钽涂层人工假体界面特性及生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理想的关节置换假体不仅要具有较高力学强度及低弹性模量,假体表面还应具有一定大小的微孔结构,以利于骨组织能够紧密地嵌合和长入假体的微孔中,增加假体术后的稳定作用;随着假体表面与骨结合的研究日益深入,假体表面处理方式也日趋多样化。
     目前,生物陶瓷涂层材料及微孔金属涂层生物材料是假体表面处理的主要方向,分别以羟基磷灰石(Hydroxyapatite, HA,Ca10(PO4)6(OH)2)及钛(Titanium ,Ti)涂层为代表。它们是通过烧结或等离子喷涂的工艺将HA及Ti金属被覆在不锈钢或Ti金属基体表面,形成具有一定骨传导或骨诱导功能的生物涂层复合材料,克服了以往人体植入材料在机械强度、生物相容性、耐腐蚀等综合性能方面存在的不足,成为近年来比较理想的骨重建材料。但已有文献报道,由于HA属于人体可降解和吸收的材料,其涂层降解后会使材料基体与组织间产生间隙,逐渐导致假体松动。对于Ti涂层复合生物材料而言,虽然在表面机械强度、耐腐蚀以及假体晚期稳定性方面优于HA涂层生物材料,但在假体植入早期,Ti涂层与HA涂层材料在骨诱导功能方面还存在一定差距,临床长期的观察也发现Ti涂层关节假体同样存在涂层脱落而导致假体松动的现象,因此,寻找和研究既有良好的生物相容性、又能保证术后假体长期稳定的涂层材料仍是今后一段时间关节假体研究领域的主要方向之一。
     自从1997年起,随着多孔钽材料作为小梁金属在临床矫形外科的广泛应用,各种钽(Tantalum,Ta)制生物材料的优势也逐渐展现出来,其良好的生物相容性、独特的物理及机械学特性为钽金属生物材料发展提供了广阔空间。
     随着假体表面研究的进展以及多孔钽“外衬”部件在人工假体表面应用存在的局限性,使得研究者开始对钽金属是否可以作为假体涂层材料进行了新的思考。但作为一种新型生物材料涂层,Ta涂层是否具备生物材料涂层应有的材料学特性及良好的生物相容性?Ta涂层-基体结合强度、涂层的耐磨性是否能满足其作为人工假体涂层的要求?Ta涂层假体植入后的骨长入量是否会对假体后期的稳定性起到维持作用?这些问题便成为研究者关注的焦点。
     本文通过三个部分对Ta涂层一般特性及生物学特性进行了进一步研究:第一部分为Ta涂层一般特性的研究;第二部分为Ta涂层生物学特性的研究;第三部分为Ta涂层人工假体生物力学行为及其涂层物理特性关系的初步研究。
     一、Ta涂层一般特性的研究
     1. Ta涂层界面物理特性的研究
     目的:对Ta涂层界面结合强度、表面机械强度、涂层元素构成进行初步的研究和分析,为钽金属涂层材料的应用提供试验依据。方法:(1)采用大气等离子喷涂系统制备钽涂层试件,获得二维孔隙率为25~35%、涂层厚度为150μm的Ta涂层试件,通过扫描电子显微镜(SEM)观察、金相显微镜观察、能谱扫描(EDX)及X-射线衍射分析(XRD)等手段对Ta涂层的表面形貌、金相结构和化学构成进行分析;(2)界面力学检测:选用医用Ti-6Al-4V基体材料,经过喷砂及等离子喷涂工艺加工获得二维孔隙率为25~35%、涂层厚度为150μm的Ta涂层试件作为实验组,相同基体和规格的HA及Ti涂层的试件作为对照组;运用WS-2005涂层附着力自动划痕仪、HV-120维氏硬度仪分别对涂层与基体结合强度及涂层表面硬度进行评价。结果:(1)SEM观察发现,Ta涂层表面粗糙、孔隙形貌清晰;钽涂层组织致密,界面结合紧密,未发现内部分层和裂纹;(2)Ta涂层料表面硬度及涂层界面结合强度明显高于HA涂层和Ti涂层(P﹤0.01)。结论:Ta涂层界面结合紧密,表面孔隙结构稳定,与Ti涂层和HA涂层相比具有更高的结合强度和表面硬度,这对预防涂层脱落、维持假体表面结构及维持假体生物力学特性具有积极作用。
     2. Ta涂层假体表面磨损机制的研究
     目的:对Ta涂层假体表面的疲劳磨损机制及其生物磨损机制进行初步的研究和分析,为钽金属涂层假体的临床应用提供试验依据。方法:(1)实验组(A组)基体为医用316不锈钢(0Cr17Ni12Mo2),涂层厚度为400μm的Ta涂层试件,表面孔隙率为25-35%;对照组(B、C组)分别为316不锈钢基体HA与Ti涂层试件,试件标准与A组一致。采用MMW-2型微机控制摩擦磨损试验机及0Cr17Ni12Mo2对磨件进行涂层试件的摩擦磨损实验,对在一定载荷下的试件磨损外貌特征、磨损量进行观察、对比,采用SEM及XRD等方法对磨损实验前后涂层表面形貌、金相结构和化学构成进行分析对比;(2)采用以0Cr17Ni12Mo2为基体的Ta、HA及Ti涂层试件作为实验组(A组)及对照组(B、C组)进行试件-骨磨损试验,三种涂层厚度均为400μm、表面孔隙率为25-35%;对磨件为猪骨股骨近端骨骼制成;利用MMW-2型微机控制摩擦磨损试验机对一定载荷下的试件经过骨磨损后外貌特征、骨磨损量及试验中各组摩擦副间摩擦系数的变化进行分析,采用SEM及XRD等方法对磨损试验前后涂层表面形貌、金相结构和化学构成进行对比分析。结果:(1)各组涂层的滑动摩擦失效行为主要表现为疲劳剥落,316不锈钢基体Ta涂层表面耐磨性能明显高于HA及Ti涂层(P﹤0.01);(2)与金属对磨的磨损实验不同,在采用骨对磨件的磨损实验中三种涂层磨损试件的质量并没有明显的减少(P﹥0.05);随着磨损时间的延长,三种涂层试件对骨组织的摩擦系数均逐渐减少,最终摩擦系数均维持在0.40左右;同时,骨磨屑堆积在试样涂层表面孔隙里形成了一层平滑的固体润滑界面,在摩擦副间起到阻碍磨损的作用;结论:(1)Ta涂层磨损失效行为主要为疲劳剥落,其具有明显优于Ti涂层和HA涂层的耐磨损、抗疲劳作用,这对预防涂层脱落、维持假体表面结构及维持假体生物力学特性具有积极作用;(2)由于固体润滑界面形成及存在,使得骨-涂层摩擦不易对假体的Ta涂层造成破坏。
     二、Ta涂层生物学特性的研究
     1. Ta、HA、及Ti涂层假体细胞毒性对照研究
     目的:通过对比研究评价Ta涂层假体的细胞毒性作用,初步了解和评价Ta涂层材料生物相容性,为Ta涂层假体临床应用的可行性提供实验依据。方法:通过对细胞相对增殖率(RGR)检测及细胞毒性测定对Ta涂层材料的生物相容性进行评价;方法:(1)Ta、Ha、Ti涂层材料及相应浸提液的制备;(2)L929细胞系的培养及传代;(3)利用Ta、Ha、Ti涂层材料浸提液对L929传代细胞进行培养,观察不同浸提液培养的细胞生长形态,并通过MTT比色法对各组涂层材料的细胞毒性进行分级;结果:(1)细胞形态学观察显示:Ta涂层组的细胞生长形态与HA和Ti涂层组一致,细胞生长形态良好,与空白阴性对照组无明显差别,而含有0.64%苯酚浸提液作为培养液培养的空白阳性对照组细胞,细胞广泛死亡;(2)MTT比色实验显示:Ta、Ha及Ti涂层组的细胞相对增殖率(RGR)无明显差别﹙P﹥0.05﹚,Ta涂层与其它涂层对照组及空白阴性对照组的细胞毒性没有显著差异,三种涂层的细胞毒性均为0级;结论:(1)Ta涂层假体对生长增殖中的细胞没有明显的毒性及抑制作用;(2)Ta涂层具有相对稳定的细胞相容性,与临床应用的Ti、HA涂层无明显差别。
     2. Ta涂层假体植入后早期假体周围成骨量的对照研究
     目的:通过对Ta、Ti涂层假体植入后周围成骨量的对比,对Ta涂层骨组织相容性进行评价;方法:(1)采用等离子喷涂工艺加工制备Ta、Ti涂层植入假体;(2)利用手术植入方法将不同涂层假体植入新西兰白兔的股骨髁内,术后分期通过假体表面肉眼观察、组织学评价、假体的表面SEM观察及EDX分析对假体周围骨长入情况进行观察分析;结果:(1)组织病理学观察发现假体植入后4 W、9W及15W时,Ta、Ti涂层与新生骨组织结合紧密而稳定,涂层无脱落;(2)与假体植入4W时组织病理学观察结果一致,假体植入4 W,SEM观察显示Ta、Ti涂层表面及周围均有明显的骨样组织形成,骨样组织结构清晰、组织分布均匀;(3)各植入期Ta、Ti涂层假体周围骨体积分数对比无明显差异(P﹥0.05);(4)假体植入4W假体表面EDX分析结果显示,Ta、Ti涂层假体表面新生组织的主要元素构成中含有、Ca、P等骨组织元素;结论:(1)Ta涂层假体具有较好的骨组织相容性及周围成骨效果,涂层-骨组织界面结合稳定,无涂层脱落或涂层与基体分层现象;(2)在假体植入早期,Ta涂层假体周围骨形成量与目前临床应用的Ti金属涂层假体无明显差别。
