均匀分散的碳纳米管增强铝基复合材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)具有优异的力学、物理性能以及低的密度而被认为是金属基复合材料(MMCs)理想的增强相,然而CNTs易于团聚的特性阻碍了高性能CNTs增强MMCs的制备和发展。针对这一问题,本文提出首先采用化学气相沉积法(CVD)原位合成CNTs均匀分散在铝粉表面的CNTs/Al复合粉末,进而将复合粉末机械球磨后粉末冶金成型(原位合成-短时球磨-粉末冶金法)制备复合材料的新思路;对整个制备过程的各个影响参数进行了系统的研究,并对复合材料的组织、性能、界面结合和强化机制进行了探讨。
     首先采用浸渍法制备了催化剂前躯体,经直接还原后在铝粉基体上沉积了Ni、Co、Cu三种纳米催化剂颗粒,然后采用CVD法合成了CNTs/Al复合粉末;系统研究了铝基体上CVD法原位合成CNTs的多种影响因素(包括催化剂种类与含量、合成温度、反应气氛和时间)。结果表明:采用Ni、Co、Cu三种催化剂均可以在铝基体上合成多壁CNTs,但Cu催化合成CNTs的石墨晶化程度较低;以0.5wt.%的Ni或Co作为催化剂,在600℃的合成温度下,分别选择CH4或C2H2作为碳源,可以在铝粉表面合成均匀分散的,高纯度、管径均匀、石墨化程度良好的CNTs,所得CNTs/Al粉末适合进一步制备复合材料。
     对原位合成的CNTs/Al粉末直接粉末冶金成型(原位合成-粉末冶金法)制备了CNTs/Al复合材料,发现当CNTs含量为1.5wt.%时,复合材料的压缩性能最佳,其压缩屈服强度和弹性模量分别为纯铝的2.2倍和3倍;然而继续提高CNTs含量后,复合材料的压缩性能大幅下降,即采用该方法能够实现CNTs在铝粉基体上的均匀负载量在2.5wt.%以下,CNTs含量在此及以上的复合材料力学性能会恶化。此外,CNTs的加入降低了铝基体的耐蚀性,并且随CNTs含量增多,复合材料的耐蚀性变差。
     针对“原位合成-粉末冶金”制备方法存在的问题,进一步采用“原位合成-短时球磨-粉末冶金”工艺制备了CNTs/Al复合材料,即对原位合成的粉末通过短时球磨形成CNTs均匀分散嵌入铝基体内部的复合结构,以此来进一步提高CNTs在铝基体内的最大均匀分散量,着重研究了球磨参数(包括过程控制剂、球磨转速和时间)对CNTs的结构、分散和复合材料性能的影响。结果表明:对于2.5wt.%-CNTs/Al复合材料,在优化后的球磨转速500rpm,不添加过程控制剂的条件下,随球磨时间的增加(≤120min),所制备的复合材料组织更加致密,硬度和抗拉强度均不断提高,确定了90min为最佳的球磨时间,所得复合材料硬度和抗拉强度分别为纯铝的2.4倍和2.7倍,为经过相同球磨时间铝的1.6倍和1.5倍,且延伸率在15%以上,表现出强韧兼备的特点;随着CNTs含量的增加(≤4.5wt.%),复合材料的硬度和抗拉强度不断上升,均在CNTs含量为4.5wt.%时达到最高,此时硬度和抗拉强度为HV131.2和420MPa,分别为纯铝的3.3倍和3.4倍;CNTs的加入可以有效的降低铝基体的热膨胀系数(CTE),随CNTs含量的增多,复合材料的CTE不断下降。
     对于采用“原位合成-短时球磨-粉末冶金”制备的CNTs/Al复合材料,研究了球磨过程和烧结温度两个关键因素对CNTs结构演变和CNT-Al界面的影响,并在此基础上探讨了CNTs/Al复合材料的强化机制。结果表明:短时球磨过程对CNTs的结构损伤较小,嵌入铝基体内部的CNTs保持了良好的结构;复合材料的抗拉强度和延伸率均在630℃的烧结温度下达到极大值,而继续提高烧结温度后,复合材料的拉伸性能变差;630℃烧结条件下得到CNTs/Al复合材料中CNT-Al的界面反应存在三种形式,即无明显界面反应、生成CNT@Al4C3结构、完全转变成为Al4C3相,此时少量出现的纳米级Al4C3提高了界面结合强度,利于复合材料性能的提高。复合材料强度的显著提升源于载荷在基体和增强相间的有效传递,CNTs作为载荷的主要承担者起直接强化作用,以及CNTs加入铝基体中引起的位错强化、细晶强化作用,还有以上几种强化机制的协同强化作用。
Due to the low density and excellent mechanical and physical properties, carbonnanotubes (CNTs) have been regarded as the ideal reinforcement for metal matrixcomposites (MMCs). However, the difficulty in achieving uniform dispersion ofCNTs in matrix hampers the development of CNT-reinforced MMCs. To solve thisissue, a novel approach is developed in this dissertation to fabricate CNT/Alcomposites, which consists of in-situ synthesis of CNTs, short-time ball-milling, andpowder metallurgy. The influence of fabrication conditions on the properties ofCNT/Al composites were investigated systematically. Furthermore, the structure,properties, interfacial bonding and strengthening mechanism of CNT-reinforce Alcomposites were discussed.
     The Ni, Co, and Cu catalyst precursors on Al powder were prepared byimpregnation route, and then CNTs were synthesized by in-situ chemical vapordeposition. Thus, CNT/Al composite powders were obtained. It was found that themuti-walled CNTs can be synthesized on Al matrix by using Ni, Co, and Cu catalysts.But the CNTs synthesized using Cu catalyst show a relatively low crystallization.Using0.5wt.%Co and Ni catalysts, the homogeneously dispersed CNTs on the Alpowder surface with relatively high purity, uniform diameters, and crystallization canbe obtained at600℃and underCH4and C2H2as carbon sources, respectively. Theobtained CNT/Al composite powders are suited to further preparation of composite.
