纳米硫化亚铜及其复合材料的制备、表征与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术,由于其具有“节能”和“环保”的双重意义,因此已经在污水的处理、抑菌杀菌以及环境的净化等领域得到广泛的研究与应用。然而,在半导体光催化剂的研究中,涉及到的多数是宽禁带的半导体材料,如ZnO, TiO2, SnO2等等,这些半导体材料由于本身具有大的带隙能,因此它们对太阳光能的利用率并不高,而且由于光生电子与空穴的复合特性,使单一的半导体光催化剂在开发利用方面受到了限制。因此需要对单一的半导体光催化剂进行改性处理,以达到提高半导体光催化活性的目的。硫化亚铜(Cu2S)是一种窄禁带(乓=1.2-1.24eV)的p型半导体材料,具有良好的化学和热稳定性能,是一种良好的光电材料,在太阳光能利用等领域有着巨大的应用潜能。
     本论文以纳米Cu2S及其复合材料作为研究对象。采用多元醇法制备样品并通过XRD, FESEM, EDS, XPS, FTIR和UV-Vis DRS的表征方法对样品进行表征,并研究不同因素对样品的结构、形貌以及光催化活性的影响。论文的研究工作分为以下三个部分:
     1.采用高温多元醇法,以醋酸铜为铜源,一缩二乙二醇(DEG)为溶剂和还原剂,通过改变合成条件,制备出不同结构和形貌的Cu2S纳米材料,并分析不同结构和形貌对样品光催化性能的影响。实验结果表明,当Cu/S摩尔比为1:1.5和1:1时,样品的XRD中出现了CuS的杂质峰;然而,当增大Cu/S摩尔比时,样品的XRD图谱中只存在Cu2S的衍射峰。此外,样品对甲基橙溶液都表现出一定的光催化降解能力。当Cu/S摩尔比为2:1时,样品的平均晶粒尺寸随着体系反应温度的增加而增大,因此样品的光催化性能有所下降。综合样品的结构和形貌,当Cu/S摩尔比为2:1,在反应温度为180℃的条件下,样品的光催化性能最佳。
     2.以多壁碳纳米管(MWCNTs)为载体,醋酸铜为铜源,聚乙烯毗咯烷酮(PVP)为表面活性剂,采用多元醇法制备Cu2S/MWCNTs纳米复合材料,并研究不同的铜源含量以及不同的PVP含量对样品的结构、形貌以及光催化性能的影响。当铜源含量较小时,负载在MWCNTs管壁上的Cu2S纳米颗粒大小均匀、分散效果较好,因而样品的光催化性能较好;当增加铜源的含量时,特别当铜源含量增加到0.05mol/L时,样品的光催化性能下降。当铜源含量为0.02mol/L时,样品的光催化性能随着PVP含量的增加而增加,并且当PVP的含量增加到0.5g时,负载在MWCNTs管壁上的Cu2S纳米颗粒大小均匀、分散效果最好,因此样品的性能达到最佳;然而,当继续增加PVP的含量时,特别当PVP的含量增加到0.9g时,由于部分的Cu2S纳米颗粒未成功负载在MWCNTs的管壁上,因此导致样品的光催化性能明显下降。此外,在本部分内容中,我们也分析了Cu2S/MWCNTs复合材料的光催化机理。
     3.同样地,在表面活性剂PVP的辅助下,以醋酸铜为铜源,DEG为溶剂和还原剂,通过高温多元醇法制备Cu2S/T-ZnOw纳米复合光催化剂,并研究不同的Cu/Zn摩尔比以及不同的PVP含量对样品的结构、形貌以及光催化性能的影响。当PVP的含量为0.5g时,Cu2S纳米颗粒的负载量随着Cu/Zn摩尔比的增加而增加;特别当Cu/Zn摩尔比增加到10%时,Cu2S纳米颗粒出现比较大的团聚。当Cu/Zn≤4%时,样品的光催化活性随着Cu/Zn摩尔比的增加而增加;然而,当继续增加Cu/Zn摩尔比时,样品的光催化活性反而下降。在Cu/Zn摩尔比为2%的条件下,当PVP的含量≤0.1g时,PVP含量越高,样品的光催化活性也越高,并且当PVP的含量为0.3g时,Cu2S纳米颗粒的大小均匀、分散效果最佳,因此样品的光催化活性最好;然而,当PVP的含量>0.1g时,样品的光催化性能下降。特别当PVP的含量增加到0.5g时,由于部分的Cu2S纳米颗粒未成功沉积在T-ZnOw表面上,导致样品的光催化活性下降很多,这说明表面活性剂PVP的含量对于样品形貌的控制以及光催化活性都有很大的影响。此外,在本部分内容中,我们也对Cu2S/T-ZnOw复合光催化剂的光催化机理进行了分析。
     综上所述,本论文采用高温多元醇法成功制备纳米Cu2S以及Cu2S/MWCNTs和Cu2S/T-ZnOw纳米复合材料。实验结果表明,Cu2S/MWCNTs以及Cu2S/T-ZnOw纳米复合材料对甲基橙溶液具有优异的光催化降解性能,这在环境污染物的降解方面将有很大的应用潜能。
Due to the double significance of "energy conservation" and "environmental protection", semiconductor photocatalytic technology has been widely studied and used in the fields of wastewater treatment, semiconductor sterilization and the purification of environmental pollutants. Most wide bandgap semiconductors have been studied among these semiconductor photocatalysts, such as ZnO, TiO2, and SnO2. However, due to their large band gap energies, the utilization rate of the sunlight is very low for them. In addition, the recombination property of photogenerated electrons and holes, hindering the pratical applicatons of the single semiconductor. So, in order to enhance the photoactivity of the single semiconductor photocatalyst, we need to take some efficient measures to modify the single photocatalyst. As a new p-type semiconductor material with a bulk band gap in range of1.22-1.24eV, Cu2S has excellent thermal and chemical stability and is a good photoelectric material. So it has great potential applications for the solar photovoltaic and environmental purification.