     3. Ta涂层假体植入后早期稳定性的对照研究
     目的:通过对Ta、Ti涂层假体及非涂层假体植入后假体周围成骨量及假体生物力学指标的对比分析,对Ta涂层假体植入后早期稳定性进行评价;方法:(1)采用等离子喷涂工艺加工制备Ta、Ti涂层植入假体;(2)采用手术植入方法将Ta、Ti涂层假体植入实验兔的股骨髁内,利用推出实验(pull-out testing)及组织病理学观察方法对术后各期假体轴向极限抗剪切强度及假体周围骨形成量进行对比;(3)假体拔出后周围组织HE染色及假体表面EDX分析对Ta涂层-基体界面抗剪切能力及假体植入后的稳定性进行分析;结果:(1)早期随着植入时间的延长,Ta、Ti涂层假体周围成骨量也在不断增加;术后4 W、9W及15W,Ta、Ti涂层假体周围骨体积分数对比无明显差异(P﹥0.05);(2)术后4、9及15W,Ta、Ti涂层假体间最大抗剪应力无显著差异(P﹥0.05);Ta涂层假体植入4W与16W时假体的最大抗剪应力之间有显著差异(P﹤0.05),同种材料植入8W时的最大抗剪应力与4W、16W时还不具有显著差异(P﹥0.05);(3)假体拔出后组织HE染色观察结果显示,非涂层假体周围为环状纤维组织,假体-组织界面平整,无异物存留;Ta、Ti涂层假体周围可见骨组织形成,假体拔出造成涂层-骨组织界面断裂、分离,但假体周围骨组织表面未见涂层存留物;(4)EDX分析结果显示,假体拔出后Ta、Ti涂层假体表面元素构成未发生改变;结论:(1)对复合涂层人工假体而言,假体周围成骨量并非假体植入后稳定性的唯一决定因素,假体表面孔隙率及涂层界面稳定也是影响假体植入后的稳定性重要因素;(2)与其它临床上使用的金属涂层假体相比,Ta涂层假体同样具有良好的周围组织相容性;(3)Ta涂层与基体具有良好的涂层稳定性,能够在较高剪切应力作用下维持假体涂层的完整性,这对于假体植入后的稳定性具有积极意义。
The ideal joint replacement prosthesis which coated with coating materials should possess not only high mechanical strength of whole prosthesis, but also porous structure at certain size on the surface of prosthesis, to facilitate the bone tissue adhering to and growing into the micropores on prosthetic surface to achieve the postoperative prosthetic stability. With deepening of the study on adhesion between bone and prosthetic surface, the treatment measures of prosthetic surface have been increasingly diversified.
     In the recent years, bioceramic and metallic coating has become the major choices for the surface treatment of prosthesis. Hydroxyapatite (HA, Ca10[PO4]6[OH]2) and titanium (Ti) coatings have represented the porous biological ceramic coating and the metal coating respectively. Most of the prostheses are made by coating HA or Ti onto the surface of stainless steel or Ti alloy substrates through plasma spraying or thermal sintering process. Such coatings provide a porous structure on prosthetic surface with the functions of bone induction and conduction to improve the biological connection between prosthesis and human tissues, overcomes the drawbacks of former prosthesis in comprehensive performance such as mechanical strength, biocompatibility, etc. and becomes the ideal material for bone reconstruction in recent years[1‐5].
     However, with the increase in joint revision surgeries post arthroplasty, defects of HA- and Ti coated prosthesis have been gradually observed. It has been reported that the decohesion and degradation of HA coating and the migration of HA particles eventually lead to the prosthesis loosening. In addition, defects of HA-coated prosthesis in mechanical strength cause coating decohesion and fatigue fracture during the surgical procedure and under postoperative loading, to a certain extent, exacerbating the gap formation at prosthesis-coating and bone-prosthesis interfaces and facilitating the canal formation for HA particle migration. Following the gradual canal formation and the migration of degraded HA particles, prosthetic stability is severely affected.
     Although Ti coated prosthesis has some advantages in surface mechanical strength, corrosion resistance and stability of prosthesis coating, but there is still a gap between Ti and HA coated prosthesis in bone induction and bone ingrowth at early stage of implantation. Long-term clinical observation also found that there are prosthesis loosening caused by coating decohesion and shedding in some cases after prosthetic replacement which applied Ti coated prosthesis.