     CNT/Al composites were prepared by direct powder metallurgy of the in-situsynthesized composite powders. It was found that the maximum content of CNTsuniformly dispersed in Al matrix is2.5wt.%, and the mechanical properties of thecomposites decrease rapidly when the content of CNTs is more than2.5wt.%. Theoptimized CNT content is1.5wt.%, at which the composites show best compressiveproperty, and the compressive yield strength and compressive elastic modulus is2.2and3.0times as large as that of pure Al, respectively. Moreover, the corrosionresistance of Al matrix decreases with the increase of CNTs content.
     In order to further improve the maximally uniform dispersion content in Alpowder matrix, ball-milling was introduced into the fabrication process of CNT/Alcomposites. The execution of ball milling for a short time can further improve the dispersion of CNTs fabricated by in-situ CVD. Meanwhile, CNTs are implanteddeeply into the matrix. The effects of ball milling parameters on the structure anddispersion of CNTs and the properties of CNT/Al composites were investigated. Itwas found that under the optimized milling conditions (ball-milling speed of500rpm,no process control agent added), with the increasing of milling time (≤120min), thedensity, hardness and tensile strength of2.5wt.%-CNT/Al composites increase. Thecomposites through90min of ball milling show well-balanced strength and ductility,whose hardness and tensile strength are2.4and2.7times as large as that of pure Al,and1.6and1.5times as large as that of the pure Al through the same milling process,respectively. Moreover, the elongation is larger than15%. With the increase of CNTcontent, the hardness and tensile strength of CNT/Al composites increase. The4.5wt.%-CNT/Al composites show largest hardness (HV131.2) and tensile strength (420MPa), which is2.3and2.4times more than that of pure Al, respectively. Furthermore,the coefficient of thermal expansion of CNT/Al composites is reduced significantlycompared with Al matrix, which decreases with the increase of the CNT content.
     The effects of ball milling process and sintering temperature on the evolution ofCNT structure and the interface between CNTs and Al were studied. Thestrengthening mechanisms of CNT/Al composites were discussed. The results showedthat the short-time ball milling causes relatively small damage to CNT structure, andthe CNTs implanted into Al matrix possess well structure. The tensile strength andelongation of CNT/Al composite both reach maximum as630℃sinteringtemperature. The tensile properties of composites decrease when the sinteringtemperature is above Al melting point. There are three different forms of interfacialreaction between CNTs and Al matrix in the composites obtained at630℃sinteringtemperature: no distinct interface reaction, forming CNT@Al4C3structure, andcompletely forming Al4C3phase. The nano-sized Al4C3phase with small content canincrease the interface bonding between CNTs and Al, and is beneficial for theimprovement of the composite properties. The remarkable improvement of themechanical properties of CNT/Al composites results from the cooperative action ofseveral reinforcement mechanisms, including effective load transmission, dislocationstrengthening and grain refining strengthening.
引文
[1]王荣国,武卫莉,谷万里,复合材料概论,哈尔滨:哈尔滨工业大学出版社,1999
    [2]何春年,赵乃勤,纳米相增强铝基复合材料制备技术的研究进展,兵器材料科学与工程,2005,28(3):53-56
    [3] Iijima S, Helical microtubules of graphitic carbon, Nature,1991,354:56-58
    [4]杨益,杨胜良,碳纳米管增强金属基复合材料的研究现状及展望,材料导报,2007,5(21):182-184
    [5] Samal SS, Bal S, Carbon nanotube reinforced ceramic matrix composites-areview, Journal of Minerals&Materials Characterization&Engineering,2008,7(4):355-370
    [6] Thostenson ET, Ren Z, Chou TW, Advances in the science and technology ofcarbon nanotubes and their composites: a review, Composites Science andTechnology,2001,61:1899-1912
    [7] Chou TW, Gao L, Thostenson ET, Zhang Z, Byun J-hyung, An assessment of thescience and technology of carbon nanotube-based fibers and composites,Composites Science and Technology,2010,70:1-19
    [8] Coleman JN, Khan U, Blau WJ, Gun’ko YK, Small but strong: A review of themechanical properties of carbon nanotube–polymer composites, Carbon,2006,44:1624-1652
    [9] Bakshi SR, Lahiri D, Agarwal A, Carbon nanotube reinforced metal matrixcomposites-a review, International Materials Reviews,2010,55:41-64
    [10] Neubauer E, Kitzmantel M, Hulman M, Angerer P, Potential and challenges ofmetal-matrix-composites reinforced with carbon nanofibers and carbonnanotubes, Composites Science and Technology,2010,70:2228-2236
    [11] Bakshi SR, Agarwal A, An analysis of the factors affecting strengthening incarbon nanotube reinforced aluminum composites, Carbon,2010,49:533-544
    [12] Kuzumaki T, Miyazawa K, Ichinose H, Ito K, Processing of carbon nanotubereinforced aluminum composite, Journal of Materials Research,1998,13:2445-2449
    [13] Baughman RH, Zakhidov AA, et al., Carbon nanotubes the route towardapplications, Science,2002,297:787