     In this thesis, Cu2S nanomaterial and its nanocomposites have been considered as the objects and synthesized by polyol process. The samples are characterized by XRD, FESEM, EDS, XPS, FTIR and UV-Vis DRS. Besides, we studied the effect of various factors on the structure, morphology and the photoactivity of the samples and the detailed contents are as the following three aspects:
     1. Cu2S nanomaterials with different structure and morphology have been successfully prepared by polyol process under the different reaction conditions. Copper acetate as a precursor and diethylene glycol as both solvent and reducing agent in the polyol process. Besides, we have studied the effect of the different structure and morphology on the photocatalytic activity of the samples. When the Cu/S MRs are1:1.5and1:1, the characteristic peaks of CuS appear in the XRD spectra of the samples. However, when increases the Cu/S MR up to2:1, the XRD spectra of the samples just exhibits the characteristic peaks of Cu2S. Besides, the samples show the ability to photodegrade the methylene orange. Under the2:1Cu/S, the mean particle size of the samples increases with the increasing of the reaction temperatures, which results in decreasing the photocatalytic property.
     2. Taking MWCNTs as the carriers and copper acetate as a precursor, we have successfully synthesized the Cu2S/MWCNTs nanocomposites with the assistant of poly(vinyl pyrrolidone)(PVP) by polyol process, we study the influence of the different contents of copper salt and PVP on the structure, morphology and the photoactivity of the samples. When the content of the copper salt is relatively low, the Cu2S nanoparticles are uniformly dispersed on the surface of MWCNTs and the samples exhibit excellent photoactivity. However, the photoactivity of the sample decreases with increasing the content of copper salt. Under the0.02mol/L copper salt, the photoactivity of the sample increases with increasing the PVP contents. In particularly, when increases the PVP content up to0.5g, the Cu2S nanoparticles are uniformly diposited on the surface of MWCNTs and the sample shows the optimum photoactivity. However, further increasing the PVP content, the photoactivity decreases. Expecially, when increases the PVP content up to0.9g, the photoactivity decreases very much. Besides, the photocatalytic mechanism of photoactivity enhancement for the Cu2S/MWCNTs nanocomposites is also discussed.
