影响茶树铝循环和茶叶品质因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶是主产于我国的重要无酒精饮料。茶叶化学成分和微量元素是茶叶品质的物质基础,是评价茶叶质量的关键特征。茶树是富铝的植物,经常喝较高铝含量的茶水易导致老年痴呆症,因而茶树对铝的吸收、累积以及铝对茶树的生物学效应的研究受到关注。土壤铝的生物有效性和毒性不仅与铝总量有关,更取决于铝的化学形态。酸雨是全球的重要生态环境问题,会导致土壤酸化,而土壤酸化可促进土壤铝释放,改变铝形态。因此,酸雨加重往往伴随着土壤可溶性Al的增加。不过,酸雨和可溶性A1增加对茶树铝循环及茶叶微量元素和化学成分的影响及其耦合关系仍知甚少。本文采用定位监测法研究了不同种植年限茶园土壤铝形态和茶树体内铝含量的分布格局,采用土壤培养和溶液培养法研究了模拟酸雨和不同水平铝供应对茶树铝循环、茶树矿质营养、生长发育、生理活动和茶叶主要化学品质的影响,并初步探讨了钙对茶树铝循环以及矿质元素和化学品质的调控作用,为合理评估酸雨加重和铝供应双重作用对茶树和茶叶品质的影响,以及构建生态高值茶园提供科学依据。主要结果如下:
     为了解种植年限与土壤铝形态的关系以及茶树体铝的分布规律,以江西典型丘陵红壤区不同种植年限(荒地、10年以下、10-20年、20-30年、30-40年、40-50年)茶园为对象,研究不同0-20cm和20-40cm土壤的基本化学特性,土壤铝形态和茶树体不同组织铝分布格局及其相关性。结果表明:茶园土壤总铝、可提取态铝和各种形态铝含量总体均随种植年限延长而增加(P<0.05)。土壤交换态铝、有机结合态铝、无机吸附态铝含量占可提取态铝比例远低于铝的水合氧化物和氢氧化物、腐殖酸铝,前三者之和低于可提取态铝总量的30%。茶叶铝含量随种植年限的延长而增加,与土壤交换态铝和有机结合态铝显著正相关,而与无机吸附态铝、铝的水合氧化物和氢氧化物和腐殖酸铝相关性不显著。总体来看,交换态和有机结合态铝是茶树可吸收利用的主要有效态铝;随着种植年限的延长茶园铝生物地球化学循环强度和速率不断加强和加快。
     采用盆栽试验,研究了模拟酸雨和铝添加对茶树铝吸收积累、茶叶主要化学品质及红壤土铝形态的影响。结果表明,铝添加增加根际和根外土壤交换态铝、有机结合态铝、无机吸附态铝、铝的水合氧化物和氢氧化物的含量。酸雨增加根际和根外土壤交换态铝和有机结合态铝的含量,降低无机吸附态铝和铝的水合氧化物和氢氧化物的含量。铝添加和酸雨对腐殖酸铝含量没有明显影响。铝添加增加茶树根、茎和叶对铝的吸收和积累。在低铝添加条件下,酸雨增强茶树对铝的吸收和积累,而在高铝添加条件下却抑制茶树对铝的吸收和积累。随着添加铝浓度的增加,茶叶茶多酚、咖啡碱、儿茶素和氨基酸含量增加,在同一铝添加处理下,pH4.5的酸雨处理的茶叶以上化学品质高于pH3.0和pH6.0酸雨处理的。随着茶叶铝含量的增加,咖啡碱、儿茶素和氨基酸先增加后下降,而茶多酚和黄酮含量总体上增加。基于以上结果,我们推测适度的酸雨和适量的铝浓度有利于提高茶叶的化学品质。
     为进一步了解酸雨和铝双重作用对茶叶化学品质的影响,采用溶液培养法,研究了模拟酸雨和铝浓度对茶叶主要化学品质的影响。结果表明,在模拟酸度范围内(pH3-5),茶叶茶多酚和咖啡碱含量随酸雨酸度增加先增加后下降,茶叶氨基酸、儿茶素和可溶性糖含量随酸度增加而下降,茶叶黄酮含量随酸度增加无显著差异;随着铝浓度的增加,茶叶茶多酚、咖啡碱、氨基酸、儿茶素、黄酮和可溶性糖含量均为先增加后下降;模拟酸雨和铝浓度对茶叶茶多酚、儿茶素和黄酮含量具有显著交互作用,对咖啡碱、氨基酸和可溶性糖含量没有明显交互作用,高酸高铝显著抑制儿茶素含量(P<0.05)。综合来看,适度的酸度和适量的铝浓度有利于提高和稳定茶叶的品质。
     以一年生福鼎大白茶实生苗为材料,研究了模拟酸雨和铝对茶树生长发育及光合生理的影响。结果表明,适量的铝促进茶树鲜重、干重、茎长、茎粗、根长和根体积的生长,提高茶树根系的活力和茶树叶片叶绿素a,a/b及叶绿素总量的含量,有利于光合作用(Pn)、蒸腾作用(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)的提高。适度的酸雨提高茶树鲜重、干重、茎粗、茎长和根体积的生长,增强根系活力,提高叶绿素a,b和叶绿素总量的含量,增加茶树的Pn、 Tr、Gs和Ci。适量的铝和适度的酸雨有利于以上各测定生长指标的生长,提高根系活力,提高茶树叶绿素a,叶绿素b,叶绿素a/b和叶绿素总量的含量,有利于Pn、Tr、Gs和Ci的提高。过高的铝和过高的酸度不利于各测定生长指标的生长,抑制根系活力和降低叶绿素a,b,a/b及总量的含量。适量的铝和适度的酸雨增加叶绿体的体积、类囊体数量及其片层数量,过高的铝和过高的酸度破坏叶绿体结构,类囊体空泡化,外周膜系统解体。结果表明,适量的铝和适度酸度的酸雨有利于茶树的生长、根系活力、光合作用和叶绿体结构。酸雨和铝对茶树生长的影响可能与茶树根系活力及光合作用有关。酸雨和铝对茶树光合作用的影响可能通过影响气孔导度,叶绿素含量和叶绿体结构方面综合起作用。
     采用盆栽方法,研究了模拟酸雨和外源铝对茶树铝及一些营养元素吸收积累的影响。结果表明,随着外源铝浓度的增加,茶树根、茎和叶中铝含量增加,在适度浓度外源铝处理下,模拟酸雨促进茶树根、茎和叶对铝的吸收与积累,高酸高铝则抑制茶树各器官中铝的积累。外源铝促进茶树根、茎和叶对磷和铜的吸收与积累,促进茶树茎和叶对钾的吸收与积累,但对茶树根中钾含量没有明显的影响;外源铝抑制茶树根对钙、镁和锌的吸收与积累,但不影响它们在茶树中的运输,茎和叶中含量增加。模拟酸雨对茶树根和茎中磷含量没有明显影响,pH4.5的模拟酸雨有利于茶叶磷的积累。模拟酸雨对茶树根、茎和叶中铜、钾、钙、镁和锌含量没有明显的影响。外源铝促进茶树根、茎和叶对铁的吸收与积累。在外源铝处理下,模拟酸雨明显降低茶树根、茎和叶中铁的含量。
     以茶树实生苗为材料,研究了模拟酸雨和铝对茶树抗氧化酶及一些抗性指标的影响。结果表明,随着铝处理浓度的增加,茶树叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)先增加后下降。随着酸雨强度的增加,SOD、POD、CAT和APX增加。在高铝浓度(30mg/L)处理下,酸雨加居SOD、POD、CAT和APX的下降。与无铝处理相比,10mg/L铝浓度处理茶树叶片超氧阴离子产生速率(O2-)和丙二醛(MDA)含量没有明显差异,然而随着铝处理浓度的增加,他们的含量也增加。酸雨强度对茶树叶片O2-产生速率和MDA含量没有明显影响。酸雨加剧铝引起的茶树叶片O2-产生速率和MDA的积累。随着铝处理浓度的增加,茶树叶片脯氨酸含量增加,而酸雨对脯氨酸含量没有明显影响,但酸雨加剧铝对茶树叶片脯氨酸的积累。随着铝处理浓度的增加,茶树叶片可溶性糖含量先增加后下降。pH3.0的酸雨明显提高茶树叶片可溶性糖的含量。这些结果表明,茶树可通过提高抗氧化酶活性和一些渗透调节物质来增强对酸雨和低浓度铝的适应性和耐受能力。高浓度的铝(30mg/L)对茶树的生长具有伤害作用,酸雨加剧铝对茶树的伤害。