    [14]朱宏伟,吴德海,徐才录,碳纳米管,北京:机械工业出版社,2003
    [15] Belin T, Epron F, Characterization methods of carbon nanotubes: a review,Materials Science and Engineering B,2005,119:105-118
    [16]吕德义,陈万喜,徐铸德,纳米碳管的制备,化学通报,2000,10:15-21
    [17] Gan B, Ahn J, Zhang Q, et al., Branching carbon nanotubes deposited in HFCVDsystem, Diamond and Related Materials,2000,9:897-900
    [18] Hanus MJ, Linkson PB, Harris AT, Fixed-and fluidised-bed synthesis of coiledcarbon fibres on an in situ generated H2S-modified Ni/Al2O3catalyst from aNiSO4/Al2O3precursor, Carbon,2010,48:3931-3938
    [19] He CN, Zhao NQ, Shi CS, et al., An approach for obtaining the structuraldiversity of multi-walled carbon nanotubes on Ni/Al catalyst with low Ni content,Journal of Alloys and Compounds,2010,489:20-25
    [20] He CN, Zhao NQ, Du XW, et al., Characterization of bamboo-shaped CNTsprepared using deposition-precipitation catalyst, Materials Science andEngineering A,2008,479:248-252
    [21] Iijima S, Ichihashi T, Ando Y, Pentagons, heptagons and negative curvature ingraphite microtubule growth, Nature,1992,356:776-778
    [22] Ebbesen TW, Takada T, Topological and sp3defect structures in nanotubes,Carbon,1995,33(7):973-978
    [23] Qin L, Zhao X, Hirahara K, The smallest carbon nanotubes, Nature,2000,408:50
    [24] Zhu HW, Xu CL, Wu DH, et al., Direct synthesis of long single-walled carbonnanotube strands, Science,2002,296:884-886
    [25] Yakobson BI, Brabec CJ, et al., Nanomechanics of carbon tubes: instabilitiesbeyond linear response, Physical Review Letters,1996,76:2511-2514
    [26] Lu JP, Elastic properties of carbon nanotubes and nanoropes, Physical ReviewLetters,1997,79:1297-1300
    [27] Hernandez E, Goze C, Bernier P, et al., Elastic properties of C and BxCyNzcomposite nanotubes, Physical Review Letters,1998,80(20):4502-4505
    [28] Treacy MM, Ebbesen TW, Gibson JM, Exceptionally high Young’s modulusobserved for individual carbon nanotubes, Nature,1996,38:678-680
    [29] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, et al., Young’s modulus ofsingle-walled nanotubes, Physical Review B,1998,58:14013-14019
    [30] Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, et al., Elastic and shearmodulus of single-walled carbon nanotube ropes, Physical Review Letters,1999,82:944-947
    [30] Pan ZW, Xie SS, Lu L, et al., Tensile tests of ropes of very long alignedmultiwall carbon nanotubes, Applied Physics Letters,1999,74:3152-3154
    [31] Li YL, Wang KL, Wei JQ, et al., Tensile properties of long aligned double-walledcarbon nanotube strands, Carbon,2005,43:31-35
    [32] Berber S, Kwon YK, Tomanek D, Unusually high thermal conductivity of carbonnanotubes, Physical Review Letters,2000,84:4613-4616
    [33] Tang ZK, Zhang LY, Wang N, et al., Supercongductivity in4angstormsingle-walled carbon nanotubes, Science,2001,292:3462~3465
    [34]韦进全,张先锋,王昆林,碳纳米管宏观体,北京:清华大学出版社,2006
    [35] Liu C, Cong HT, Li F, Tan PH, Cheng HM, et al., Semi-continuous synthesis ofsingle-walled carbon nanotubes by a hydrogen arc discharge method, Carbon,1999,37(11):1865-1868
    [36] Thess A, Lee R, Nikolaev P, et al., Crystalline ropes of metallic carbon nanotubes,Science,1996,273:483-487
    [37] Dai HJ, Rinzler AG, Nikolaev P, et al., Single-wall nanotubes produced bymetal-catalyzed disproportionation of carbon monoxide, Chemical PhysicsLetters,1996,260:471-475
    [38] Lee C J, Park J, Yu J A, Catalyst effect on carbon nanotubes synthesized bythermal chemical vapor deposition, Chemical Physics Letters,2002,360:250-255
    [39] Deng WQ, Xu X, Goddard WA, A two-stage mechanism of bimetallic catalyzedgrowth of single-walled carbon nanotubes, Nano Letters,2004,4(12):2331-2335
    [40] Cheung CL, Kurtz A, Park H, Lieber CM, Diameter-controlled synthesis ofcarbon nanotubes, The Journal of Physical Chemistry B,2002,106:2429-2433
    [41] Yu Z, Chen D, Holmen A, et al., Effect of catalyst preparation on the carbonnanotube growth rate, Catalysis Today,2005,100:261-267
    [42]耿晓菊,王署霞,冯明海,催化剂在碳纳米管制备中的影响,材料导报,2006,20(7):112-114
    [43] Yoon YJ, Bae JC, Baik HK, Cho SJ, Lee S-J, Song KM, et al., Growth control ofsingle and multi-walled carbon nanotubes by thin film catalyst, Chemical PhysicsLetters,2002,366:109-114
    [44] Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, et al., Characterisation ofplasma-enhanced chemical vapor deposition carbon nanotubes by auger electronspectroscopy, Journal of Vacuum Science&Technology B,2002,20:116
    [45] Duesberg GS, Graham AP, Liebau M, Seidel R, Unger E, Kreupl F, et al., Growthof isolated carbon nanotubes with lithographically defined diameter and location,Nano Letters,2003,3:257-259
    [46] Hayashi T, Ahm Kim Y, Matoba T, Esaka M, Nishimura K, Tsukada T, et al.,Smallest freestanding single-walled carbon nanotube, Nano Letters,2003,3:887-889
    [47] Jeong SH, Hwang HY, Lee KH, Jeong Y, Template-based carbon nanotubes andtheir application to a field emitter, Applied Physics Letters,2001,78:2052
