys. Lett.,1984,44(4),383.
    [48]Gary C CateUa, David Budage., MRS Bulletin,1998.
    [49]Kevin J Z, J. Opt. Soc. Am. B,2006,23,2310.
    [50]Ian Elder, SPIE,2009,7325,01.
    [51]Lippert Espen, Fonnum Helge, Stenersen Knut, Opt. Express,2010,18,26475.
    [52]Rotermund F, Petrov V, Noack Z, Schunemann P, Fiber and Integrated Optics, 2001,20,139.
    [53]Verozubova G A, Gribenyukov A I, Korotkova V V, Semchinova O, Ufmann D., J. Cryst. Growth,2000,213(3-4),334.
    [54]Madarasz, F L, Dimmock J O, Deitz N, Bachmann K, J. Appl. Phys.,2000,87, 1564.
    [55]Petrov V. Rotermund F, Noack F, Schunemann P, Opt. Lett.,1999,24,414
    [56]Petrov V, Tanaka Y, Suzuki T, IEEE J. Quantum Electron.,1997,33,1749.
    [57]Stoll K, Zondy J J, Acef O, Opt. Lett.,1997,22(17),1302.
    [58]K L Vedopyanov., J. Opt. Soc. Am. B,1993,10(9),1723.
    [59]P. A. Budni, L. A. Pomeranz, M. L. Lemons, OSA Trends in Optics and Photonics Series,1998,19,226.
    [60]姚宝权,贺万骏,李玉峰,张兴宝,鞠有伦,王月珠,中国激光,2005,32,39.
    [61]Hyung R Lee et al., OSA/ASSP,2006.
    [62]Espen Lippert, et al., SPIE,2006,6397(4),1.
    [63]Daniel Creeden, et al., Opt. Lett.,2008,33(4),315.
    [64]Alex Dergachev et al., Opt. Express,2007,15(22),14404.
    [65]Baoquan Yao, et al., Chin. Opt. Lett.,2006,6(1),68.
    [66]王克强,红外与激光工程,2006,35,169.
    [67]K. L. Vodopyanov, et al., Opt. Lett.,2003,28(6),441.
    [68]刘颂豪,光学与光电子技术,2006,4(2),1.
    [69]杨青,俞本立,甄胜来,孙志培,吴海滨,光电子技术与信息,2002,15(5),13.
    [70]臧竞存,单秉锐,邹玉林,硅酸盐学报,2004,32,372.
    [71]冷长庚,固体激光,科学技术出版社,1981.
    [72]蔡伯荣,王瑞丰,程泽东,徐荣甫,激光器件,湖南科学技术出版社,1981.
    [73]张骥华,功能材料及其应用,机械工业出版社,2008.
    [74]H. Stange, K. Petermann, G. Huber, E. W. Duczynski, Appl. Phys. B,1989,49, 269.
    [75]Barud A et al., Appl. Phys. B,2001,72,909.
    [76]Pollack T M, et al., Chem. Abstr.,1980,93,127.
    [77]Stoneman.R.C, Esterowitz L, Opt. Lett.,1990,15,486.
    [78]Cornacchia F, et al., Appl. Phys. B,2001,73,191.
    [79]Cornacchia F, et al., Appl. Phys. B,2002,75,817.
    [80]T.Y.Fan, G.Huber, R.L.Byer, P.Mitzscherlich, IEEE J. Quantum Electron.,1988, 24,924.
    [81]Gunnar Rustad, Knut Stenersen, IEEE J. Select. Topics Quantum Electron.,1997, 3,82.
    [82]P.Laporta, M.Marano, L.Pallaro, S.Taccheo, Opt. Laser Eng.,2002,37,447.
    [83]J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, Opt. Express,2006,14, 10481.
    [84]Xiaodong Mu, Helmuth E. Meissner, Huai-Chuan Lee, OSA/ASSP/LACSEA /LS&C,2010.
    [85]Elizabeth D. Filer, Noman P. Barnes, Felipe L. Naranjo, Milan R. Kokta, OSA Proceedings on Advanced Solid-State Lasers,1993,15,411.
    [86]K. Scholle, E. Heumann, G. Huber, Laser Phys. Lett.,2004,6,285.
    [87]C.T. Wu, Y.L. Ju, Z.G. Wang, Y.F. Li, H.Y. Ma, Y.Z. Wang, Laser Phys. Lett., 2008,5,510.
    [88]D.H.Zhou, X.D.Xu, D.Y.Shen, D.Z.Li, et al., Laser Phys.,2011,21,1876.