     以福鼎大白一年生茶树扦插苗为材料,研究了钙在铝胁迫下茶树钙铝及其他矿质营养吸收积累及茶叶主要化学品质的影响,以期为提高茶叶品质和安全提供资料。结果表明:钙添加提高茶叶茶多酚、咖啡碱、儿茶素、黄酮、可溶性总糖和氨基酸的含量,特别是在高铝浓度(30mg/L)下提高的幅度更大。钙增加茶树对磷和钾的吸收和积累,对铁没有明显的影响;当铝浓度小于20mg/L时,钙降低茶树对铜的吸收和积累,但其仍高于对照组(无铝无钙处理组);当铝浓度为30mg/L时钙对茶叶铜含量没有明显影响。钙降低茶树对镁和锌的吸收和积累,但其仍高于对照组。这些结果表明,在铝胁迫下,增加培养液中的钙并不会影响茶树对这些元素的利用。综合来看,在铝胁迫下,增加培养液中钙的浓度能够增加茶叶各测定品质指标的含量,降低茶叶中铝的含量,增加茶叶中钙的含量,而对其他矿质元素的利用没有不利影响。因此,在茶园适当增施钙可以提高茶叶的品质,降低茶叶中铝的含量,提高茶叶的安全性。
Tea is a no alcohol beverage planted mainly in our country. The contents of chemical ingredients and microelements in tea leaves are the material basis and key feature for measurement of tea qualities. Tea tree(Camellia sinensis) is a typical aluminum (Al) accumulator and has high Al content in tea leaves. Some researchers suggested that drinking tea containing high Al frequently may result in Alzheimer's disease. Thus, the absorption and accumulation of tea plant on Al and the biological effects of A1on tea plant have aroused wide attention by researchers. The bioavailability and biotoxicity of A1to plant is not only dependent on its amounts but also its chemical forms. Acid rain is one of the important environmental problems in our country and even all of the world and it can result in soil acidification. Soil acidification can promote soil Al release and change Al species. Therefore, the increase of acidity of acid rain often accompany with soil soluble Al increase. However, the effects of increase of acidity of acid rain and soluble Al on Al cycling of tea plant, the microelements and chemical ingredients of tea leaves and the coupling relationship between them are not clear. In order to provide information on estimating the combined effects of acid rain and aluminum on aluminum cycling of soil-tea plant system, the growth of tea plant and tea qualities and managing tea garden scientifically. In this study, the aluminum species in tea garden soils of different planting years and distribution pattern of aluminum in tea plant were investigated using position monitor. The effects of simulated acid rain and aluminum addition on the cycling of aluminum from tea garden soils to tea plant, the mineral nutrition, the growth and development and the physiological activities of tea plant and the main chemical qualities of tea leaves were studied in pot experiment and/or hydroculture experiment, and the effects of calcium on the aluminum cycling, mineral nutrition and chemical qualities were preliminary studied. the results were summarized as follows:
     In order to understand the relationship between the planting years of tea garden farms and soil aluminum species and the distribition of aluminum in the plants, the soil physical and chemical property of tea garden, the distribution of soil aluminum species and the distribution of aluminum in different organs in tea plant and relationship between them were studied with typical tea gardens with different planting years in hilly red soil region. The results showed that total aluminum, extractable aluminum and different aluminum fraction contents in soil increased with the extension of planting years (P<0.05). Exchangeable aluminum, organic aluminum complexes and sorbed inorganic aluminum are lower than hydrous oxide and hydroxide