    [48] Esconjauregui S, Whelan CM, Maex K, The reasons why metals catalyze thenucleation and growth of carbon nanotubes and other carbon nanomorphologies,Carbon,2009,47:659-669
    [49] Hernadi K, Fonseca A, et al., Production of nanotubes bythe catalyticdecomposition of different carbon containing compound, Applied Catalysis A,2000,199:245-255
    [50] Li HP, Shi CS, Du XW, He CN, Li JJ, Zhao NQ, The influences of synthesistemperature and Ni catalyst on the growth of carbon nanotubes by chemicalvapor deposition, Materials Letters,2008,62:1472-1475
    [51] Rostrup-Nielsen J, Trimm DL, Mechanisms of carbon formation onnickel-containing catalysts, Journal of Catalysis,1977,48:155-165
    [52] Rodriguez NM, Commentaries and reviews, Journal of Materials Research,1993,8:3233-3250
    [53]李劲风,张昭,张鉴清,金属基复合材料(MMCs)的原位制备,材料科学与工程,2002,3:453-456
    [54]李奎,汤爱涛,潘复生,金属基复合材料原位反应合成技术现状与展望,重庆大学学报,2002,25(9):155-160
    [55]陶杰,赵玉涛,潘蕾,骆心怡,金属基复合材料制备新技术导论,北京:化学工业出版社,2007
    [56] Lindroos VK, Tolvitie MJ, Recent advances in metal matrix composites, Journalof Materials Processing Technology,1995,53:273-284
    [57] Lloyd DJ, Particle reinforced aluminum and magnesium matrix composites,International Materials Reviews,1994,39:1-23
    [58]张强,武高辉,孙东立等,高体积分数SiCp/Al复合材料的微观组织与导热性能,材料科学与工艺,2006,14(5):474-477
    [59]陈子勇,舒群,陈玉勇,高强铸造铝合金显微组织与力学性能的研究,材料科学与工艺,2007,15(5):718-722
    [60]刘白,邓福铭,曲敬信,碳纳米管增强铝基复合材料的设计与研究,兵器材料科学与工程,2003,26(6):54-57
    [61]张国定,赵昌正,金属基复合材料,上海:上海交通大学出版社,1996
    [62]崔岩,碳化硅颗粒增强铝基复合材料在航空航天应用,材料工程,2002,6:3-6
    [63] Peng LM, Li XK, Li H, et al., Synthesis and microstructural characterization ofaluminum borate whiskers, Ceramics international,2006,32(4):365-368
    [64] Deve HE, McCullough C, Continuous-fiber reinforced composites: A newgeneration, JOM Journal of the Minerals, Metals and Materials Society,1995,47:33-37
    [65] Partridge PG, Ward-Close CM, Processing of advanced continuous fibercomposite: current practice and potential developments, International MaterialsReviews,1993,38:1-24
    [66]王丽雪,曹丽云,刘海鸥,铝基复合材料研究的发展,轻合金加工技术,2005,33(8):10-12
    [67] Fisher FT, Nanomechanics and the viscoelastic behavior of carbon nanotubesreinforced polymers, PhD Thesis, USA, Northwestern University,2002
    [68]沈军,张法明,孙剑飞,陶瓷/碳纳米管复合材料的制备、性能及韧化机理,材料科学与工艺,2006,14(2):165-170
    [69] Kammer Catrin, Aluminum Handbook(卢惠民等译),北京:化学工业出版社,2008
    [70] Cha SI, Kim KT, Arshad SN, et al., Extraordinary strengthening effect of carbonnanotubes in metal-matrix nanocomposites processed by molecular-level mixing,Advanced Materials,2005,17:1377-1381
    [71] Silvain JF, Vincent C, Heintz JM, et al., Novel processing and characterization ofCu/CNF nanocomposite for high thermal conductivity applications, CompositesScience and Technology,2009,69:2474-2484
    [72] Li Y-H, Housten W, Zhao Y, Zhu YQ, Cu/single-walled carbon nanotubelaminate composites fabricated by cold rolling and annealing, Nanotechnology,2007,18(20):205607
    [73] Kang TJ, Yoon JW, Kim DI, et al., Sandwich-type laminated nanocompositesdeveloped by selective dip-coating of carbon nanotubes, Advanced Materials,2007,19(3):427-432
    [74] Guiderdoni C, Estournès C, Peigney A, et al., The preparation of double-walledcarbon nanotube/Cu composites by spark plasma sintering, and their hardnessand friction properties, Carbon,2011,49:4535-4543
    [75] Shimizu Y, Miki S, Soga T, et al., Multi-walled carbon nanotube-reinforcedmagnesium alloy composites, Scripta Materialia,2008,58:267-270
    [76] Fukuda H, Kondoh K, Umeda J, et al., Interfacial analysis between Mg matrixand carbon nanotubes in Mg–6wt.%Al alloy matrix composites reinforced withcarbon nanotubes, Composites Science and Technology,2011,71:705-709
    [77] Fukuda H, Kondoh K, Umeda J, et al., Fabrication of magnesium basedcomposites reinforced with carbon nanotubes having superior mechanicalproperties, Materials Chemistry and Physics,2011,127:451-458
    [78] Li Q, Rottmair CA, Singer RF, CNT reinforced light metal composites producedby melt stirring and by high pressure die casting, Composites Science andTechnology,2010,70:2242-2247
    [79] Li Q, Viereckl A, Rottmair CA, et al., Improved processing of carbonnanotube/magnesium alloy composites, Composites Science and Technology,2009,69:1193-1199
    [80] Goh CS, Wei J, Lee LC, et al., Ductility improvement and fatigue studies inMg-CNT nanocomposites, Composites Science and Technology,2008,68:1432-1439
    [81] Goh CS, Wei J, Lee LC, et al., Simultaneous enhancement in strength andductility by reinforcing magnesium with carbon nanotubes, Materials Scienceand Engineering: A,2006,423:153-156
    [82] Habibi MK, Paramsothy M, Hamouda AMS, et al., Using integrated hybrid(Al+CNT) reinforcement to simultaneously enhance strength and ductility ofmagnesium, Composites Science and Technology,2011,71:734-741
    [83] Habibi MK, Hamouda AMS, Gupta M, Enhancing tensile and compressivestrength of magnesium using ball milled Al+CNT reinforcement, CompositesScience and Technology,2012,72:290-298