     With the diversifying in the methodology of processing prosthetic surface and the deepening in understanding the adhesion between the bone and the prosthetic surface, finding and researching coating materials that have good biocompatibility and can ensure the long-term postoperative prosthetic stability remain one of the main directions in the field of articular prosthesis study.
     Since the middle of last century, Tantalum(Ta) biomaterial has been used in medical applications. The advantages of Ta as coating material become evident gradually after the application of porous Ta sheath components on the prosthetic surface. The good biocompatibility and superior chemical stability of Ta material in comparison to Ti and other metals provide a theoretical basis for its possible application as prosthetic coating. But as a a novel prosthetic coating, whether Ta materials possess good biocompatibility and other necessary physical properties such as becomes our focus of the present study. Since biocompatibility and stability are the keys determining whether a new prosthetic coating can be used in clinic, so this study has preliminarily investigated the physical characteristics, biocompatibility, and biomechanical behavior of Ta as coating material on the prosthetic surface, aiming to provide experimental basis for its future clinical application.
     In this study we investigated the general physical characteristics, biocompatibility, and the relationship between biological behavior and physical characteristics of Ta coating prosthesis through three research parts. The first part is a research related to the general physical characteristics of Ta coating. The second part is a research about the biological behavior of Ta coating prosthesis. The third part is a research on the relationship between biological behavior and physical characteristics of Ta coating prosthesis.
     Ⅰ.The general characteristics of Ta coated material.
     1. The general physical characteristics of Ta coating interface.
     Objective: Investigat the general physical characteristics of Ta coating interface, such as the adhesive strength of coating , mechanical strength of coating surface, the chemical composition of coating and provid an experimental data for clinical application of the Ta coating material. Methods:(1)The Ta-coated testing specimens (with 25~35% of two-dimensional [2D] porosity and a coating thickness of 150μm) was prepared by sand blasting and plasma spraying process, The morphous of coating surface, the metallographical structure and the coating’s chemical composition were investigated by the metallurgical microscope, the scanning electron microscope(SEM) observation, the energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). (2) Medical Ti-6Al-4V substrate was used to make Ta-coated interface mechanical testing specimens (with 25~35% of 2D porosity and a coating thickness of 150μm) by sand blasting and plasma spraying process. The same substrates and specifications were applied to the control with Ti and HA coating .biomechanical testing. The coating adhesive strength and the surface hardness of coating were tested using WS-2005 coating adhesion automatic scratch tester and HV-120 Vickers hardness tester. Results: (1) SEM observations show that there are obvious roughness and clear pore structure on Ta coating surface. The coating has a higher density and bonds closely to substrate. No internal delamination and cracks have found in Ta coating. (2) The Vickers surface hardness (HV) of Ta coating (423.57±7.41) is significantly higher (P < 0.01) than that of Ti coating (202.86±4.35) and HA coating (123.29±3.99); The coating adhesive strength for Ta coating to peel is statistically higher than that for Ti coating and HA coating (P < 0.01). Conclusions: There is a stable pore structure on the surface of Ta coating material. The interface of coating and substrate is bond closely. Ta coating has a higher coating-substrate adhesive strength and surface mechanical strength, hereby is resistant to the damages resulted from the repeated loading changes and the relatively high shear stress, which has significance for maintaining the prosthetic surface porosity and characteristics of biomechanics.
     2.A study of the tribological properties of Ta coated biomaterials
     Objective: To evaluate the tribological properties and the biotribological properties of Ta coated biomaterials for its future clinical application.
     Methods(:1)medical 316 stainless steel (0Cr17Ni12Mo2) materials were used as the base material for both the experimental group(group A)and the control group. The base material was pretreated with sand blasting, and Tantalum coating was prepared by plasma spraying system (Sulzer & Metco, USA). The system forms Ta coating with 25-35% 2D porosity and a coating thickness of 400μm. For the control groups (Groups B and C), base materials of stainless steel were coated with HA and Ti, respectively with the same specifications as in Group Ta). 0Cr17Ni12Mo2 rods were used as grinding materials, The test was done with a MMW-2 type computer-controlled abrasive wear test machine. The Wear morphous of coating surface and the amount of wear were observed and analyzed. In the meantime, the metallographical structure and the coating’s chemical composition were investigated by the metallurgical microscope observation and the energy-dispersive X-ray spectroscopy (EDX).(2)Ta-, HA- and Ti-coated test pieces with 316 stainless steel as substrates were used as the experimental group (group A)and the control group(Groups B and C) respectively. All coating with 25-30% 2D porosity and a coating thickness of 400μm. The pig femur were used as grinding materials, processed in accordance with standard wear test specimen preparation. The test was done with a MMW-2 type computer-controlled abrasive wear test machine. The Wear morphous of coating surface, the wear amount of test peices, the coating-bone friction coefficient, and the impact of bone-coating friction under load were observed and analyzed. In the meantime, the metallographical structure and the chemical composition on surface of test pieces were investigated by the metallurgical microscope observation and the energy-dispersive X-ray spectroscopy (EDX) respectively. Results: (1) The failure mechanism of Ta coating was mainly fatigue spalling. Compared with HA and Ti coatings, Ta surface coating suffered the least weight loss, and its surface wear resistance was higher than that of Ti coating and HA coating (P <0.01). (2) There was no significant reduction in the mass of the metal test pieces in metal-bone wear experiment. With time of testing, the friction coefficients gradually decreased, and finally settled around 0.40, and bone debris gradually deposited and accumulated in the porous surface of the coatings, forming a smooth film of bone debris which prevent further damage on bone grinding materials. Conclusions: (1) The failure mechanism of Ta coating was mainly fatigue spalling. Ta coating has good abrasion wear resistance and fatigue resistance, and has a superior mechanical characteristics than HA and Ti coatings for biological materials (prosthesis). (2) The bone-coating friction does not damage Ta coating on the prosthesis due to the formation and maintenance of a solid lubrication interface.
     Ⅱ.The biological characteristics of Ta coated material.
     1. A study of the cytotoxicity and biocompatibility of Ta coating prosthesis.
     Objective: To preliminary assess the cytotoxicity and biocompatibility of Ta coated biomaterials for its future clinical application. Methods:(1)Ta-, HA- and Ti-coated test pieces with Medical Ti alloy(Ti-6Al-4V)material as substrates were prepared for experiment of the cytotoxicity, and the leaching liquor of these test pieces were prepared for cell culture respectively(.2)The L929 cell were cultured and subcultured for the further cytotoxicity experiment.(3)The L929 cell were subcultured using the different leaching liquor of test pieces as culture solution, and the cytotoxicity grade of test pieces were evaluated through the MTT colorimetric test for cell culture respectively. Results: There are no significantly difference in the Relevant Growth Rate (RGR) and cytotoxicity among the Ta coating, HA coating and Ti coating (P >0.05), the cytotoxicity grade of Ta-coated test piece was 0 grade. Conclusion: Ta coating material has a good biocompatibility and toxicological characteristics for the human body.