     3. Similarly, taking copper acetate as the precursor and DEG as both solvent and reducing agent, we have successfully synthesized the coupled Cu2S/T-ZnOw photocatalysts with the assistant of PVP by polyol process. The effect of Cu/Zn MR and PVP content on the structure, morphology and the photoactivity of the samples are discussed. The results show that the amounts of the Cu2S nanoparticles deposited on the surface of T-ZnOw are gradually increased with increasing the Cu/Zn under the0.5g PVP. Expecially, when increases the Cu/Zn up to10%, some nanoparticles aggregated into large clusters. When the Cu/Zn≤4%, the photoactivity increases with increasing the Cu/Zn. However, further increasing the Cu/Zn, the photoactivity decreases. Under the2%Cu/Zn, when the PVP contents≤0.1g, the photoactivity increases with increasing the PVP contents. When increases the PVP content up to0.3g, the nanoparticles are uniformly loaded on the surface of T-ZnOw and the sample exhibits more excellent photoactivity. However, when the PVP contents>0.1g, the photoactivity decreases. In particularly, when increases the PVP content up to0.5g, some nanoparticles failed to deposite onto the surface of T-ZnOw and result in decreasing the photoactivity very much. Besides, we also discuss the photocatalytic mechanism of the coupled photocatalysts in this thesis.
     In this thesis, we have successfully synthesized the nano-Cu2S, Cu2S/MWCNTS and Cu2S/T-ZnOw nanocomposites. The results show that the nanocomposites exhibit excellent photoactivity for the photocatalytic degradation of methyl orange, which demonstrates the samples have good potential applicatons for the purification of environmental pollutants.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,37:238-245
    [2]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol.1976,16: 697-701
    [3]P. V. Kamat. Photochemistry on nonreactive and reactive (Semiconductor) surfaces. Chem. Rev. 1993,93:267-300
    [4]R. Shapiro, S. Dubelman, A. M. Feinberg, P. F. Crain, J. A. McCloskey. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder. J. the Am. Chem. Soc.1977,99:303-304
    [5]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Physic. Chem.1977,81:1484-1488
    [6]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Jr. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results. Chem. Rev.1995,95:735-758
    [7]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995,95:69-96
    [8]张梅,杨绪杰,陆路德,汪信.纳米TiO2:一种性能优良的光催化剂.化工新型材料.2000,28:11-14
    [9]C. Kormann, D. W. Bahnemann, M. R. Hoffmann. Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Environ. Sci. Technol.1991,25: 494-500
    [10]R. W. Matthews, S. R. McEvoy. Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide. J. Photochem. Photobiol. A 1992,64:231-246
    [11]A. Sclafani, M.-N. Mozzanega, P. Pichat. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A 1991,59:181-189
    [12]K. Vinodgopal, P. V. Kamat. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol.1995,29: 841-845
    [13]T. Hirakawa, P. V. Kamat. Charge separation and catalytic activity of Ag@TiO2 core shell composite clusters under UV irradiation. J. Am. Chem. Soc. 2005,127:3928-3934
    [14]W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem.1994,98:13669-13679
    [15]Y Liu, C. Y Liu, Q. H. Rong, Z. Zhang. Characteristics of the silver-doped TiO2 nanoparticles. Appl. Surf. Sci. 2003,220:7-11
    [16]S. U. Khan, M. Al-shahy, W. B. Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297:2243-2245
    [17]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2011,13:269-271