    [89]Y.L. Tang, L. Xu, M.J. Wang, Y. Yang, X.D. Xu, J.Q. Xu, Laser Phys. Lett., 2011,8,120.
    [90]I.F.Elder, M.J.P.Payne, Opt. Commun,1998,145,329.
    [91]A.O.Matkovskii, D.I.Savytskii, D.Yu.Sugak et al., J. Cryst. Growth,2002,241, 455.
    [92]Yao B Q, Li L J, Zheng L L, et al., Opt. Express,2008,16,5075.
    [93]A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I.Vlasov, I. A. Hcherbakov, C. P. Wyss, W. Luthy, et al., Quantum Electron.1999,29,298.
    [94]K. Ohta, H. Saito, M. Obaraa, J. Appl. Phys.,1993,73,3149.
    [95]W. Ryba-Romanowski, Radosaw Lisiecki, Helena Jelinkov, Jan Sulc, Progress in Quantum Electronics,2011,35,109.
    [96]P.J.Morris, W.Liithy, H.P.Weber, Y.D.Zavarsev, et al., Opt.Commun.,1994,111, 493.
    [97]Wanjun He, Bao-quan Yao, Youlun Ju, Yuezhu Wang, Opt. Express,2006,14, 11653.
    [98]Yanmin Yang, Baoquan Yao, Baojiu Chen, Cheng Wang, et al., Opt. Mater., 2007,29,1159.
    [99]G. Li, B.Q. Yao, P.B. Meng, W. Wang, Y.L. Ju, Y.Z. Wang, Laser Phys. Lett. 2011,8,42.
    [100]G. Li, B.Q. Yao, C.H. Zhang, Q. Wang, Y.Z. Wang, Y.L. Ju, Chin. Phys. Lett. 2010,27,034201.
    [101]B.Q. Yao, G. Li, P.B. Meng, G.L. Zhu, Y.L. Ju, Y.Z.Wang, Laser Phys. Lett. 2010,7,857.
    [102]Haohai Yu, Zhongben Pan, Huaijin Zhang, Zhengping Wang, Jiyang Wang, Minhua Jiang, Opt. Lett,2011,36,2402.
    [103]H.Hemmati, Opt. Lett.,1989,14,435.
    [104]P.A.Budni, L.A.Pomeranz, M.L.Lemons, IEEE J. Quantum Electron.,1992,28, 1029.
    [105]Budni P.A., Lemons M.L., Mosto J R, IEEE J. Select. Topics Quantum Electron.,2000,6,629.
    [106]Jani M G, Barnes N P, Murray K E, IEEE J.Quantum Electron.,1997,33,112.
    [107]Vikas Sudesh, Kazuhiro Asai, Kiyoshi Shimamura, Tsuguo Fukuda, IEEE J.Quantum Electron.,2002,38,1102.
    [108]吴月,翟刚,姚治海,激光杂志,2008,29(4),1
    [109]姚宝权,王月珠,贺万骏,李玉峰,鞠有伦,中国激光,2005,32(7),881.
    [110]Fangli Jing, Kiyoshi Shimamura, Encarnacion G. Villora, Andrey Medvedev, Kenji Kitamura, J. Am. Ceram. Soc.,2008,91,296.
    [111]Schellhorn. M, Ngcobo S, Bolling C, Appl. Phys. B.,2009,94,195.
    [112]Xiaojin Cheng, Shuaiyi Zhang, Jianqiu Xu, Haiyan Peng, Yin Hang, Opt. Express,2009,17,14895.
    [113]J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, W. A. Clarkson, Opt. Lett.,2010,35,420.
    [114]N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, P. Laporta, Appl. Phys.,2010,101,75.
    [115]A.A. Lagatsky, M.D. Serrano,C. Cascales, C. Zaldo, C.T.A. Brown, W. Sibbett, OSA/ASSP,2011.
    [116]F. Euler, J. A. Bruce, Acta. Crystallogr.,1965,19(6),971.
    [117]C. D. Brandle, R. L. Barns, J. Cryst. Growth,1974,26 (1),169.
    [118]J. Dong, K. Lu, Phys. Rev. B,1991,43(11),8808.
    [119]G. Huber, Proceeding of the internttional Conference on laser,82,259.
    [120]K Binnemansy, C Gorller Walrand, J. Phys. Condens. Matter,1997,9,1637.
    [121]M. J. Riley, E. R. Krausz, N. B. Manson, B. Henderson, Phys. Rev. B,1998,59, 1850.
    [122]A.P. Vink, A. Meijerink, J. Lumin.,2000,87-89,601.