    [84] Habibi MK, Paramsothy M, Hamouda AMS, et al., Enhanced compressiveresponse of hybrid Mg–CNT nanocomposites, Journal of Materials Science,2011,46(13):4588-4597
    [85] Kuzumaki T, Ujiie O, Ichinose H, Mechanical Characteristics and Preparation ofCarbon Nanotube Fiber-Reinforced Ti Composite, Advanced EngineeringMaterials,2000,2:416-418
    [86] Kondoh K, Threrujirapapong T, Imai H, et al., Characteristics of powdermetallurgy pure titanium matrix composite reinforced with multi-wall carbonnanotubes, Composites Science and Technology,2009,69:1077-1081
    [87]赵乃勤,杨旭东,师春生,刘恩佐,杜希文,均匀分散的碳纳米管增强铝基复合材料的制备方法,中国专利,200810023072,2010-10-27
    [88] Kim I-Y, Lee J-H, Lee G-S, et al., Friction and wear characteristics of the carbonnanotube-aluminum composites with different manufacturing conditions, Wear,2009,267:593-598
    [89] Zhong R, Cong H, Hou P, Fabrication of nano-Al based composites reinforced bysingle-walled carbon nanotubes, Carbon,2003,41:848-851
    [90] Tang Y, Cong H, Zhong R, et al., Thermal expansion of a composite ofsingle-walled carbon nanotubes and nanocrystalline aluminum, Carbon,2004,42:3260-3262
    [91] Noguchi T, Magario A, Fukazawa S, et al., Carbon nanotube/aluminiumcomposites with uniform dispersion, Materials Transactions,2004,45(2):602-604
    [92] Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A, Combination of hotextrusion and spark plasma sintering for producing carbon nanotube reinforcedaluminum matrix composites, Carbon,2009,47:570-577
    [93] Kwon H, Park DH, Silvain JF, Kawasaki A, Investigation of carbon nanotubereinforced aluminum matrix composite materials, Composites Science andTechnology,2010,70:546-550
    [94] Wang L, Choi H, Myoung J-M, Lee W, Mechanical alloying of multi-walledcarbon nanotubes and aluminium powders for the preparation of carbon/metalcomposites, Carbon,2009,47:3427-3433
    [95] Sridhar I, Narayanan KR, Processing and characterization of MWCNT reinforcedaluminum matrix composites, Journal of Materials Science,2009,44:1750-1756
    [96] Liao JZ, Tan MJ, Sridhar I, Spark plasma sintered multi-wall carbon nanotubereinforced aluminum matrix composites, Materials and Design,2010,31:S96-S100
    [97] Esawi A, Morsi K, Dispersion of carbon nanotubes (CNTs) in aluminum powder,Composites Part A,2007,38:646-650
    [98] Morsi K, Esawi A, Effect of mechanical alloying time and carbon nanotube(CNT) content on the evolution of aluminum (Al)–CNT composite powders,Journal of Materials Science,2007,42:4954-4959
    [99] Esawi A, Morsi K, Sayed A, et al., Fabrication and properties of dispersed carbonnanotube-aluminum composites, Materials Science and Engineering A,2009,508:167-173
    [100] Esawi A, Morsi K, Sayed A, et al., Effect of carbon nanotube (CNT) content onthe mechanical properties of CNT-reinforced aluminium composites,Composites Science and Technology,2010,70:2237-2241
    [101] Esawi A, Morsi K, Sayed A, et al., The influence of carbon nanotube (CNT)morphology and diameter on the processing and properties of CNT-reinforcedaluminium composites, Composites Part A,2011,42:234-243
    [102] Esawi A, Borady M, Carbon nanotube-reinforced aluminium strips, CompositesScience and Technology,2008,68:486-492
    [103] Morsi K, Esawi A, Borah P, et al., Properties of single and dual matrixaluminum-carbon nanotube composites processed via spark plasma extrusion(SPE), Materials Science and Engineering A,2010,527:5686-5690
    [104] Morsi K, Esawi A, Lanka S, et al., Spark plasma extrusion (SPE) of ball-milledaluminum and carbon nanotube reinforced aluminum composite powders,Composites Part A,2010,41:322-326
    [105] Choi HJ, Kwon GB, Lee GY, Bae DH, Reinforcement with carbon nanotubes inaluminum matrix composites, Scripta Materialia,2008,59:360-363
    [106] Choi H J, Shin J H, Min BH, et al., Deformation behavior of Al-Si alloy basednanocomposites reinforced with carbon nanotubes, Composites Part A,2010,41(2):327-329
    [107] Choi HJ, Lee SM, Bae DH, Wear characteristic of aluminum-based compositescontaining multi-walled carbon nanotubes, Wear,2010,270:12-18
    [108] Choi HJ, Bae DH, Strengthening and toughening of aluminum by single-walledcarbon nanotubes, Materials Science and Engineering A,2011,528:2412-2417
    [109] Deng CF, Zhang XX, Wang DZ, et al., Preparation and characterization ofcarbon nanotubes/aluminum matrix composites, Materials Letters,2007,61:1725-1728
    [110] Deng CF, Wang DZ, Zhang XX, et al., Processing and properties of carbonnanotubes reinforced aluminum composites, Materials Science and EngineeringA,2007,444:138-145
    [111] Deng CF, Wang DZ, Zhang XX, et al., Damping characteristics of carbonnanotube reinforced aluminum composite, Materials Letters,2007,61:3229-3231
    [112] Deng CF, Ma YX, Zhang P, et al., Thermal expansion behaviors of aluminumcomposite reinforced with carbon nanotubes, Materials Letters,2008,62:2301-2303