aluminum and humic acid aluminum and the total of the former three account for less than30%of total extractable aluminum, leaf aluminum content also increased with the extension of planting years. The content of aluminum in tea leaves positivejy related the the exchangeable aluminum and organic aluminum complexes, while it has no obvious relation with the content of sorbed inorganic aluminum, hydrous oxide and hydroxide aluminum and humic acid aluminum. Thus, exchangeable aluminum and organic aluminum complexes was the main effective forms for tea plant. The biogeochemical cycles of aluminum in tea garden farm continuously strengthened and accelerated with the extension of plant years.
     The effects of acid rain and Al addition on Al uptake and accumulation of tea plant, the main chemical quality of tea leaves and the changes of Al forms in red soils were investigated in pot experiments. Al addition increased exchangeable Al, organic Al complexes, sorbed inorganic Al and hydrous oxide and hydroxide Al content in rhizosphere and bulk soils except sorbed inorganic Al in bulk soils. Acid rain increased exchangeable Al and organic Al complexes, decreased sorbed inorganic Al and hydrous oxide and hydroxide Al either in rhizosphere or in bulk soils. However, humic acid Al showed no responses to Al addition and acid rain. Al addition increased Al assimilation and accumulation in tea roots. shoots and leaves. Al assimilation and accumulation were promoted by acid rain at lower Al addition, while inhibited at higher Al addition. The content of tea polyphenol, caffeine, catechin and amino acid increased with the increasing Al addition, while were higher at pH4.5than pH3.0and/or pH6.0acid rain condition within each Al addition. The contents of caffeine, catechin and amino acid in tea leaves were the highest with leaf Al content among7~8mg/g, while the tea polyphenol and flavone generally increased with increasing Al in tea leaves from2to11mg/g. Based on these results, we speculated that moderated acidity of acid rain and suitable Al addition wound be helpful to increase the tea chemical qualities.
     The main chemical qualities of tea leaves were further studied in solution culture with different pH of acid rain and contents of A1addition. The results showed that the contents of tea polyphenols and caffeine in tea leaves increased firstly and decreased afterwards, and the contents of amino acid, catechin and soluble sugar decreased with increasing acidity, while the flavonoid content showed no difference. With the increasing Al concentrations in solution, the contents of tea polyphenols, caffeine, amino acid, catechin, flavonoid and soluble sugar in tea leaves increased firstly and decreased afterwards. Simulated acid rain and Al addition had significant interactive effects on polyphenols, catechin and flavones, while no interaction on caffeine, soluble sugar and amino acid. The catechin content in tea leaves was inhibited by highest pH and Al concentration in solution. All these results indicated that the moderate acidity and Al content in solution were advantaged to improve tea qualities.