    [18]H. Ozaki, S. Iwamoto, M. Inoue. Effect of the addition of a small amount of vanadium on the photocatalytic activities of N- and Si- co-doped titanias under visible-light irradiation. Cataly. Lett.2007,113:95-98
    [19]S. Y. Li, M. K. Chen, L. K. He, F. Xu, G. H. Zhao. Preparation and characterization of polypyrrole/TiO2 nanocomposite and its photocatalytic activity under visible light irradiation. J. Mater. Res.2009,24:2547-2554
    [20]S. Y. Li, S. H. Xu, L. J. He, F. Xu, Y. H. Wang, L. Zhang. Photocatalytic degradation of polyethylene plastic with polypyrrole/TiO2 nanocomposite as photocatalyst. Polymer-Plastics Technol. Eng.2010,49:400-406
    [21]D. S. Wang, Y. H. Wang, X. Y. Li, Q. Z. Luo, J. An, J. X. Yue. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by'in situ'method. Catal. Commun.2008,9:1162-1166
    [22]J. Y. Ho, M. H. Huang. Synthesis of submicrometer-sized CU2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 2009, 113:14159-14164
    [23]H. M. Yang, J. Ouyang, A. D. Tang, Y. Xiao, X. W. Li, X. D. Dong, Y. M. Yu. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Mater. Res. Bull.2006,41:1310-1318
    [24]V. Georgieva, M. Ristov. Electrodeposited cuprous oxide on indium tin oxide for solar applications. Sol. Energy Mater. Sol. Cells, 2002,73:67-73
    [25]E. Ko, J. Choi, K. Okamoto, Y. S. Tak, J. Y. Lee. CU2O nanowires in an alumina template: Electrochemical conditions for the synthesis and photoluminescence characteristics. Chem. Phys. Chem.2006,7:1505-1509
    [26]F. Pfisterer. The wet-topotaxial process of junction formation and surface treatments of Cu2S-CdS thin-film solar cells. Thin Solid Films,2003,431-432:470-476
    [27]Y. Wu, C. Wadia, W. L. Ma, B. Sadtler, A. P. Alivisatos. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 2008, 8:2551-2555
    [28]W. D. Gillt, R. H. Bube. Photovoltaic Properties of Cu2S-CdS Heterojunctions. J. Appl. Phys.1970,41:3731-3738
    [29]M. Peng, L. L. Ma, Y. G. Zhang, M. Tan, J. B. Wang, Y. Yu. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Mater. Res. Bull.2009,44: 1834-1841
    [30]Y. H. Kim, K. Y. Park, D. M. Jang, Y. M. Song, H. S. Kim, Y. J. Cho, Y. Myung, J. Park. Synthesis of Au-Cu2S core shell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Chem. C 2010, 114: 22141-22146
    [31]H. Y. He. Photo-catalytic degradation of methyl orange in water on CuS-Cu2S powders. Int. J. Environ. Res.2008,2:23-26
    [32]H. Lee, S. W. Yoon, E. J. Kim, J. Park. In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett. 2007, 7: 778-784
    [33]X. J. Bo, J. Bai, L. X. Wang, L. P. Guo. In situ growth of copper sulfide nanoparticles on orderedmesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide. Talanta, 2010, 81: 339-345
    [34]L. L. Ma, J. L. Li, H. Z. Sun, M. Q. Qiu, J. B. Wang, J. Y. Chen, Y. Yu. Self-assembled Cu2O flowerlike architecture:Polyol synthesis, photocatalytic activity and stability under simulated solar light. Mater. Res. Bull.2010,45:961-968
    [35]L. K. Kurihara, G. M. Chow, P. E. Schoen. Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater.1995,5:607-613
    [36]C. Feldmann, H. O. Jungk. Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed.2001,40:359-62
    [37]马丽丽.可见光响应的纳米Cu2O、CdS的制备及其光催化性质研究.华中师范大学博士学位论文.2008
    [38]X. M. Fan, J. S. Lian, Q, Jiang, Z. W. Zhou. Effect of the oxygen pressure on the photoluminescence properties of ZnO thin films by PLD. J. Mater. Sci. 2007, 42: 2678-2683
    [39]E. Hosono, S. Fujihara, T. Kimura, H. Imai. Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. J. Colloid Interf. Sci.2004,272:391-398