    [113] Perezbustamante R, Estradaguel I, Antunezflores W, et al., Novel Al-matrixnanocomposites reinforced with multi-walled carbon nanotubes, Journal ofAlloys and Compounds,2008,450:323-326
    [114] Pérez-Bustamante R, Gómez-Esparza CD, Estrada-Guel I, et al., Microstructuraland mechanical characterization of Al-MWCNT composites produced bymechanical milling, Materials Science and Engineering A,2009,502:159-163
    [115] Pérez-Bustamante R, Estrada-Guel I, Amézaga-Madrid P, et al., Microstructuralcharacterization of Al-MWCNT composites produced by mechanical millingand hot extrusion, Journal of Alloys and Compounds,2010,495:399-402
    [116] Pérez-Bustamante R, Pérez-Bustamante F, et al., Characterization ofAl2024-CNTs composites produced by mechanical alloying, PowderTechnology,2011,212:390-396
    [117] Liao J, Tan M-J, Mixing of carbon nanotubes (CNTs) and aluminum powder forpowder metallurgy use, Powder Technology,2011,208:42-48
    [118] Poirier D, Gauvin R, Drew RAL, Structural characterization of a mechanicallymilled carbon nanotube/aluminum mixture, Composites Part A,2009,40:1482-1489
    [119] Laha T, Agarwal A, Mckechnie T, Seal S, Synthesis and characterization ofplasma spray formed carbon nanotube reinforced aluminum composite,Materials Science and Engineering A,2004,38:249-258
    [120] Laha T, Chen Y, Lahiri D, Agarwal A, Tensile properties of carbon nanotubereinforced aluminum nanocomposite fabricated by plasma spray forming,Composites: Part A,2009,40:589-594
    [121] Bakshi SR, Singh V, Seal S, et al., Aluminum composite reinforced withmultiwalled carbon nanotubes from plasma spraying of spray dried powders,Surface and Coatings Technology,2009,203(10-11):1544-1554
    [122] Bakshi SR, Patel RR, Agarwal A, Thermal conductivity of carbon nanotubereinforced aluminum composites: A multi-scale study using object orientedfinite element method, Computational Materials Science,2010,50(2):419-428
    [123] Bakshi SR, Keshri AK, Agarwal A, A comparison of mechanical and wearproperties of plasma sprayed carbon nanotube reinforced aluminum compositesat nano and macro scale, Materials Science and Engineering: A,2011,528:3375-3384
    [124] Bakshi SR, Lahiri D, Patel RR, et al., Nanoscratch behavior of carbon nanotubereinforced aluminum coatings, Thin Solid Films,2010,518:1703-1711
    [125] Keshri AK, Balani K, Bakshi SR, et al., Structural transformations in carbonnanotubes during thermal spray processing, Surface and Coatings Technology,2009,203(16):2193-2201
    [126] Fukuda H, Kondoh K, Umeda J, et al., Aging behavior of the matrix ofaluminum–magnesium–silicon alloy including carbon nanotubes, MaterialsLetters,2011,65:1723-1725
    [127] Li ZQ, Jiang L, Fan GL, et al., High volume fraction and uniform dispersion ofcarbon nanotubes in aluminium powders, Micro&Nano Letters,2010,5(6):379-381
    [128] Jiang L, Fan G, Li Z, et al., An approach to the uniform dispersion of a highvolume fraction of carbon nanotubes in aluminum powder, Carbon,2011,49:1965-1971
    [129] Jiang L, Li Z, Fan G, et al., Strong and ductile carbon nanotube/aluminum bulknanolaminated composites with two-dimensional alignment of carbonnanotubes, Scripta Materialia,2012,66:331-334
    [130] Zhou S, Zhang X, Ding Z, et al., Fabrication and tribological properties ofcarbon nanotubes reinforced Al composites prepared by pressureless infiltrationtechnique, Composites Part A,2007,38:301-306
    [131] Tokunaga T, Kaneko K, Horita Z, Production of aluminum-matrix carbonnanotube composite using high pressure torsion, Materials Science andEngineering A,2008,490:300-304
    [132] Joo SH, Yoon SC, Lee CS, et al., Microstructure and tensile behavior of Al andAl-matrix carbon nanotube composites processed by high pressure torsion ofthe powders, Journal of Materials Science,2010,45:4652-4658
    [133] Salimi S, Izadi H, Gerlich AP, Fabrication of an aluminum-carbon nanotubemetal matrix composite by accumulative roll-bonding, Journal of MaterialsScience,2010,46:409-415
    [134] Liao J, Tan MJ, A simple approach to prepare Al/CNT composite:Spread-Dispersion (SD) method, Materials Letters,2011,65:2742-2744
    [135] Lim DK, Shibayanagi T, Gerlich AP, Synthesis of multi-walled CNT reinforcedaluminium alloy composite via friction stir processing, Materials Science andEngineering A,2009,507:194-199
    [136]顾明元,张国定,吴人洁,石墨纤维增强铝基复合材料的界面结合,自然科学进展,1997,7(6):714-719
    [137] Tham LM, Gupta M, Cheng L, Effect of limited matrix–reinforcementinterfacial reaction on enhancing the mechanical properties ofaluminium-silicon carbide composites, Acta Materialia,2001,49(16):3243-53
    [138] Seong HG, Lopez HF, Robertson DP, Rohatgi PK, Interface structure in carbonand graphite fiber reinforced2014aluminum alloy processed with active fibercooling, Materials Science and Engneering A,2008,487(1-2):201-209
    [139] George R, Kashyap KT, Rahul R, et al., Strengthening in carbonnanotube/aluminium (CNT/Al) composites, Scripta Materialia,2005,53:1159-163