     The effects of simulated acid rain and aluminum on the growth and development and photosynthesis physiology of tea plants were studied with tea seedlings of variety fudingdabai in a hydroculture experiment. The results showed that suitable aluminum increased the fresh weight, dry weight, shoot length, shoot diameter, root length and root volume, promoted root activities and chlorophyll a, a/b and the total of chlorophyll content and increased photosynthesis (Pn), transpiration (Tr), stomatal conductance (Gs) and intercellular CO2concentration of tea leaves. Suitable acidity of acid rain increased fresh weight, dry weight, shoot length, shoot diameter and root volume, promoted root activities, chlorophyll a, b and total of chlorophyll and Pn, Tr, Gs and Ci. Suitable aluminum and moderate acidity of acid rain were benefical to the increase of each index measured, promoted root activities, chlorophyll a, b, a/b and the total of chlorophyll, Pn, Tr, Gs and Ci, while higher aluminum and acidity of acid rain were harm to the increase of each index measured, inhibited root activities, and decreased chlorophyll a. b, a/b and the total of chlorophyll. Suitable aluminum and moderate acidity of acid rain increased chloroplast volume, quantity of thylakoid and its lamellar, while higher aluminum and acidity of acid rain destroyed the structure of chloroplast with thylakoid vacuolized and membrane completely broken. The results suggested that suitable aluminum and moderate acidity of acid rain were beneficial to the growth of tea plant, the activity of tea roots, the photosynthesis of tea leaves and the chloroplasts structure and chlorophyll. The effects of aluminum and acid rain on the growth of tea plant were related with activities of tea roots and photosynthesis. The photosynthesis of tea plant may be affected by the overall effects of stamotal conductance, chlorophyll content and chloroplast structure.
     The aluminum and some nutrition elements in tea plant were measured in pot experiment with different pH of acid rain and contents of exogenous Al treatment. The results showed that the content of aluminum in roots, shoots and leaves of tea plant increased with increasing aluminum treatment. Acid rain increased aluminum accumulation in roots, shoots and leaves of tea plant under suitable aluminum treatment, while the simulated acid rain at high acidity and the aluminum at high concentration inhibited aluminum accumulation in tea plant. Exogenous aluminum promoted P and Cu accumulation in roots, shoots and leaves of tea plant and K accumulation in shoots and leaves, while had no obvious effects on K in roots of tea plant. Exogenous aluminum inhibited Ca, Mg, Zn accumulation in roots of tea plant, and had no obvious effect on their translocation in tea plant, thus these element increased in the shoots and leaves of tea plant. Simulated acid rain had no apparent effects on P in roots and shoots, while simulated acid rain at pH4.5increased P accumulation in tea leaves. Simulated acid rain had no apparent effects on Cu, K, Ca, Mg and Zn content in tea plant. Exogenous aluminum promoted Fe accumulation in roots, shoots and leaves. Under exogenous aluminum treatment, simulated acid rain obviously decreased Fe content in roots, shoots and leaves.
     The physiological characteristics effects of simulated acid rain and aluminum on tea plants were studied in a hydroponic experiment with three pH levels of3.0,4.0and5.0and four aluminum degree of0,10,20and30mg/L. The results showed that superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) in tea leaves increased firstly and decreased later with increasing Al concentration and increased with increasing acidity of acid rain. At higher Al concentration, the decrease of SOD, POD, CAT and APX caused by Al were intensified by acid rain. The superoxide anion radical (O2-) generation rate and malonaldehyde (MDA) content in tea leaves treated with10mg/L A1showed no difference compared with that without Al treatment, and than increased with increasing Al concentration. O2-generation rate and MDA content in tea leaves was not affected by acid rain. The increases of them caused by Al were intensified by acid rain at high Al concentration. Proline content in tea leaves increased with increasing A1concentration and was not affected by acid rain. The accumulation of proline in tea leaves caused by A1was intensified by acid rain. The soluble sugar in tea leaves increased firstly and decreased later with increasing A1concentration. Acid rain at pH3.0significantly increased soluble sugar content in tea leaves. These results suggested that Tea plant can adapt to acid rain and lower Al contentration by strengthening antioxidase activities and increasing osmoregulation substance. However, higher A1concentration are harmful to growth of tea plant and the harm of tea plant caused by Al are aggravated by acid rain.