    [123]Haohai Yu, Kui Wu, Bin Yao, Huaijin Zhang, Zhengping Wang, et al., Opt Lett.,2010,35,1801.
    [124]Haohai Yu, Kui Wu, Bin Yao, Huaijin Zhang, Zhengping Wang, Jiyang Wang, et al., IEEE J. Quantum Electron.,2010,46,1689.
    [125]Yongdong Zhang, Zhiyi Wei, Qing Wang, Dehua Li, Zhiguo Zhang, Haohai Yu, et al., Opt. Lett.,2011,36,472.
    [126]巩马理,翟刚,时顺森,刘彦巍,马楠等,激光杂志,1997,18,14.
    [127]M. B. Camargo, R. D. Stultz, and M. Bimbaum, Opt. Lett.1995,20(3),339.
    [128]Milton Bimbaum, Marly B. Camargo, Sanggeon Lee, Ferruh Unlu, OSA TOPS Advanced Solid State Lasers,1997,1,148.
    [129]Podlipensky A V, Yumashev K V, Kuleshov N V, Appl. Phys. B,2003,76, 245.
    [130]Zolotovskaya S A, Yumashev K V, Kuleshov N V, Appl. Opt.,2005,44,1704.
    [131]V. E. Kisel, V. G. Shcherbitskii, N. V. Kuleshov, L. I.Postnova, L. I. Levchenko, J. Appl. Spectrosc.,2005,72,818.
    [132]Huseyin Cankaya, Umit Demirbas, Ahmet K. Erdamar, Alphan Sennaroglu, J. Opt. Soc. Am. B,2008,25,794.
    [133]徐军,激光材料科学与技术前沿,上海交通大学出版社,2007.
    [134]L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.F. Krupke, IEEE J. Quantum Electron.,1996,32,885.
    [135]R.H. Page, K.I. Schaffers, L.D. DeLoach, G.D. Wilke, F.D. Patel et al, IEEE J. Quantum Electron.,1997,33,609.
    [136]G. J. Wagner, T. J. Carri, OSA Advanced Solid State Lasers,2001,506.
    [137]J. B. McKay, W. Roh, K. L. Schepler, OSA Conference on lasers and electrooptics,2002,1,19.
    [138]T. J. Carrig, G. J. Wagner, W. J. Aford, et al, SPIE,2004,5460,74.
    [139]A.V.Podlipensky, V.G.Shcherbitsky, N.V.Kuleshov, Opt. Lett.,1999,24,960.
    [140]R.D.Stultz, A.V.Leyva, K.Spariosu, Appl. Phys. Lett.,2005,87,241118-1.
    [141]Fadi Z. Qamar, Terence A. King, Opt. Commun.,2005,248,501.
    [142]Yuri Terekhov, Igor S. Moskalev, Dmitri V. Martyshkin, Vladimir V. Fedorov, Sergey B. Mirov, SPIE,2009,54,7578-1.
    [143]Won Bae Cho, Andreas Schmidt, Jong Hyuk Yim, Sun Young Choi, Soonil Lee, Fabian Rotermund, Uwe Griebner, Opt. Express,2009,17,11007.
    [144]Won Bae Cho, Jong Hyuk Yim, Sun Young Choi, Soonil Lee, Fabian, Rotermund, et al, OSA/ASSP/LACSEA/LS&C 2010.
    [145]Jie Liu, YonggangWang, ZunshiQu, XiuweiFan, Opt.& Laser Technology, 2012,44,960.
    [146]T. J. Carrig, G. J. Wagner, W. J. Aford et al., SPIE,2004,74,5460.
    [1]J.C.Brice, Rep. Prog. Phys.,1977,40,567.
    [2]张克从,张乐惠,晶体生长科学与技术,科学出版社,1981.
    [3]P.W.Bridgman, Proc. Amer. Acad. Arts. Sci.,1925,60,30.
    [4]D.C. Stockbarger, Rev. Sci. Instr.,1936,7,133.
    [5]P. H. Keck, M. J. E. Golay, Phys, Rev.,1953,89,1297.
    [6]姚连增,晶体生长基础,中国科学技术大学出版,1995.
    [7]潘金生,仝健民,田民波,材料科学基础,清华大学出版,2011.
    [8]M.C. Ohmer, R. Pandey, Mater. Res. Bull.,1998,23,16.
    [9]G.D. Boyd, E. Buehler, F.G. Storz, Appl. Phys. Lett.,1971,18,301.
    [10]Dmitriev V G, Gurzadyan G G, Nikogosyan D N, Handbook of Nonlinear Optical Crystal [M].2nd edition, Springer Verlag, Berlin,1995.