    [140] Xu CL, Wei BQ, Ma RZ, et al., Fabrication of aluminum-carbon nanotubecomposites and their electrical properties, Carbon,1999,37:855-858
    [141] Lipecka J, Andrzejczuk M, Lewandowska M, et al., Evaluation of thermalstability of ultrafine grained aluminium matrix composites reinforced withcarbon nanotubes, Composites Science and Technology,2011,71:1881-1885
    [142] Laha T, Kuchibhatla S, Seal S, et al., Interfacial phenomena in thermallysprayed multiwalled carbon nanotube reinforced aluminum nanocomposite,Acta Materialia,2007,55:1059-1066
    [143] Ci L, Ryu Z, Jin-Phillipp N Y, et al., Investigation of the interfacial reactionbetween multi-walled carbon nanotubes and aluminum, Acta Materialia,2006,54:5367-5375
    [144]何春年,化学气相沉积法原位合成碳纳米管增强铝基复合材料:[博士学位论文],天津;天津大学,2008
    [145]杨旭东,汽车散热器用Al-Mn-RE合金制备及组织与耐蚀性研究:[硕士学位论文],天津;天津大学,2009
    [146] He C, Zhao N, Han Y, et al., Study of aluminum powder as transition metalcatalyst carrier for CVD synthesis of carbon nanotubes, Materials Science andEngineering A,2006,441:266-270
    [147] He C, Zhao N, Shi C, et al., An approach to obtaining homogeneously dispersedcarbon nanotubes in Al powders for preparing reinforced Al-matrix composites,Advanced Materials,2007,19:1128-1132
    [148] Kang J, Nash P, Li J, et al., Achieving highly dispersed nanofibres at highloading in carbon nanofibre-metal composites, Nanotechnology,2009,20:235607
    [149]张士林,任颂赞,简明铝合金手册,上海:上海科学技术文献出版社,2001
    [150]李海鹏,碳纳米管在铝基体上原位合成及其复合材料的组织与性能:[博士学位论文],天津;天津大学,2008
    [151] Bartholomew CH, Farrauto RJ, Chemistry of nickel-alumina catalysts, Journalof Catalysis,1976,45:41-53
    [152] Shaikhutdinov SK, Avdeeva LB, Goncharova OV, et al., Coprecipitated Ni-Aland Ni-Cu-Al catalysts for methane decomposition and carbon deposition I.Genesis of Calcined and reduced catalysts, Applied Catalysis A:General,1995,126(1):125-139
    [153] Yang X, Shi C, He C, et al., Synthesis of uniformly dispersed carbon nanotubereinforcement in Al powder for preparing reinforced Al composites, CompositesPart A,2011,42:1833-1839
    [154] Dupuis A C, The catalyst in the CCVD of carbon nanotubes-a review, Progressin Materials Science,2005,50:929-961
    [155] Kiselev NA, Sloan J, Zakharov DN, et al., Carbon nanotubes from polyethyleneprecursors: structure and structural changes caused by thermal and chemicaltreatment revealed by HREM, Carbon,1998,36(7-8):1149-1157
    [156] Lee CJ, Park J, Growth model for bamboolike structured caron nanotubessynthesized using thermal chemical vapor deposition, Journal of PhysicalChemistry B,2001,105:2365-2368
    [157] McCulloch DG, Prawer S, Hoffman A, Structural investigation ofxenon-ion-beam-irradiated glassy carbon, Physical Review B,1994,50(9):5905-5917
    [158] Li W, Zhang H, Wang C, et al., Raman characterization of aligned carbonnanotubes produced by thermal decomposition of hydrocarbon vapor, ApplliedPhysics Letters,1997,70:2684-2686
    [159] Li H, Zhao N, He C, et al., Thermogravimetric analysis and TEMcharacterization of the oxidation and defect sites of carbon nanotubessynthesized by CVD of methane, Materials Science and Engineering A,2008,473:355-359
    [160] Kondoh K, Fukuda H, Umeda J, et al., Microstructural and mechanical analysisof carbon nanotube reinforced magnesium alloy powder composites, MaterialsScience and Engineering A,2010,527:4103-4108
    [161] Li H, Zhao N, He C, et al., Fabrication of carbon-coated cobalt nanoparticles bythe catalytic method, Journal of Alloys and Compounds,2008,458:130-133
    [162] Deck CP, Vecchio K, Prediction of carbon nanotube growth success by theanalysis of carbon-catalyst binary phase diagrams, Carbon,2006,44:267-275
    [163] Tao XY, Zhang XB, Cheng JP, et al., Synthesis of novel multi-branched carbonnanotubes with alkali-element modified Cu/MgO catalyst, Chemical PhysicsLetters,2005,409:89-92
    [164] Lin JH, Chen CS, Ma HL, et al., Synthesis of MWCNTs on CuSO4/Al2O3usingchemical vapor deposition from methane, Carbon,2007,45:223-225
    [165] Xue B, Liu R, Huang WZ, et al., Growth and characterization of bamboo-likemultiwalled carbon nanotubes over Cu/Al2O3catalyst, Journal of MaterialsScience,2009,44:4040-4046
    [166] Gan B, Ahn J, Zhang Q, et al., Y-junction carbon nanotubes grown by in situevaporated copper catalyst, Chemical Physics Letters,2001,333:23-28
    [167] Gutkin MY, Ovid’ko IA, Effect of Y-junction nanotubes on strengthening ofnanocomposites, Scripta Materialia,2009,61:1149-1152
    [168] Tao XY, Zhang XB, Cheng JP, et al., Morphology-Controllable CVD Synthesisof Carbon Nanomaterials on an Alkali-Element-Doped Cu Catalyst, ChemicalVapor Deposition,2006,12:353-356
    [169] He C, Zhao N, Shi C, et al., Synthesis of binary and triple carbon nanotubesover Ni/Cu/Al2O3catalyst by chemical vapor deposition, Materials Letters,2007,61:4940-4943
    [170] Takagi D, Homma Y, Hibino H, et al., Single-Walled Carbon Nanotube Growthfrom Highly Activated Metal Nanoparticles, Nano Letters,2006,6:2642-2645