     In order to provide information on improving the qualities and security of tea leaves, the effects of Ca addition on uptake and accumulation of Ca, Al and other mineral nutrition of tea plants and main chemical qualities of tea leaves were studied with one-year cutting seedlings of varity fudingdabai. The results showed that Ca addition increased tea polyphenol, caffeine, catechin, flavone, total sugar and amino acid contents of tea leaves under the treatment without Al or with different levels of Al addition. Ca addition decreased Al uptake and accumulation of tea plant, but increased Ca uptake and accumulation. Ca addition increased uptake and accumulation of P and K and had no effects on Fe uptake and accumulation of tea plant. Ca decreased uptake and accumulation of Cu when Al concentration were lower than20mg/L, while had no effects on that when Al concentration were30mg/L. Ca decreased the uptake and accumulation of Mg and Zn of tea plant. While Cu, Mg and Zn content of tea plant treated with Ca are not less than that of control (no aluminum and normal calcium). These results suggested that Ca addition had no evident effects on the use of these elements for tea plant under Al stress. Taken together, suitable Ca can increased these chemical qualities of tea leaves determined in this paper, decreased Al content and increased Ca content of tea leaves, and had no effects on other mineral nutrition for use of tea plants. Thus, application of Ca in tea garden can increase qualities of tea leaves, increase Ca and decrease Al content of tea leaves, and increase security of tea.
引文
[1]李春恩.中国茶文化[J].台声,2004(6):86-59.
    [2]唐黎标.唐代茶叶的产地与名品[J].茶叶通报,2003,25(2):94-95.
    [3]凌光汉.发展名优茶后栽培技术要更新[J].中国茶叶,1995(3):34.
    [4]梧洵.名优茶生产与茶园施肥[J].中国茶叶,1994(3):34-35.
    [5]李海生,张志权,席嘉宾.茶(Camellia Sinensis L.)对铜的吸收与累积[J].植物资源与环境学报,2003,12(3):36-39.
    [6]黄积安.江西茶叶历史与现状[J].蚕桑茶叶通讯,1998,(4):20-23.
    [7]马立峰.重视茶园土壤的急速酸化和改良[J].中国茶叶,2001,23(4):30-31.
    [8]吴淘.茶园土壤酸化及防治[J].茶叶通讯,1990,74(4):21-23.
    [9]蔡烈伟,宋晓东.化防与农药残留对茶业发展影响的研讨[J].湖北植保,1999(3):23-25.
    [10]吕朝霞,颜成霞,宋林.欧盟茶叶农药残留限量新规定及我国对策[J].世界标准化与质量管理,2003(4):31-33.
    [11]甘宗祁,干林云.卢国伟等.茶叶铅污染及控制措施研究[J].中国食品卫生杂志,2001,13(2):37-38.
    [12]鲁成银.无公害茶叶质量管理标准体系[J].中国茶叶,2004,30(4):187-189.
    [13]李清泽,赵明,郝文革,等.从EREPGAP-TEA到中国茶叶良好农业规范[J].世界农业,2007,337(5):55-57.
    [14]禹利君,刘仲华,范铁芳.中国茶产业发展现状分忻[J].中国林副特产,2007,88(3):78-80.
    [15]许咏梅.林坚.苏祝成.中国外销茶叶质量的国际比较.农业质量标准[M].2007,(3):8-10.
    [16]Crapper D R, Krisnan S S. Quittkat S. Aluminum neurofibrillary degeneration and Alzheimer's disease[J]. Brian,1976.99(1):67-80.
    [17]张加玲,刘桂英.铝对人体的危害、铝的米源及测定方法研究进展[J].临床医药实践杂志:2005,14(1):3-6.
    [18]WHO. environmental Health criteria 194[M].In:Aluminum world Health organization, Geneva,1997.136.
    [19]Van Landeghem G F, Haese P C D. Lamberts L V. Aluminum speciation in derebrospinal fluid of acutely aluminum-intoxicated dialysis patients before and after desferrioxamine treatment; a step in the understanding of the element's neurotoxicity[J]. Nephology Dialysis Transplantation,1997,12:1692-1698.
    [20]Ott S M. Aluminum-related osteomalacia[J]. The International Journal of Artificial Organs, 1983,6(4):173-175.
    [21]Kaiser L, Schwarrtz K A. Aluminum-induced anernia[J]. American Journal of Kidney Disease,1985,6(5):348-352.
    [22]Rengel Z. Aluminum cycling in the soil-plant-animal-human continuum[J]. Biometals,2004, 17:669-689.
    [23]Chenery E M. A preliminary study of aluminum and the tea bush[J]. Plant and soil,1955. 6:174-200.
    [24]Flaten T P. Aluminum in tea-concentrations,speciation and bioavailability coordination[J]. Chemistry Reviews,2002,228:385-395.
    [25]Flaten A K, Lund W. Speciation of aluminium in tea infusions studied by size exclusion chromatography with detection by post-column reaction [J]. Sci Total Environ,1997,207 (1): 21-28.
    [26]Wong M H, Fung K F, Carr H P. Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications[J]. Toxicol Lett,2003,137 (1-2):111-120.
    [27]Zhou C Y, Wu J, Chi H, et al. The behaviour of leached aluminium in tea infusions[J]. Sci Total Environ,1996,177(1-3):9-16.
    [28]WHO/IPCS. Aluminum [J]. Environ Health Criteria,1997,194:1-152.