    [11]Rud Yu V, Semiconductors,1994,28,663.
    [12]Mason P D, Jsckson D J, Gorton E K., Opt. Commun.,1994,110,16.
    [13]杨春晖,张健,新型中,人工晶体学报,2004,33(2),141.
    [14]Buehler E, Shay L J, et al., J. Elect. Mater.,1973,2(4),601.
    [15]Creeden Daniel, Ketteridge Peter A, Jiang Min., Opt. Lett,,2008,33,315.
    [16]Mason P D, Jsckson D J, Opt. Commun.,1994,110,163.
    [17]G.A. Verozubova, A.I. Gribenyukov, V.V. Korotkova, O.Semchinova, D. Uffmann, J. Cryst. Growth,2000,213,334.
    [18]E. Buelher, J. Cryst. Growth,1978,43,584.
    [19]H.M. Hobgood, T. Henningsen, R.N. Thomas, R.H. Hopkins, J. Appl. Phys., 1993,73,4030.
    [20]Y. Shimony, G. Kimmel, O. Raz, M.P. Dariel, J. Cryst. Growth,1999,583,198.
    [21]Kevin T.Zawilski, Peter G.Schunemann, Scott D.Setzler, Thomas M.Pollak, J. Cryst. Growth,2008,310,1891.
    [22]G.A. Verozubova, A.I. Gribenyukov, V.V. Korokova, M.P. Ruzaikin, Mater. Sci. Eng.B.,1997,48,191.
    [23]G.C. Xing, K.J. Bachmann, J.B. Posthill, Appl. Phys. Lett.,1990,56,271.
    [24]T.Y. Wang, R. Sivakumar, D.K. Rai, J. Chin. Inst. Chem. Eng.,2008,39,385.
    [25]M. Arivanandhan, K. Sankaranarayanan, K. Ramamoorthy, C. Sanjeeviraja, P. Ramasamy, Cryst. Res. Technol.,2004,39,692.
    [26]G.A.Verozubova,A.O.Okunev,A.I.Gribenyukov, A.Yu.Trofimiv, E.M.Trukhanov, A.V.Kolesnikov, J. Cryst. Growth,2010,312,1122.
    [27]A.L.Gentile, Mat. Res. Bull.,1974,9,105.
    [28]E.Buehler, J. Cryst. Growth,1978,43,584.
    [29]张玉君,硕士论文,红外非线性光学晶体磷锗锌的生长及性能研究,2009.
    [30]张克从等,晶体生长,科学出版社,1981.
    [31]Yu.V.Koroslelin et al., J. Cryst. Growth,1992,161,1078.
    [1]尹民,吴晓忠,李华等,发光学报,1986,71,269.
    [2]葛文伟,硕士学位论文,山东大学,2005.
    [3]J.A.Burton, R.C.Prim, W.P.Slichter, J. Chem. Phys.,1953,21(11),1987.
    [4]J.A.Burton, R.C.Prim, W.P.Slichter, J.D.Struthers, J. Chem. Phys.,1953,21(11), 1991.
    [5]陈文,吴建青,许启明,材料物理性能,武汉理工大学出版社,2010.
    [6]徐一斌,席同庚,段炼,路昌伟,李明华等,无机材料学报,1994,9(1),15.
    [7]M.Born, K.Huang,, Oxford University press,1954,38.
    [8]肖定全,王民,晶体物理,四川大学出版社,1989.
    [9]J.F.Nye, Physical properties of crystals, Oxford University Press,1985.
    [10]秦连杰,孟宪林,杜晨林等,人工晶体学报,2003,32(5),502.
    [1]吕孟凯,固态化学,山东大学出版社,1996.
    [2]Setzler S D, Giles N C, Appl. Phys. Lett.,1999,74,1218.
    [3]G.A. Verozubova, A.I. Gribenyukov, V.V. Korokova, A.W. Vere, C.J. Flynn, J.Cryst. Growth,2002,2000,237.
    [4]Verozubova G A, Gribenyukov A I, Korokova V V, et al., J. Cryst. Growth,2002, 237,2000.
    [5]Endo T, Sato Y, Takizawa H, et al., J. Mater. Sci. Lett.,1992,11,424.
    [6]张克从,晶体生长科学与技术,科学出版社,1997.
    [7]张玉君,硕士论文,2009.
    [8]李成富,张梅珍,中国激光,1985,12,54.
    [9]I.Guenther, A.Vaidyanahan et al., IEEE J.Quantum. Electron.,1980,16,89.