    [40]F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. F. Homogeneous, H. Nuclea. Tions in the polyol process for the preparaton of micron and submicron size metal particles. Solid State lonics,1989,32-33:198-205
    [41]Y. Yu, L. L. Ma, W. Y. Huang, J. L. Li, P. K. Wong, J. C. Yu. Coating MWCNTs with CU2O of different morphology by a polyol process. J. Solid State Chem.2005,178: 1488-1494
    [42]R. H. Wang, J. H. Xin, Y. Yang, H. F. Liu, L. M. Xu, J. H. Hu. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl. Surf. Sci.2004, 227:312-317
    [43]L. Q. Jing, Y. H. Qu, B. Q. Wang, S. D. Li, B. J. Jiang, L. B. Yang, W. Fu, H. G. Fu, J. Z. Sun. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells,2006,90: 1773-1787
    [44]S. Lijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    [45]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio. Electrical conductivity of individual carbon nanotubes. Nature,1996,382:54-56
    [46]刘翔,洪伟良,赵凤起,田德余,张金霞,李启舜.CuO/CNTs复合催化剂的制备及对FOX-12热分解的催化性能.固体火箭技术.2008,31:508-526
    [47]W. D. Wang, P. Serp, P. Kalck, J. L. Faria. Photocatalytic degradation of phenol on MWCNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal.B 2005,56:305-312
    [48]E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart. Pt-Ru/carbon fiber nanocomposites: Synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. J. Phys. Chem. B 2002,106:760-766
    [49]Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge, P. K. Wong. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Cataly. A 2005,289:186-196
    [50]L. Q. Jiang, L. Gao. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem. Phys.2005,91: 313-316
    [51]G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393:346-349
    [52]Y. Zhang, H. B. Zhang, G. D. Lin, P. Chen, Y. Z. Yuan, K.R. Tsai. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl. Catal. A 1999,187:213-224
    [53]L. P. Zhu, G. H. Liao, W. Y. Huang, L. L. Ma, Y. Yang, Y. Yu, S. Y. Fu. Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Mater. Sci. Eng. B 2009,163:194-198
    [54]H. Q. Wu, Q. Y. Wang, Y. Z. Yao, C. Qian, X. J. Zhang, X. W. Wei. Microwave-assisted synthesis and photocatalytic properties of carbon nanotube/zinc sulfide heterostructures. J. Phys. Chem. C 2008,112:16779-16783
    [55]K. H. Ji, D. M. Jang, Y. J. Cho, Y. Myung, H. S. Kim, Y. Kim, J. Park. Comparative photocatalytic ability of nanocrystal-varbon nanotube and TiO2 nanocrystal hybrid nanostructures. J. Phys. Chem. C 2009,113:19966-19972
    [56]Y. Yu, L. L. Ma, W. Y. Huang, F. P. Du, J. C. Yu, J. G. Yu, J. B. Wang, P. K. Wong. Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon, 2005,43:651-673
    [57]T. A. Saleha, M. A. Gondal, Q. A. Drmoshb, Z. H. Yamani, A. Al-yamani. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem. Eng. J.2011,166:407-412
    [58]Y. D. Yin, A. P. Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005, 437:664-670
    [59]Y. Y. Li, J. P. Liu, X. T. Huang, G. Y. Li. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Cryst. Growth Des.2007,7:1350-1355
    [60]Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2: 165-168
    [61]W. Xu, Y. Wang, X. Bai, B. Dong, Q. Liu, J. S. Chen, H. W. Song. Controllable
    synthesis and size-dependent luminescent properties of YVO4: Eu3+ nanospheres and microspheres. J. Phys. Chem. C 2010, 114:14018-14024
    [62]P. Singha, M. V. Kulkarni, S. P. Gokhalea, S. H. Chikkali, C. V. Kulkarni. Enhancing the hydrogen storage capacity of Pd-functionalized multi-walledcarbon nanotubes. Appl. Surf. Sci.2012,258:3405-3409