    [29]Deng, Z Y, Tao BY, Li X L, et al. Effect of green tea and black tea on the metabolisms of mineral elements in old rats [J]. Biol Trace Elem Res,1998,65:75-86.
    [30]Yang M S, Wong M H. Changes in Ca, Cu, Fe, Mg, and Zn contents in mouse brain tissues after prolonged oral ingestion of brick tea liquor containing a high level of A1[J]. Biol T race Elem Res,2001,80(1):67-76.
    [31]Forster D P, Newens A J, Kay D W, et al. Risk factors in clinically diagnosed presenile dementia of the Alzheimer type:a case-control study in northern England [J]. J Epidemiol Commun Health,1995,49:253-258.
    [32]Broe G A, Henderson A S, Creasey H, et al. A case-control study of Alzheimer's disease in Australia[J]. Neurology,1990,40:1698-1707.
    [33]The Canadian Study of Health and Aging. Risk factors for Alzheimer's disease in Canada[J]. Neurology,1994,44 (11):2073-2080.
    [34]山田秀和.日本土壤肥料杂志[J].1977,48(7/8):253-265.
    [35]黄意欢,肖力争.编著.茶树营养生理与土壤管理[M].湖南科技出版社,1992,87-139.
    [36]Morita A, Yanagisawa O, Takatsu S et al. Mechanism for the detoxification of aluminum in roots of tea plant(Camellia sinensis L.) Kuntze)[J]. Phytothemistry,2007,6:1-7.
    [37]Morita A, Horie H, Fujii Y et al. Chemical forms of aluminum in xylem sap of tea plants(Camellia sinensis L.) [J]. Phytochemistry,2004,65:2775-2780.
    [38]Nagata T, Hayatsu M, Kosuge N. Identification of aluminum forms in tea leaves by 27NMR[J]. Phytochemistry,1992,31:1215-1218.
    [39]廖万有.茶生物国中铝的生物学效应及研究展望[J].福建茶叶,1995,(4):13-17.
    [40]陈宗懋.茶微量元素·人体健康[J].茶叶文摘,1990,(4):1-10.
    [41]阮宇成,方兴汉,吴彩,等.铝在茶树营养上的作用.茶叶科学研究年报,1980-1981:232-238.
    [42]Githua M. Gathu N. AAS determination of aluminium levels in tea and other plants grown in the same locality[J]. J. Environ. Sci. Health.,1995; 30(6):1145-1154.
    [43]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报.1998,35(2):162-171.
    [44]梁月荣.茶树铝代谢研究及其对作物抗铝育种的意义福建茶叶[J].1993,(3):20-24.
    [45]戎秋涛,杨春藏,徐文彬.模拟酸雨对浙东北红壤中盐基离子和铝的淋失影响研究[J]环境科学学报,1997,17(1):32-38.
    [46]Owour P I O. Gone F O. Levels of aluminum in green leaf of Clonal teas, black tea and black tea liquors, and efects of rates of nitrogen feailizers on the aluminum black tea contents[J]. Food Chem,1990(35):59-68.
    [47]Owour P O. Efects of nitrogen fertilizers on the alurnimum contents of matttro tea leaf and Extractable aluminium in the soil[J]. Plant and Soil,1989,119:342-34.
    [48]孙云,郑金凯.乌龙茶叶铝含量的分析[J].福建茶叶,1994,(1):15-1.
    [49]Ligna J. Yen C H. Avoidance mechanisms of physiological interference of aluminium in tea plant[J].中国农业化学杂志,1997,35(1):61-69.
    [50]潘根生Masaki Tsuji,小两茂毅.茶根尖细胞各胞器分部的分离及其铝的分布[J].浙江农业大学学报,1991.17(3):255-258.
    [51]马立锋,石元值,阮建云.苏、浙、皖茶区茶园土壤pH状况近十年来的变化[J].土壤通报,2000,31(5):205-207.
    [52]易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,2006,12(3):23-28.
    [53]吴洵.茶园土壤酸化及防治[J].茶叶通讯,1990,(4):21-23.
    [54]孙继海.吴子铭.茶园土壤活性酸度动态[J].土壤肥料.1980.(3):16-23.
    [55]徐楚生.茶园土壤pH近年米研究的一些进展[J].茶叶通报,1993.15(3):1-4.
    [56]宋木兰,刘友林.茶园-土壤系统的物质循环对土壤酸化的影响[J].茶叶科学.1990,10(2):19-26.
    [57]仲兆环.茶园十壤酸度演化及其调节茶叶[J].1984(1):11-12.
    [58]Taylor G J, Foy C D. Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat).Ⅳ.The role of ammonium and nitrate nutrition[J]. Can J Bot.1985,63:2181-2186.
    [59]阮建云,王国庆,石元值,等.茶园土壤铝动态及茶树铝吸收特性[J].茶叶科学,2003,23(增):16-20.