     2. A study of periprosthetic osteogenesis on Ta coated prostheses.
     Objective: To observate the periprosthetic osteogenesis of Ta coated prostheses in vivo at early stage after its implantation, so as to provide evidences for the application of Ta coated biomaterials. Methods:(1)Ta coated prostheses were prepared for experiment of implantation. In the meantime, Ti coated prostheses was prepared as control group (2) Prostheses were implanted the femurs epicondyle of the New Zealand white rabbits, and histopathological observation, histomorphometric analysis, SEM observation, EDX analysis were employed to evaluate the periprosthetic osteogenesis of prostheses. Results: (1) observation of histopathology show that At Early Stage (4W) after the implantation, there are significant bone formation around the the Ta and Ti coated implants, and new bone tissues bond closely and stably to these all coatings. With prolonged time after the implantation, thickness of new bone tissues and number of trabecular bones around the two coatings increase continuously. 9W and 15W after the implantation, new bone tissues bond closely and stably to Ta- and Ti-coated implants. (2) Histomorphometric analysis of the bone tissue show that Ta- and Ti-coated implants has an obvious trends in periprosthetic osteogenesis At Early Stage after the implantation, though there are no significantly difference in periprosthetic osteogenesis among Ta- and Ti-coated implants(P﹥0.05). (3) SEM observation of the new tissues on prosthetic surface shows the attachment of a thin layer of new bony tissues to the surface of Ta- and Ti-coated prosthesis with regular, uniformed, and clear trabecular structure. (4) EDX analysis reveals that major component elements of the new tissues on surfaces of the two coatings are C, O, Ca, and P. Conclusion: Just like other metal-coated prostheses which have used in the recent clinic orthopedics, Ta coating has a good comprehensive performance on the stability and periprosthetic osteogenesis after its implantation.
     Ⅲ.The stability of Ta-coated prosthesis in vivo at early stage of implantation.
     Objective: To evaluate the stability Ta-coated prosthesis in vivo at early stage of implantation and provide evidences for the application of Ta coated prosthesis. Methods:(1)Ta coated prostheses were prepared as experimental group, Ti coated prostheses as a control group.(2)Prostheses were implanted the femurs epicondyle of the New Zealand white rabbits, and biomechanical testing (pull-out testing), histopathological observation, histomorphometric analysis, EDX analysis were employed to evaluate the ultimate shear strength of prostheses and the amount of osteogenesis around prostheses, both which effect the stability of HA-coated prosthesis in vivo. Results: (1) At Early Stage after the implantation, there are no significantly difference in periprosthetic osteogenesis among Ta- and Ti-coated implants(P >0.05). (2) There are no significantly difference in the ultimate shear strength between Ta- and Ti-coated implants (P >0.05). In the meanwhile, the ultimate shear strength of all kinds of coated prosthesis at 16 weeks is significant higher than that at 4 weeks after implantation. (3)Histological observation and EDX analysis after pull-out testing show that the periprosthetic bone tissues are evident on the surface of prostheses coating at early stages after implantation. Push-out test fractures the prosthesis and bone interface around Ta- and Ti-coated implants, and no coating residues can be observed on fractured bone section. (4) According to EDX analysis of the prosthetic surface elements before and after push-out test. It was found that the ultimate shear stress is not able to cause Ta and Ti coating damaged. Conclusion:(1) The periprosthetic bone ingrowth and the bone formation is not only factor that ensure stability of coating prostheses after its implantation. The adhesive strength and porosity of coating are also important factors for the stability of coating prosthesis in vivo. (2)Ta-coated prosthesis exhibits good biocompatibility with the bone tissue which is comparable with the current clinically metal-coated prosthesis. (3)Ta coating has a higher coating-substrate adhesive strength and hereby is resistant to the damages resulted from the repeated loading changes and the relatively high shear stress, which promotes the postoperative prosthetic stability and prolongs the life of prosthesis in vivo.
引文
[1]盖学周,饶平根,赵光岩,吴建青.人工关节材料的研究进展[J].材料导报2006;20(1):46-50.
    [2]陈铁柱,李晓声.人工关节材料的研究进展[J].中国现代医药杂志2009;11(10):133-5.
    [3]张亚平,高家诚,王勇.人工关节材料的研究与展望[J].世界科技研究与发展2000;22(1):47-52.
    [4]任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展[J].材料导报2002;16(2):12-5.
    [5]王桂生,朱明.外科植入物用钛合金研究进展和标准化现状[J].稀有金属2003;27(1):43-8.
    [6]代新祥,陈晓明,李世普.人工关节发展及未来[J].武汉工业大学学报1998;(4):12-4.
    [7]周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势[J].金属热处理2005;30(1.):47-50.
    [8]闫玉华,殷湘蓉.人工关节的研究现状和发展趋势[J].生物骨科材料与临床研究2004;1(4):39-44.
    [9]李宏杰.人工全髓关节置换术的研究现状[J].国外医学外科学分册1999;26(1):34-6.
    [10]于思荣.生物医学钛合金的研究现状及发展趋势[J] .材料科学与工程. 2000;18(2):131-4,65.
    [11]叶霞,陈菊芳,王江涛,张向华,毕伟.人工关节材料及其表面改性研究进展[J].江苏技术师范学院学报2007;13(4):48-52.
    [12]张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程学杂志. 2000;17(2):206-8.
    [13] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci 2009;54397-425.
    [14] Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective[J]. Biomaterials 1998;19.1621-39.
    [15] Niinomi M. Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering 1998;A243.231–236.
    [16]张新平,于思荣,夏连杰,何镇明.钛及钛合金在牙科领域中的研究现状.稀有金属材料与工程2002;31(4):246-51.
    [17]魏斌,费敬银.钦合金生体材料及其表面改性[J].材料导报2000;14(7):18-21.
    [18]李兆峰,黄伟九,刘明.人体用金属植入材料的研究进展[J].重庆工学院学报2006;20(5):42-6.
    [19] Gr?dzka-Dahlke, D?browski, D?browski. Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy[J]. 2008;204(1-3):199-205.
    [20] Carreiro-Ada F, Ribeiro RF, Mattos-Mda G, Rodrigues RC. Evaluation of the castability of a Co-Cr-Mo-W alloy varying the investing technique[J]. Braz Dent J. 2005;16(1):50-5.
    [21] Peterson CD, Hillberry BM, Heck DA. Component wear of total knee prostheses using Ti-6A1-4V, titanium nitride coated Ti-6A1-4V, and cobalt-chromium-molybdenum femoral components. J Biomed Mater Res. 1988;22(10):887-903.
    [22] Hallab N, Link HD, McAfee PC. Biomaterial optimization in total discarthroplasty[J]. Spine (Phila Pa 1976). 2003;28(20):S139-52.
    [23]钱九红.外科植入物用纯钛及其合金[J].稀有金属. 2001;25(4):303-6.
    [24] Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ) 2002;31(4):216-7.
    [25] Christie MJ. Clinical applications of Trabecular Metal. Am J Orthop (Belle Mead NJ) 2002;31(4):219-20.
    [26] Bobyn JD, Poggie RA, Krygier JJ, Lewallen DG, Hanssen AD, Lewis RJ, et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. J Bone Joint Surg Am 2004;86-A Suppl 2123-9.