    [63]M. Husanu, M. Baibarac, I. Baltog. Non-covalent functionalization of carbon nanotubes: Experimental evidence for isolated and bundled tubes. Physica E, 2008,41:66-69
    [64]M. J. O, Cornell, P. Boul, L. M. Ericson, C. Huffman, Y. H. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley. Reversible water-solubilization of single-walled carbon nanotubue by polymer wrapping. Chem. Phys. Lett. 2001,342:265-271
    [65]Z. Cao, Y. H. He, L. X. Sun, X. Q. Cao. Influence of surface characteristics on the dispersion of modified multi-walled carbon nanotubes. Adv. Mater. Res.2011,236-238: 1832-1835
    [66]T. Lei, L. Wang, C. Ouyang, N. F. Li, L. S. Zhou. In situ preparation and enhanced mechanical properties of carbon nanotube/hydroxyapatite composites. Int. J. Appl. Ceram. Technol.2011,8:532-539
    [67]J. M. Planeix, N. Coustel, B. Coq, V. Bretons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116:7935-7936
    [68]W. Z. Li, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, Q. Xin. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002,40:787-803
    [69]X. H. Chen, F. Tao, J. F. Wang, H. J. Yang, J. G. Zou, X. H. Chen, X. Feng. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Mater. Sci. Eng. A 2009,499:469-475
    [70]朱路平,黄文娅,马丽丽,傅绍云,余颖,贾志杰.ZnO-CNTs纳米复合材料的制备及性能表征.物理学报.2006,22:1175-1180
    [71]J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka, N. Serpone. Photoassisted degradation of dye pollutants.3. Degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:evidence for the need of substrate adsorption on TiO2 particles. Environ. Sci. Technol.1998,32:2394-2400
    [72]Z. G. Chen, Y. W. Tang, L. S. Zhang, L. J. Luo. Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells. Electrochimica Acta,2006, 51:5870-5875
    [73]Y. Xu, M. A. Schoonen. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral.2000,85:543-556
    [74]T. W. Chen, Y. H. Zheng, J. M. Lin, G. N. Chen. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J. Am. Soc. Mass. Spectrom.2008, 19:997-1003
    [75]W. D. Zhang, L. C. Jiang, J. S. Ye. Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes. J. Phys. Chem. C 2009, 113: 16247-16253
    [76]Y. Sun, S. R. Wilson, D. I. Schuster. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J. Am. Chem. Soc.2001,123:5348-5349
    [77]M. L. Chen, F. J. Zhang, O. Won-chun. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater. 2009, 24:159-166
    [78]S. Chakrabarti, B. K. Dutta. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. B 2004, 112: 269-278
    [79]S. K. Pardeshi, A. B. Patil. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J. Mol. Catal. A 2009, 308:32-40
    [80]E. Evgenidou, K. Fytianos, I. Poulios. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B 2005,59:81-89
    [81]S. K. Pardeshi, A. B. Patil. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J. Hazard. Mater. 2009,163:403-409
    [82]M. A. Behnajady, N. Modirshahla, R. Hamzavi. Kinetic study on photocatalytic degradation of C. I. acid yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B 2006, 113: 226-232
    [83]L. P. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib. ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater. 2009, 21: 2875-2885
    [84]M. S. Mohajerania, A. Laka, A. Simchi. Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures. J. Alloys Compd. 2009,485:616-620
    [85]C. L. Kuo, T. J. Kuo, M. H. Huang. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 2005, 109:20115-20121