    [60]阮建云.茶园和根际铝的动态及其对茶树生长和营养吸收的影响.中国茶叶学会首届海峡两岸茶叶科技学术研讨会会议论文.2000.
    [61]Chenery E M. Plant and Soil,1995,2 (6):174-196.
    [62]庄晚芳.茶树栽培学[M].农业出版社,1979:98-9.
    [63]方兴汉,吴彩.铝对茶树无机营养吸收和分布的影响[J].中国茶叶,1989(4):34-3.
    [64]小西茂毅.铝对茶树生长的促进作用[J].茶叶,1995,21(3):18-20.
    [65]Konishi S, Miyamoto S. Alleviation of aluminum stress and stimulation of tea pollen tube growth by fluorine[J]. Plant Cell Physiol,24,857-862.
    [66]李海生,张志权,陈连周.铝对茶树幼苗生长的影响[J].广东教育学院学报,2000,20(3):107-110.
    [67]罗亮,谢忠雷,刘鹏.茶树对铝毒生理响应的研究[J].农业环境科学学报,2006,25(2):305-308.
    [68]Konishi S, Miyamoto S, Taki T. Stimulatory effects of aluminum on tea plant grown under low and high phosphorus supply[J]. Soil Science and Plant Nutrition,1985,31(3):361-368.
    [69]李海生,张志权.不同铝水平’下茶对铝及矿质养分的吸收与累积[J].生态环境,2007,16(1):186-190.
    [70]Rost-siebert K. Aluminum-toxicit atundtoleranz as Kermpflanzen von Fichte(Picea abies Karst) und Buche(Fagus silvatica L.)[J]. Allg Forstz,1983,38:686-689.
    [71]伍炳华,许允文.铝对茶树根系生长及氮素营养的影响[J].中国茶叶,1995,(2):28-29.
    [72]Konishi S, Miyamoto S, Taki T. Stimulatory effects of aluminum on tea plant grown under low and high phosphorus supply[J]. Soil Science and Plant Nutrition,1985,31(3):361-368.
    [73]吴琼鸳,郑伟伟,罗亮,等.铝对茶树根系生理的影响[J].湖北农业科学,2005,3:80-82.
    [74]赵和涛.铝元素与茶树生育及品质的关系.热带作物科技,1996,3:33-35.
    [75]郑伟伟,刘鹏,徐根娣,等.铝对茶叶叶片主要化学成分的影响[J].生态环境,2006,15(4):822-826.
    [76]杨凌云,夏建国,吴德勇.施铝对川西蒙山茶叶品质的影响[J].安徽农业科学,2007,35(20):6154-6146.
    [77]Reuss J O, Cosby B J, Wreight R E. Chemical process of control acidification of soil and water[J]. Nature,1987,329 (6134):23-24.
    [78]廖万有.我国茶园土壤的酸化及防治[J].农业环境保护,1998,17(4):178-180.
    [79]许中坚,刘广深,刘维屏.人为因素诱导下的红壤酸化机制及其防治[J].农业环境保护,2002,21(2):175-178.
    [80]余金顺,周俊远,毛江水,等.丘陵红壤茶园土壤肥力状况与改良熟化初步探讨[J].蚕桑茶叶通讯,1983,4:1-7.
    [81]Smith A. N. The effect of fertilizers, sulphur and mulch on east African tea soils:Ⅰ. The effect on the pH reaction of the soil[J]. East African Agriculture for Journal.1962,27:158-163.
    [82]Smith A. N. The effect of fertilizers, sulphur and mulch on east African tea soils:Ⅱ. The effect on the base and organic matter content of the soil[J]. East African Agriculture for Journal.1962,28:16-21.
    [83]李庆康.茶园土壤酸化研究的现状及展望[J].土壤通报,1987,(2):69-71.
    [84]林智,吴询,俞永明.土壤pH对茶树生长及矿质元素吸收的影响[J].茶叶科学,1990,10(20):27-32.
    [85]干效举.十壤植茶的环境效应[J].土壤通报,1995,26(2):91-93.
    [86]廖万有.我国茶园土壤物理性质研究概况与展望[J].十壤,1997,(3):121-124,136.
    [87]曹顺爱,吕军.十壤母质及其物理性状与茶叶品质关系[J].茶叶,2003,29(1):13-16.
    [88]姚槐应.不同利用年限茶园土壤的化学及微生物生态特征研究[J].浙江农业科学,2002, (3):129-131.
    [89]熊毅,陈家坊.土壤胶体(第三册)十壤胶体的性质[M].北京:科学出版社,1990.
    [90]Chubin R G, Steet J J. Adsorption of cadm.am on soil constituents in the presence complexing ligands [J]. J. Environ. Qual.,1981,10 (2):225-228.
    [91]Kuo S, Meneal B L. Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide [J]. Soll Sci. Soc. Am. J.,1984,(48):1040-1044.
    [92]Gray C W. Sorption and desorption of cadmium from some New Zealand soils:effect of pH and contact time[J]. Australian Journal of Soil Research,1998, (36):199-216.