    [27] Levine BR, Sporer S, Poggie RA, Della VCJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006;27(27):4671-81.
    [28] Klein GR, Levine HB, Hartzband MA. Removal of a well-fixed trabecular metal monoblock tibial component. J Arthroplasty 2008;23(4):619-22.
    [29] Kim WY, Greidanus NV, Duncan CP, Masri BA, Garbuz DS. Porous tantalum uncemented acetabular shells in revision total hip replacement: two to four year clinical and radiographic results. Hip Int 2008;18(1):17-22.
    [30] Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 1999;81(5):907-14.
    [31] Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ) 2002;31(4):216-7.
    [32] Frenkel SR, Jaffe WL, Dimaano F, Iesaka K, Hua T. Bone response to a novel highly porous surface in a canine implantable chamber. J Biomed Mater Res B Appl Biomater 2004;71(2):387-91.
    [33] Shannon FJ, Cottrell JM, Deng XH, Crowder KN, Doty SB, Avaltroni MJ, etal. A novel surface treatment for porous metallic implants that improves the rate of bony ongrowth. J Biomed Mater Res A 2008;86(4):857-64.
    [34] Li Y, Wei S, Cheng X, Zhang T, Cheng G. Corrosion behavior and surface characterization of tantalum implanted TiNi alloy. Surf Coat Technol 2008;2023017-22.
    [35] Bobyn JD, Poggie RA, Krygier JJ, Lewallen DG, Hanssen AD, Lewis RJ, et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. J Bone Joint Surg Am 2004;86-A Suppl 2123-9.
    [36] Shuler MS, Rooks MD, Roberson JR. Porous Tantalum Implant in Early steonecrosis of the Hip: Preliminary Report on Operative, Survival, and Outcomes Results. J Arthroplasty 2007;22(1):26-31.
    [37] Holt GE, Christie MJ, Schwartz HS. Trabecular Metal Endoprosthetic Limb Salvage Reconstruction of the Lower Limb. J Arthroplasty 2009;24(7):1079-85.
    [38] Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomater 2010;63349-59.
    [39] Sidhu KS, Prochnow TD, Schmitt P, Fischgrund J, Weisbrode S, Herkowitz HN. Anterior cervical interbody fusion with rhBMP-2 and tantalum in a goat model. Spine J 2001;1331-40.
    [40]赵铭,郑启新.人工关节材料的研究进展[J].生物骨科材料与临床研究2004;1(7):53-7.
    [41] Wood WJ, Maguire RG, Zhong WH. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process[J]. Compos. B: Eng. 2011;42(3):584-91.
    [42] Xie XL, Tang CY, Kathy YY. Wear performance of ultra-high molecular weight molyethylene/quartz composites[J]. Biomaterials 2003;(24):1889-96.
    [43] Wang A, Lin R, Stark C, Dumbleton JH. Suitability and limitations of carbon fibre reinforced PEEK composites as bearing surfaces for total joint replacements[J]. Wear 1999;225(2):724-7.
    [44]陈战,王家序,秦大同.填料对超高分子量聚乙烯工程材料的改性研究[J].农业机械学报2001;(32):114-6.
    [45] Tong J, Ma Y, Jiang M. Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites[J]. Wear 2003;(55):734-41.
    [46] Wang A, Essner A, Polineni VK, Stark C, Dumbleton JH. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements[J]. Tribol. Int. 1998;31(1-3):17-33.
    [47]王庆良,葛世荣,黄传辉.氮离子注入超高分子聚乙烯的表面性能[J].中国表面工程2004;(2):7-10.
    [48] Schwartz CJ, Bahadur S, Mallapragada SK. Effect of crosslinking and Pt–Zr quasicrystal fillers on the mechanical properties and wear resistance of UHMWPE for use in artificial joints[J]. Wear 2007;263(7-12):1072-80.
    [49] Valenzaa A, Visco AM, Torrisi L. Characterization of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Modified by Ion Implantation[J]. Polymer 2004;(45):1707-15.
    [50] Garvie RC, Hannink R, Pascoe RT. Ceramic steel[J]. Nature 1975;25(8):703-4.
    [51] Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopaedic application[J]. J Biomed Mater Res 1971;5(6):161-229.
    [52] Yoon TR, Rowe SM, Jung ST, Seon KJ, Maloney WJ. Osteolysis in Association with a Total Hip Arthroplasty with Ceramic Bearing Surfaces[J]. J. Bone Joint Surg. Am 1998;80(10):1459-67.
    [53] Navarro M, Michiardi A, Castan?o, Planell JA. Biomaterials in orthopaedics. J R Soc Interface 2008;51137-58.
    [54]卫敏仲,顾汉卿.医用金属材料表面改性与修饰的研究进展[J].透析与人工器官2005;(1):32-40.
    [55] Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 2006;272651-70.
    [56] Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007;285058-67.
    [57] Stilling M, Rahbek O, S?balle K. Inferior Survival of Hydroxyapatite versus Titanium-coated Cups at 15 Years. Clin Orthop Relat Res 2009;4672872-9.
    [58] Xue W, Liu X, Zheng X, Ding C. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials 2005;263029-37.
    [59] Chen YM, Xi TF, Lv YP, Zheng YD. In vitro biological performance of nano-particles on the surface of hydroxyapatite coatings. Appl Surf Sci 2008;255375-8.
    [60] Baas J, Elmengaard B, Jensen TB, Jakobsen T, Andersen NT, Soballe K. The effect of pretreating morselized allograft bone with rhBMP-2 and/or pamidronate on the fixation of porous Ti and HA-coated implants. Biomaterials 2008;292915-22.
    [61] Raenert K, Draenert Y, Garde U. Manual of cementing technique[M]. Berlin:Springer-Verlag Berlin-Heidelberg, 1999;132-5.
    [62] Beckmann J, Goldapp C, Ringleff K, Schaumburger J, Grifka J, Perlick L. Cementing technique in femoral resurfacing[J]. Arch Orthop Trauma Surg2009;129(10):1317-25.
    [63] Crites BM, Berend ME, Ritter MA. Technical considerations of cemented acetabular components[J]. Clin Orthop 2000;(381):114-9.
    [64]尚希福.人工关节骨水泥固定的应用技术现状[J].临床骨科杂志2002;5(3):238-40.
    [65] Wixson RL. Do we need to vacuum mix or centrifuge cement?[J]. Clin Orthop 1992;(285):84-90.
    [66] Schmidt J, Specht R, Steur G. Advantage of the transprosthetic drainage system (TDS)for application in cemented hip arthroplasty-a standardized experimental comparison with other cementing techniques[J]. Arch Orthop Trauma Surg. 1996;115(3-4):153-7.
    [67] Geiger MH, Keating EM, Ritter MA. The clinical significance of vacuum mixing bone cement[J]. Clin Orthop 2001;(382):258-66.
    [68] Schmidt J, Steür G, Specht R, Kumm D. Computer-assisted experimental implantation technique for comparative quality assessment of various cementation techniques in cemented hip prosthesis implantation[J]. Biomed Tech (Berl). 1994;39(4):79-84.