    [86]M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, P. Praserthdamc. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal. B 2006,63:305-312
    [87]Z. M. Yang, P. Zhang, Y. H. Ding, Y. Jiang, Z. L. Long, W. L. Dai. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation:Highly photocatalytic property and enhanced photostability. Mater. Res. Bull.2011,46:1625-1631
    [88]P. Li, Z. Wei, T. Wu, Q. Peng, Y. D. Li. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc.2011,133:5660-5663
    [89]H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, X. X. Xu. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity. J. Phys. Chem. C 2008,112: 19620-19624
    [90]S. Q. Wei, Y. Y. Chen, Y. Y. Ma, Z. C. Shao. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance. J. Mol. Catal. A 2010,331:112-116
    [91]C. Wang, J. C. Zhao, X. M. Wang, B. X. Mai, G. Y. Sheng, A. P. Peng, J. M. Fu. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl. Catal. B 2002,39:269-279
    [92]L. C. Yu, K. Yang, Q. Shu, C. J. Yu, F. F. Cao, X. Li. Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance. Chin. J. Catal.2011,32: 555-565
    [93]S. Sakthivel, S. U. Geissen, D. W. Bahnemann, V. Murugesan, A. Vogelpohl. Enhancement of photocatalytic activity by semiconductor heterojunctions:a-Fe2O3, WO3 and CdS deposited on ZnO. J. Photochem. Photobiol. A 2002,148:283-293
    [94]H. Zhang, R. L. Zong, Y. F. Zhu. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J. Phys. Chem. C 2009,113:4605-4611
    [95]R. L. Qiu, D. D. Zhang, Y. Q. Mo, L. Song, E. Brewer, X. F. Huang, Y. Xiong. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater.2008,156:80-85
    [96]A. Olad·R. Nosrati. Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Res. Chem. Intermed, 2012,38:323-336
    [97]Q. Wan, T. H. Wang, J. C. Zhao. Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett.2005,87:083105-3
    [98]周建萍,傅万里,邱克强,陈启元.纳米四针状氧化锌晶须光催化降解甲基橙.功能材料与器件学报.2007,13:0195-7
    [99]X. M. Fan, Z. W. Zhou, J. Wang, K. Tian. Morphology and optical properties of tetrapod-like zinc oxide whiskers synthesized via equilibrium gas expanding method. Trans. Nonferrous Met. Soc. China, 2011, 21:2056-2060
    [100]黄君礼,等.Fe(phen)32+光度法研究和测定UV/Fe(C2O4)33+/H2O2体系产生的羟基自由基.环境科学进展.1999,(2):152-156
    [101]S. P. Ruan, F. Q. Wu, T. Zhang, W. Gao, B. K. Xu, M. Y. Zhao. Surface state studies of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 dispersions. Mater. Chem. Phys. 2001, 69: 7-9
    [102]C. D. Wagner, W. W. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg. Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, 1979
    [103]X. Zhang, Y. G. Guo, P. Y. Zhang, Z. S. Wu, Z. J. Zhang. Superhydrophobic CuO@Cu2S nanoplate vertical arrays on copper surfaces. Mater. Lett. 2010, 64: 1200-1203
    [104]Z. H. Ai, L. Z. Zhang, S. C. Lee, W. K. Ho. Interfacial hydrothermal synthesis of Cu@Cu2O core shell microspheres with enhanced visible-light-driven photocatalytic activity. J. Phys. Chem. C 2009, 113: 20896-20902
    [105]S. Li, H. Z. Wang, W. W. Xu, H. L. Si, X. J. Tao, S. Y. Lou, Z. L. Du, L. S. Li. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid Interf. Sci.2009,330:483-487
    [106]P. Chen, L. Gu, X. B. Cao. From single ZnO multipods to hetero structured ZnO/ZnS, ZnO/ZnSe, ZnO/Bi2S3 and ZnO/Cu2S multipods:controlled synthesis and tunable optical and photoelectronchemical properties. Cryst. Eng. Commun. 2010, 12:3950-3958
    [107]J. A. Rodriguez, T. Jirsak, S. Chaturvedi, M. Kuhn. Reaction of SO2 with ZnO (001)-O and ZnO powders:photoemission and XANES studies on the formation of SO3 and SO4. Surf. Sci.1999,442:400-412.