    [171] Zhou WW, Han ZY, Wang JY, et al., Copper Catalyzing Growth ofSingle-Walled Carbon Nanotubes on Substrates, Nano Letters,2006,6(12):2987-2990
    [172] Li Y, Cui R L, Ding L, et al., How Catalysts Affect the Growth of Single-WalledCarbon Nanotubes on Substrates, Advanced Materials,2010,22:1-8
    [173]张志杰,材料物理化学,北京:化学工业出版社,2006,160-162
    [174] Ivanov V, Fonesca A, Nagy JB, et al., Catalytic production and purification ofnanotubules having fullerene-scale diameters, Carbon,1995,33:1727
    [175] Vander Wal RL, Ticich TM, Curtis VE, Substrate-support interactions inmetal-catalyzed carbon nanofiber growth, Carbon,2001,39:2277-2289
    [176] Ren X, Zhang H, Cui ZL, Acetylene decomposition to helical carbon nanofibersover supported copper catalysts, Materials Research Bulletin,2007,42:2202-2210
    [177] Li C-H, Zhao Y, Yao KF, et al., Application of carbon nanotube supportednickel/aluminum mixed oxide in the synthesis of carbon nanotubes, Carbon,2003,41:2443-2446
    [178] Yang X, Shi C, Liu E, et al., Low-temperature synthesis of multi-walled carbonnanotubes over Cu catalyst, Materials Letters,2012,72:164-167
    [179] Kang J, Li J, Zhao N, et al., General rules governing carbon nanomaterialgrowth directly on metal support by chemical vapor deposition, MaterialsChemistry and Physics,2011,125:386-389
    [180]王春雨,武高辉,张强,张云鹤,修子扬等,铝基复合材料的腐蚀与防护研究现状,中国腐蚀与防护学报,2008,28(1):59-64
    [181] Endo M, Hayashi T, Itoh I, et al., An anticorrosive magnesium/carbon nanotubecomposite, Applied Physics Letters,2008,92:063105
    [182] Aung NN, Zhou W, Goh CS, et al., Effect of carbon nanotubes on corrosion ofMg-CNT composites, Corrosion Science,2010,52:1551-1553
    [183] Fukuda H, Szpunar JA, Kondoh K, et al., The influence of carbon nanotubes onthe corrosion behaviour of AZ31B magnesium alloy, Corrosion Science,2010,52:3917-3923
    [184]李荻,电化学原理,北京:北京航空航天大学出版社,1999
    [185] Frazier WE, Koczak MJ, Mechanical and thermal stability of powdermetallurgy aluminum-titanium alloys, Scripta Metallurgica,1987,21:129-134
    [186] Suryanarayana C, Mechanical alloying and milling, Progress in MaterialsScience2001,46(1-2):1-184
    [187] Fan JP, Zhuang DM, Zhao DQ, Zhang G, Wu MS, Wei F, et al., Toughening andreinforcing alumina matrix composite with single-wall carbon nanotubes,Applied Physics Letters,2006,89:121910-3
    [188] Yosida Y, High-temperature shrinkage of single-walled carbonnanotube bundlesup to1600K, Journal of Applied Physics,2000,8(7):3338-3341
    [189] Xu Y, Ray G, Abdel-Magid B, Thermal behavior of single-walled carbonnanotube polymer-matrix composites, Composites Part A,2006,37:114-121
    [190] Tang Y, Cong H, Zhong R, et al., Thermal expansion of a composite ofsingle-walled carbon nanotubes and nanocrystalline aluminum, Carbon,2004,42:3260-3262
    [191]梅志,顾明元,吴人洁,金属基复合材料界面表征及其进展,材料科学与工程,1996,14(3):1-5
    [192] Zhou Y, Li ZQ, Structural characterization of a mechanical alloyed Al-Cmixture, Journal of Alloys Compound,2006,414:107-12
    [193] Abrahamson J, The surface energies of graphite, Carbon,1973,11(4):337-362
    [194] Wu Y, Kim G-Y, Russell A M, Mechanical alloying of carbon nanotube andAl6061powder for metal matrix composites, Materials Science andEngineering: A,2012,532:558-566
    [195]许文博,粉末冶金金相图谱,北京:中国冶金出版社,2006
    [196] Rapp RA, Zheng X, Thermodynamic consideration of grain refinement ofaluminum alloys by titanium and carbon, Metallurgical and MaterialsTransactions A,1991,22:3071-3075
    [197] Deng CF, Zhang XX, Wang DZ, Chemical stability of carbon nanotubes in the2024Al matrix, Materials Letters,2007,61:904-907
    [198] Hiemenz PC, Principles of Colloid and surface Chemistry, New York: MarcelDekker Inc,1997
    [199] He CN, Zhao NQ, Shi CS, et al., Fabrication of aluminum carbide nanowires bya nano-template reaction, Carbon,2010,48:931-938
    [200] Bakshi SR, Keshri AK, Singh V, et al., Interface in carbon nanotube reinforcedaluminum silicon composites: Thermodynamic analysis and experimentalverification, Journal of Alloys and Compounds,2009,481:207-213
    [201] Landry K, Rado C, Voitovich R, et al., Mechanisms of reactive wetting: thequestion of triple line configuration, Acta Metallurgica,1997,45(7):3079-3085
    [202] Landry K, Kalogeropoulou S, Eustathopoulos N, Wettability of carbon byaluminum and aluminum alloys, Materials Science and Engineering A,1998,254(1-2):99-111
    [203] Eustathopoulos N, Dynamics of wetting in reactive metal ceramic systems, ActaMetallurgica,1998,46(7):2319-2327
    [204] Coleman JN, Cadek M, Blake R, et al., High Performance Nanotube-ReinforcedPlastics: Understanding the Mechanism of Strength Increase, AdvancedFunctional Materials,2004,14(8):791-798
    [205] Dujardin E, Ebbesen TW, Hiura H, et al., Wetting and nanocapillarity of carbonnanotubes, Science,1994,265(5180):1850-1852
    [206] Kelly A, Tyson WR, Tensile properties of fibre-reinforced metals:copper/tungsten and copper/molybdenum, Journal of the Mechanics andPhysics of Solids,1965,13:329-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700