    [69] Burke DW, Gates EI, Harris WH. Centrifugation as a method of improving tensile and fatigue properties of acrylic bone cement[J]. Bone and Joint Surg 1984;66-A1265-73.
    [70] Ritter MA, Herbst SA, Keating EM, Faris PM. Radiolucency at the bone-cement interface in total knee replacement. The effects of bone-surface preparation and cement technique[J]. JBJS 1994;76(1):60-5.
    [71] Stromberg CN, Herberts P, Palmertz B. Cemented revision hip arthroplasty. A multicenter 5- 9- year study of 204 first for loosening[J]. Acta Orthop Scand 1992;63(2):111-9.
    [72] Beckenbaugh RD, Ilstrup DM. A review of three hundred and thirty-three cases with long follow-up[J]. J Bone Joint Surg (Am) 1978;60306-13.
    [73] Oishi CS, Walker RH, Colwell CW. The femoral component in total hip arthroplasty.Six to eight-year follow-up of one hundred consecutive patients after use of a third-generation cementing technique [J]. J Bone Joint Surg ( Am) 1994;76(8):1130-6.
    [74] Ahmed AM, Raab S, Miller JE. Metal/cement interface strength in cemented stem fixation[J]. Orthop Res 1984;2105-18.
    [75] Anthony PP, Gie GA, Howie CR, RSM L. Localised endosteal bone lysis in relation to the femoral components of cemented total hip arthroplasties[J]. Bone andJoint Surg. 1990;72-B(6):971-9.
    [76] Barrack RL, Mulroy RD, Jr, Harris WH. Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty. A 12-year radiographic review[J]. Bone and]oint Surg 1992;74-B(3):385-9.
    [77] Barrack RL, Jasty M, Bragdon C, Haire T, Harris WH. Thigh pain despite bone ingrowth into uncemented femoral stems[J]. Bone and]oint Surg. 1992;74-B(4):507-10.
    [78] Brooker AF, Bowerman JW, Robinson RA, Riley LH, Jr. Ectopic ossification following total hip replacement. Incidenceand a method of classification[J]. J Bone and Joint Surg 1973;55-A1629-32.
    [79] Hekkila JT, Aho AJ, Kangasniemi I. Polymethylmethacrylat e composites: Disturbed bone formation at the surface of bioactive glass and hydroxyapatite [J]. Biomaterials 1996;17(18):1755-60.
    [80] Martell JM, Pierson RH, Jacobs JJ, Rosenberg AG, Maley M, Galante JO. Primary total hip reconstruction with a titanium fiber-coated prosthesis inserted with cementfiber-coated prosthesis inserted with cement[J]. J Bone Joint Surg (AM) 1993;75554-71.
    [81] Galante JO. Clinical results with the HGP cementless total hip prosthesis[M]. Noncemented Total Hip Arthroplasty. 1988;New York:Raven427.
    [82] Haddad FS, Muirhead-Allwood SK, Manktelow AR. Two-stage uncemented revision hip arthroplast for infection[J]. J Bone Joint Surg (Br) 2000;82689-94.
    [83] Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone [J]. Clin Orthop 1980;150263-70.
    [84]张运,张春雷, Yun Z, Chun-lei Z.非骨水泥型全髋关节置换术临床应用进展.昆明医学院学报2005;26(4):117-20.
    [85] Morscher EW. Cementless total hip arthroplasty[J]. Clin Orthop 1983;(181):76-91.
    [86]于建华,张铁良,卜延民,赵秀祥,郑得志.广泛微孔涂层非骨水泥假体在股骨翻修的应用[J].中华骨科杂志2005;25(2):110-4.
    [87]卢世壁,孙燕群.无骨水泥固定珍珠面人工股骨头置换术的实验研究[J].中华外科杂志1989;27(3):180-2.
    [88] Ring PA. Five to fourteen year interim results of uncemented total hip arthroplasty[J]. Clin Orthop Relat Res. 1978;(137):87-95.
    [89] Archibeck MJ, Surdam JW, Schultz-Jr SC, Junick DW, White RE. Cementless Total Hip Arthroplasty in Patients 50 Years or Younger[J]. The Journal of Arthroplasty 2006;21(4):476-83.
    [90] Sibanda N, Copley LP, Lewsey JD. Revision rates after primary hip and knee replacement in England between 2003 and 2006[J]. Plas Med 2008;5(9):e179.
    [91] Newman JH, Ackroyd CE, Shah NA. Unicompartmental or total knee replacement? Five year results of a prospective, randomised trial for 102 osteoarthritic knees with unicompartmental arthritis[J]. J Bone Joint Surg Br 1998;80862-5.
    [92] Koskinen E, Paavolainen P, Eskelinen A, Pulkkinene P, Reme V. Unicondylar knee replacement for primary osteoarthritis[J]. Acta Orthop 2007;78128-35.
    [93] Marker DR, Seyler TM, Jinnah RH, Delanois RE, Ulrich SD, et a. Femoral neck fractures after metal-on-metal total hip resurfacing: a prospective cohort study[j]. J Arthroplasty 2007;2266-71.
    [94] Johnsen SP, Sorensen HT, Lucht U, Soballe K. Patient-related predictors of implant failure after primary total hip replacement in the initial, short- and long-terms. A nationwide Danish follow-up study including 36,984 patients[J]. J Bone Joint Surg Br 2006;881303-8.
    [95] Slover J, Espehaug B, Havelin LI, Engesaeter LB, Furnes O, et a. Cost-effectiveness of unicompartmental and total knee arthroplasty in elderly low-demand patients[J]. J Bone Joint Surg Am 2006;882348-55.
    [96] Archibeck MJ, White RE. What's new in adult reconstructive knee surgery[J]. J Bone Joint Surg Am 2004;861839-49.
    [97] RBC T, Shetty VD, Villar RN. Controversial topics in surgery. To resurface or replace the hip in the under 65-year-old[J]. Ann R Coll Surg Engl 2006;88349-53.
    [98] Daniel J, Pynsent PB, DJW M. Metal on metal resurfacing of the hip in patients under the age of 55 years with osteoarthritis[J]. J Bone Joint Surg Br 2004;86(177–184).
    [99] Huo MH, Parvizi J, Gilbert NF. What's new in hip arthroplasty. J Bone JointSurg Am 2006;882100-13.
    [100] Coventry MB, Beckenbaugh RD, Nolan DR, Ilstrup DM. 2,012 total hip arthroplasties. A study of postoperative course and early complications[J]. J Bone Joint Surg Am 1974;56(273-84).
    [101] Morshed S, Bozic KJ, Ries MD, Malchau H, Colford JM. Comparison of cemented and uncemented fixation in total hip replacement[J]. Acta Orthop 2007;78315-26.
    [102] Berger RA, Nedeff DD, Barden RM, Sheinkop MM, Jacobs JJ. Unicompartmental knee arthroplasty. Clinical experience at 6- to 10-year follow up. Clin Orthop Relat Res. 1999;36750-60.
    [103]吕丹,孙明林, Dan Lü, Ming-lin S.人工髋关节置换后假体无菌性松动的因素及其防治[J].中国组织工程研究与临床康复2009;13(13):2553-6.