    [108]M. Shang, W. Z. Wang, L. Zhou, S. M. Sun, W. Z. Yin. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 2009, 172:338-344
    [109]X. B. Li, L. L.Wang, X. H. Lu. Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J. Hazard. Mater. 2010, 177:639-647
    [110]K. Tennakone, J. Bandara. Photocatalytic activity of dye-sensitized tin(Ⅳ) oxide nanocrystalline particles attached to zinc oxide particles:long distance electron transfer via ballistic transport of electrons across nanocrystallites. J. Appl. Catal. A 2001,208: 335-341
    [111]N. Daneshvar, D. Salari, A. R. Khataee. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A 2004, 162:317-322
    [112]H. C. Yatmaz, A. Akyol, M. Bayramoglu. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind. Eng. Chem. Res. 2004,43: 6035-6039
    [113]X. L. XU, Z. W. Zhou, W. J. Zhu. Studies on the active oxygen in zinc oxides with different morphologies. Mater. Sci. Forum, 2009, 610-613:229-232
    [114]K. Rajeshwara, M. E. Osugi, W. Chanmaneec, C. R. Chenthamarakshana, M. V. B. Zanoni, P. Kajitvichyanukul, R. Krishnan-ayer. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008,9:171-192
    [115]Y. Xu, M. A. Schoonen. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral.2000,85:543-556
    [116]Y. Yin, A. P. Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005,437:664-669
    [117]F. M. Xiang, J. Wu, L. Liu, T. Huang, Y. Wang, C. Chen, Y. Peng, C. X. Jiang, Z. W. Zhou. Largely enhanced ductility of immiscible high density polyethylene/polyamide 6 blends via nano-bridge effect of functionalized multiwalled carbon nanotubes. Polym. Adv. Technol.2011,22:2533-2542
    [118]T. Teranishi, M. Miyake. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998,10:594-600
    [119]G Li, M. Y. Liu, H. J. Liu. Controlled synthesis of porous flowerlike CU2S microspheres with nanosheet-assembly. Cryst. Eng. Comm. 2011, 13: 5337-5341
    [120]A. Kaushik, J. Kumar, M. K. Tiwari, R. Khan, B. D. Malhotra, V. Gupta, S. P. Singh. Fabrication and characterization of polyaniline-ZnO hybrid nanocomposite thin film. J. Nanosci. Nanotechnol.2008,8:1757-1761
    [121]L. Q. Jing, Z. L. Xu, X. J. Sun, J. Shang, W. M. Cai. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci.2001,180:308-314
    [122]C. S. Turchi, D. F. Ollis. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 1990, 122: 178-192
    [123]D. Li, H. Haneda. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. J. Photochem. Photobiol. A 2003, 155: 171-178
    [124]C. G. Tian, Z. H. Kang, E. Wang, L. Guo, C. L. Wang, L. Xu, C. G. Hu. Synthesis of dodecanethiolate-protected Qu2S nanoparticles in a two-phase system. Mater. Lett. 2005, 59:1156-1160
    [125]S. Kapoor, T. Mukherjee. Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone). Chem. Phys. Lett.2003,370:83-87
    [126]J. G. Yu, J. F. Xiong, B. Cheng, S. G. Liu. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B 2005,60:211-221
    [127]K. Tennakone, J. Bandara. Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles:Long distance electron transfer via ballistic transport of electrons across nanocrystallites. Appl. Catal. A 2001,208: 335-341
    [128]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Jr. Photocatalysis on TiO2 surfaces:principles, mechanism and selected results. Chem. Rev. 1995, 95: 735-758.
    [129]L. F. Qi, J. G. Yu, M. Jaroniec. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys.2011,13:8915-8923
    [130]N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and hole pentachlorophenol:Chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A 1995,85:247-255
    [131]S. Q. Wei, Y. Y. Chen, Y. Y. Ma, Z. G. Shao. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance. J. Mol. Catal. A 2010,331:112-116
    [132]J. Wang, X. M. Fan, D. Z. Wu, J. Dai, H. Liu, H. R. Liu, Z. W. Zhou. Fabrication of CuO/T-ZnOw nanocomposites using photo-deposition and their photocatalytic property. Appl. Surf. Sci.2011,258:1797-1805
    [133]Z. Y. Zhang, C. L. Shao, X. H. Li, L. Zhang, H. M. Xue, C. H. Wang, Y. C. Liu. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity. J. Phys. Chem. C 2010, 114:7920-7925
    [134]K. Rajeshwar, M. E. Osugi, W. Chanmanee, C. R. Chenthamarakshan, M. V. B. Zanoni, P. Kajitvichyanukui, R. Krishnan-ayer. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9: 171-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700