    [10]I.R.Betlis et al., Report of NBS,1976,464,338.
    [11]干福熹,邓佩珍,激光材料,上海科学技术出版社,1996.
    [12]Zawilski Kevin T, Setzler Scott D, Schunemann Peter G, et al., J. Opt. Soc. Am. B.2006,23,2310.
    [13]C.C.Wang et al., Phys. Rev.,1969,185,1079.
    [14]Giles N C, Halliburton L E., Appl. Phys. Lett.,1995,66,1758.
    [15]Zapol P, Pandey R., J. Appl. Phys.,1996,79,671.
    [16]Giles N C, Bai Lihua., J. Appl. Phys.,2003,93,8975.
    [17]Setzler S D, Giles N C, Appl. Phys. Lett.,1999,74,1218.
    [18]Jiang Xiaoshu, Miao M S, Phys. Rev. B,2005,71,205212.
    [19]Brudnyi V N, Voevodin V G, Grinyaev S N., Phys. Status Solid,2006,48,2069.
    [20]Jiang Xiaoshu, Miao M S, Phys. Rev. B,2006,73,193203.
    [21]S. D. Setzler, P. G. Schunemann, J. Appl. Phys.,1999,86,6677
    [22]Gehlhoff W, Azamat D, Hoffmann A, et al., J. Phys. Chem. Solids,2003,64, 1923.
    [23]Shimony Y, Raz O., Opt. Mater.,1999,13,101.
    [24]杨序纲,吴琪琳,拉曼光谱的分析与应用,国防工业出版社,2008.
    [25]Shirakata Sho, J. Appl. Phys.,1999,85,3294.
    [26]John R. Ferraro, Kazuo Nakamoto, Chris W. Brown, Introductory Raman Spectroscopy (Second edition) Elsevier,2003.
    [1]刘长友,介万奇,张滨滨,查钢强,王涛,谷智,人工晶体学报,2011,40(6),1382.
    [2]Su C H, Feth S, Volz M P., J. Cryst. Growth,1999,207,35.
    [3]D.T.F. Marple, J. Appl. Phys.,1964,35,539.
    [4]Su C H, Feth S, Volz M P., J. Cryst. Growth,1999,207,35.
    [5]Burger A, Chattopadhyay K, Ndap J O, et al., J. Cryst. Growth,2001,225(2-4), 249.
    [6]潘金生,仝健民,田民波,材料科学基础,清华大学出版,2011
    [1]Jacek K.Tyminski, Douglas M.Franch, MilanKokta, J.Appl.Phys.,1989,65,3181.
    [2]Laura D. DeLoach, Stephen A. Payne, L. L. Chase, Larry K. Smith, Wayne L Kway, William F. Krupke, IEEE. J. Quantum Electron.,1993,29,1179.
    [3]Gongxun Bai, Yanyan Guo, Ying Tian, Lili Hu, Junjie Zhang, Opt. Mater.,2011, 33,1316.
    [4]Yanmin Yang, Baoquan Yao, Baojiu Chen, Cheng Wang, Guozhong Ren, Xiaojun Wang, Opt. Mater.,2007,29,1159.
    [5]B.R. Judd, Phys. Rev.,1962,127,750.
    [6]G.S. Ofelt, J. Chem. Phys.,1962,37,511.
    [7]徐军,激光材料科学与技术前沿,上海交通大学出版,2007.
    [8]W. F. Krupke and L. L. Chase, Opt. Quantum Electron.,1990,22, S1.
    [9]S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F.Krupke, IEEE. J. Quantum Electron.,1992,28,2619.
    [10]D. E. McCumber, Phys. Rev.,1964,136, A954.
    [11]L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, W. F.Krupke, IEEE. J. Quantum Electron.,1993,29,1179.
    [12]B.M. Walsh, N.P. Barnes, B.D. Bartolo, J. Appl. Phys.,1998,83,2772.
    [13]D.Minoru, T.Kazunari, Q.Minoru, IEEE J. Quantum Electron,,1995,31,910.
    [14]L. B.Sham, R. S. F. Chang, N. Djeu, Phys. Rev. B,1994,50,6609.
    [15]X. Zou, H. Toratani, J.Non-Cryst. Solids,1996,195(1-2),113.
    [16]J. K. Tyminski, D. M. Franich, M. Kokta, J. Appl. Phys.1989,65,3181.
    [17]Kui Wu, Liangzhen Hao, Huaijin Zhang, Haohai Yu, Hengjiang Cong, Jiyang Wang, Opt. Commun.,2011,284,5192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700