    [104] Digas G, Karrholm J, Thanner J. Different loss of BMD using uncemented press-fit and whole polyethylene cups fixed with cement: repeated DXA studies in 96 hips randomized to 3 types of fixation[J]. Acta Orthop 2006;77(2):218.
    [105]刘锋,范卫民,陶松年.微动引起人工关节无菌性松动的实验研究[J].江苏医药杂志2001;27(8):579-80.
    [106] Bodén H, Adolphson P, Oberg M. Unstable versus stable uncemented femoral stems:a radiological study of periprosthetic bone changes in two types of uncemented stems with different concepts of fixation[J]. Arch Orthop Trauma Surg 2004;124(6):382-92.
    [107] S?balle K, Hansen ES, B-Rasmussen H, J?rgensen PH, Bünger C. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions[J]. J Orthop Res 1992;10(2):285-99.
    [108]王野平,李望云,张菊华.假体-骨组织界面微动磨损机理的实验研究[J].医用生物力学2003;18(1):23-7.
    [109]郑稼,金毅,赵炬才.人工关节术后松动因素研究进展[J].中国矫形外科杂志2006;14(5):381-3.
    [110] Goldring SR, Schiller AL, Roelke M, Rourke CM, O'Neil DA, Harris WH. The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis[J]. J Bone Joint Surg Am 1983;65(5):575-84.
    [111] Horikoshi M, Macaulay W, Booth RE, Crossett LS, Rubash HE. Comparison of interface membranes obtained from failed cemented and cementless hip and knee prostheses[J]. Clin Orthop Relat Res. 1994;(309):69-87.
    [112] Kim KJ RHE, Wilson SC DJA, McClain EJ. A histologic and biochemical comparison of the interface tissues in cementless and cemented hip prostheses[J]. Clin Orthop Relat Res 1993;(287):142-52.
    [113] Huk OL, Zukor DJ, Ralston W, Lisbona A, Petit A. Apoptosis in interface membranes of aseptically loose total hip arthroplasty[J]. J Mater Sci Mater Med 2001;12(7):653-8.
    [114] Teitelbaum SL. Osteoclasts: What Do They Do and How Do They Do It?[J]. Am J Pathol. 2007;170(2):427-35.
    [115] Mandelin J, Li TF, Hukkanen M, Liljestr?m M, Salo J, Santavirta S, et al. Interface tissue fibroblasts from loose total hip replacement prosthesis produce receptor activator of nuclear factor-kappaB ligand,osteoprotegerin,and cathepsin K[j]. J Rheumatol 2005;32(4):713-20.
    [116] Haynes DR, Crotti TN, Zreiqat H. Regulation of osteoclast activity in peri-implant tissues[J]. Biomaterials 2004;25(20):4877-85.
    [117] Qian Y, Zeng BF, Zhang XL, Jiang Y. Substance P augments PGE2and IL-6production in titanium particles-stimulated fibroblasts from hip periprosthetic membrane[J]. J Biomed Mater Res Am 2007;83A(2):401-6.
    [118]金群华,吕厚山,陈占昆,蒋东方,王业华.金属蛋白酶诱导因子表达增加在人工关节无菌性松动中的作用及意义[J].中华外科杂志. 2004;42(20):1232-5.
    [119] Landgraeber S, Toetsch M, Wedemeyer C, Saxler G, Tsokos M, Knoch F, et al. Over-expression of p53/BAK in aseptic loosening after total hip replacement[J]. Biomaterials 2006;27(15):3010-20.
    [120] Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement[J]. Biomaterials 2005;26(11):1271-86.
    [121] Qian Y, Zeng BF, Zhang XL, Jiang Y. Substance P stimulates production of interleukin 1beta and tumor necrosis factor alpha in fibroblasts from hip periprosthetic membrane[J]. J Arthroplasty 2008;23(4):581-5.
    [122] Suh KT, Chang JW, Jung JS. The role of inducible nitric oxide synthase in aseptic loosening after total hip arthroplasty[J]. J Bone Joint Surg Br. 2002;84(5):753-7.
    [123] Kitaura H, Zhou P, Kim HJ, Novack DV, Patrick-Ross F, Teitelbaum SL. M-CSF mediates TNF-induced inflammatory osteolysis[J]. J Clin Invest 2005;115(12):3418–3427.
    [124] Boyce BF, Li P, Yao Z, Zhang Q, Badell IR, Schwarz EM, et al. TNF-alpha and pathologic bone resorption[J]. Keio J Med 2005;54(3):127-31.
    [125] Gallagher JC, Rapuri PB. Osteoporosis: Pathophysiology[M]. Encyclopedia of Hormones 2003;89-98.
    [126]陈志荣,张亮,吴兴临.肿瘤坏死因子与人工关节无菌性松动[J].国际骨科学杂志2007;28(4):255-7.
    [127]范卫民,王青,陶松年.肿瘤坏死因子与人工关节无菌性松动关系的探讨(附7例报告)[J].南京医科大学学报2000;20(2):117-8.
    [128] Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement[J]. Proc IME H J Eng Med 2000;214(1):21-37.
    [129] Kim KJ, Kotake S, Udagawa N, Ida H, Ishii M, Takei I, et al. Osteoprotegerin inhibits in vitro mouse osteoclast formation induced by joint fluid from failed total hip arthroplasty[J]. J Biomed Mater Res (Appl Biomater) 2001;58(4):393-400.
    [130]雷鸣,王敏,涂利民.基质金属蛋白酶及其组织抑制剂对全髋关节置换术后假体无菌性松动影响的实验研究[J].中国现代医药杂志2008;10(6):68-9.
    [131] Harris WH, Schiller AL, Scholler JM, Freiberg RA, Scott R. Extensive localized bone resorption in the femur following total hip replacement[J]. J Bone Joint Surg Am 1976;58(5):612-8.
    [132] Kolundzic R, Orlic D. Particle disease--aseptic loosening of the total hip endoprosthesis[J]. Lijec Vjesn 2008;130(1-2):16-20.
    [133]丛永健, Yong-jian C.人工髋关节无菌性松动原因研究进展[J].实用医药杂志2009;26(4):63-5.
    [134] Vermes C, Chandrasekaran R, Jacobs JJ, Galante JO, Roebuck KA, Glant TT. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts[J]. J Bone Joint Surg Am. 2001;83-A(2):201-11.
    [135]许杰,刘尚礼, Bertram B, Franz L.磨损颗粒刺激巨噬细胞引起人工关节松动的作用机制[J].中华关节外科杂志(电子版) 2008;2(4):50-2.
    [136] Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis[J]. J Clin Invest 2003;111.821-31.
    [137] Salemyr MF, Skoldenberg OG, Boden HG, Ahl TE, Adolphson PY. Good results with an uncemented proximally HA-coated stem in hip revision surgery: 62 hips followed for 2-13 years[J]. Acta Orthop 2008;79(2):184-93.
    [138] Hiroshi Kusakabe TS, Kotaro Nihei YO, ShigeruYanagimoto M, Jun Kimura YT. Osseointegration of a hydroxyapatite-coated multilayered mesh stem. Biomaterials 2004;252957–2969.
    [139] Xie J, Luan BL, Wang J, Liu XY, Rorabeck C, Bourne R. Novel hydroxyapatite coating on new porous titanium and titanium-HDPE composite for hip implant. Surface and Coatings Technology 2008;2022960-8.
    [140] Alexandra E. Porter PT, Linn W. Hobbs MJC, Gordon W. Blunn MS. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials 2004;255199–5208.
    [141] Nimb L, Gotfredsen K, Jensen SJ. Mechanical failure of hydroxyapatite coated titanium and cobalt chromium molybdenum alloy implants:An animal study[J]. Acta Orthop Belg 1993;59(4):333-8.
    [142]王峰,陈东阳,邱旭升,徐志宏,王祖玉,史冬泉,等.生物型髋关节假体涂层脱落的临床分期和预防[J].中国骨伤2009;22(6):413-6.
    [143] Dorairajan A, Reddy RM, Krikler S. Outcome of Acetabular Revision Using an Uncemented Hydroxyapatite-Coated Component. J Arthroplasty 2005;20(2):209-81.
    [144] Lee JM, Lee CW. Comparison of Hydroxyapatite-Coated and Non–Hydroxyapatite-Coated Noncemented Total Hip Arthroplasty in Same Patients[J]. The Journal of Arthroplasty 2007;22(7):1019-23.
    [145] Collier JP, Surprenant VA, Mayor MB, Wrona M, Jensen RE, Surprenant HP. Loss of hydroxyapatite coating on retrieved, total hip components[J].The Journal of Arthroplasty 1993;8(4):389-93.
    [146]谭延斌,杨庆铭,王毅.羟基磷灰石涂层假体松动[J].国外医学(骨科学分册) 2005;26(3):176-8.
    [147] Ni S, Chang J. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. J Biomater Appl 2009;24(2):139-58.
    [148]程永喜,龙文,张俭,毛俊木. HA和Ti等离子喷涂种植体修复5年后的临床效果[J].中山医科大学学报2002;23(z1):135-6.
    [149]王峰,陈东阳,邱旭升,徐志宏,王祖玉,史冬泉,等.生物型髋关节假体涂层脱落的临床分期和预防[J].中国骨伤2009;22(6):413-6.
    [150]卢宏章,朱天岳,柴卫兵,文立成,曹永平,李军,等.髋关节置换术后失败原因分析[J].中国矫形外科杂志2008;(18):1361-3.
    [151] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003;24(13):2161-75.
    [152]吴立东,熊炎,严世贵,王祥华,戴雪松, Li-dong WU,等.全涂层表面微孔股骨假体在人工全髋关节翻修术中的应用[J].中华创伤杂志2005;21(11):806-10.
    [153] Long WJ, Scuderi GR. Porous Tantalum Cones for Large Metaphyseal Tibial Defects in Revision Total Knee Arthroplasty-A Minimum 2-Year Follow-up. J Arthroplasty 2009;241086-92.
    [154] Lai-Fook SJ, Houtz PK. Airway constriction measured from tantalum bronchograms in conscious mice in response to methacholine[J]. J Appl Physiol 2008;105(3):933-41.
    [155]蒋驰,肖云峰,税毅,王术刚.等离子喷涂工艺对钽/钨复合涂层组织结构的影响[J].材料保护. 38(8):45-8.
    [156]蒋驰,周晋林,张鹏程,肖云峰,税毅,王术刚,等.等离子喷涂参数对钽涂层组织及性能的影响[J].材料保护2002;35(8):27-31.
    [157] Xie Y, Hawthorne HM. A model for compressive coating stresses in the scratch adhesion test. Surf Coat Technol 2001;14115-25.
    [158] Bull SJ, Berasetegui EG. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 2006;3999-114.
    [159] Valli J, M?kel? U. Applications of the scratch test method for coating adhesion assessment. Wear 1987;115215-22.
    [160] Rodrigo A, Ichimura H. Analytical correlation of hardness and scratch adhesion for hard films[J]. Surf Coat Technol. . 2001;148(1):8-17.
    [161] Parmigiani JP, Thouless MD. The roles of toughness and cohesive strength on crack deflection at interfaces. Journal of the Mechanics and Physics of Solids 2006;54266–287.
    [162] Friedrich C, Berg G, Broszeit E, Berger C. Measurement of the hardness of hard coatings using a force indentation function. Thin Solid Films 1996;290-291216-20.
    [163] Lee GY, Dharan CKH, Ritchie RO. A physically-based abrasive wear model for composite materials. Wear 2002;252322-31.
    [164] Rabinowicz E, Dunn LA, Russell PG. A study of abrasive wear under three-body conditions. Wear 4345-55.
    [165] Iost A, Bigot R. Hardness of coatings. Surf Coat Technol 1996;80117-20.
    [166] Shahdad SA, McCabe JF, Bull S, Rusby S, Wassell RW. Hardness measured with traditional Vickers and Martens hardness methods. Dent Mater 2007;231079-85.
    [167] Iost A, Najjar D, Hellouin R. Modelling of the Vickers hardness of paint coatings deposited on metallic substrates. Surf Coat Technol 2003;165126-32.
    [168] Iwai Y, Hondaa T, Yamadaa H, Matsubara T, Larsson M, Hogmarkd S. Evaluation of wear resistance of thin hard coatings by a new solid particle impact test. Wear 2001;251861–867.
    [169] Blau PJ. Fifty years of research on the wear of metals. Tribology International 1997;30(5):321-31.
    [170] Rabinowicz E, Dunn LA, Russell PG. A study of abrasive wear under three-body conditions. Wear 4345-55.
    [171] Navarro C, Mun?oz, Dom?′nguez. On the use of multiaxial fatigue criteria for fretting fatigue life assessment. International Journal of Fatigue 2008;3032-44.
    [172] Terheci M. Microscopic investigation on the origin of wear by surface fatigue in dry sliding. Materials Characterization 2000;451-15.
    [173] Miyoshi K. Considerations in vacuum tribology (adhesion, friction, wear, and solid lubrication in vacuum). Tribology International 1999;32605–616.
    [174] Hai-Dou Wang BX, Jia-Jun Liu DZ. Characterization and tribological properties of plasma sprayed FeS solid lubrication coatings. Materials Characterization 2005;5543–49.
    [175] Xue W, Liu X, Zheng X, Ding C. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials 2005;26(16):3029-37.
    [176] Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomater 2010;doi:10.1016/j.actbio.2010.01.0461-11.
    [177] Yang H, Yang S, Cai Y, Hou G, Tang M. Effect of bromide ions on the corrosion behavior of tantalum in anhydrous ethanol. Electrochim Acta2010;552829-34.
    [178] Levine BR, Sporer S, Poggie RA, Della VCJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006;27(27):4671-81.
    [179] Chang Y, Kobayashi M, Li Z, Oka M, Nakamura T. Significance of peak value and duration of the interfacial shear loadin evaluation of the bone-implant interface. Clin Biomech 2003;18773-9.
    [180] Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, et al. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater 2010;(doi:10.1016/j.actbio.2010.08.020):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700