    [93]吴启堂.土壤重金属的生物有效性的环境质量标准[J].热带亚热带十壤科学,1992,1(1):45-53.
    [94]章明奎,方利平,张履勤.酸化和有机质积累对茶园土壤铅生物有效性的影响[J].茶叶科学,2005,25(3):159-164.
    [95]谢忠雷,王胜天,董德明,等.茶园十壤中铝的化学形态及其影响因素.吉林大学自然科学学报,1999.(3):93-98.
    [96]Polak T B, Milacic R, Pihhlars B, et al. The uptake and speciation of various Al species in the Brassica rapa pekinensis [J]. Phytochemistry,2001,57:189-198.
    [97]国家环保局.酸沉降及其影响控制技术[C].南京:河海大学出版社,1996.
    [98]Taylor G. J, Foy C D. Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat).Ⅳ.The role of ammonium and nitrate nutrition[J]. Can J Bot,1985,63:2181-2186.
    [99]李弈.曹进.茶中铝元素的安全性评估[M].国外医学医学地理分册,2005,2(1):26-28.
    [100]Reuss J O, Johnson D W. Acid deposition and the acidification of soils and waters[M]. New York:Springer Verlag.1986,78-80.
    [101]刘光崧,蒋能惠,张连第,等,土壤理化分析与剖面描述[C].北京:标准出版社,1996.
    [102]丁瑞兴,黄骁.茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[j].土壤学报,1991.28(3):229.
    [103]吴洵,林智.茶树喜酸及茶园土壤酸化问题的研究结果及进展[J].茶叶文摘.991,5(1):1-7.
    [104]粱远发,田永辉,王国华,等.乌江流域茶园土壤理化性状对茶叶品质影响的研究[J].中国农学通报,2003.119(13):44-47.
    [!05]李学垣.土壤化学[C].北京:高等教育出版社,2001.
    [106]Latty E F. Canham C D, Marks P L. The effects of land use history on soil properties and nutrient dynamics in northern hardwood forests of the Adir on dack Mountains[J]. Ecosystems.2004.7:193-207.
    [107]Soon Y K. Fractionation of extractable aluminum in acid soils:a review and a proposed procedure[J]. Commun Soil Sci. Plant Anal.,1993,24:1683-1708.
    [108]Salm C, Westerved J W, Verst raten J M. Release rates of A J from inorganic and organic compounds in a sandy podzol, during laboratory experiments [J]. Geoderma,2000,96: 1173-1198.
    [109]薛冬,姚槐应,黄吕勇.植茶年龄对茶园十壤微生物特性及酶活性的影响[J].水十保持 学报,2005,19(2):84-87.
    [110]阮建云,王国庆,石元值,等.茶园土壤铝动态及茶树铝吸收特性.茶叶科学,2003,23(增刊):16-20.
    [111]Wong M H. Zhang Z Q, Lan C Y, et al. Fluoride and aluminum concentrations of tea plants and tea products from Sichuan Province, PR china[J]. Chemosphere,2003,52(9): 1475-1482.
    [112]Ruan J Y, Ma L F, Shi Y Z, et al. Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant (Camallia sinensis L.)[J]. Plant and Soil,2004,263:283-296.
    [113]丁爱芳.酸性土壤铝和盐基的迁移及对林木生长的影响[C].南京林业大学,2000.
    [114]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998,35(1):162-171.
    [115]Drabek O, Boruvka L, Mladkova L, et al. Possible method of aluminium speciation in forest soils[J]. Journal of Inorganic Biochemistry,2003,97:8-15.
    [116]Polak T B, Milacic R, Pihhlars B, et al. The uptake and speciation of various A1 species in the Brassica rapa pekinensis [J]. Phytochemistry,2001,57:189-198.
    [117]吕焕哲,王凯荣,谢小立.土地利用方式与坡位土壤活性铝形态特征分析[J].水土保持学报,2007,21(1):172-175.
    [118]Trevisanato S I, Kim Y 1. Tea and health[J]. Nutrition Reviews,2000,58(1):1-10.
    [119]Chen X H, Zhuang C G, He Y F, et al. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments[J]. Agr. Water Manage.,2010,97,419-425.
    [120]Matsumoto H, Hiraswa E, Morimura S, et al. Localization of aluminum in tea leaves[J]. Plant Cell Physiol.,1976,17,627-631.
    [121]Nayak P. Aluminum:Impact and diseases[J]. Environ. Res.,2002,89,101-115.
    [122]Zatta P, Lucchini R, van Rensburg S J, et al. The role of metals in neurodegenerative processes:Aluminum, manganese and zinc[J]. Brain Res. Bull.,2003,62,15-28.
    [123]Wang W and Wang T. On the origin and the trend of acid precipitation in China[J]. Water Air Soil Pollut.,1995,85,2295-2300.
    [124]Larssen T, Lydersen E, Tang D G, et al. Acid Rain in China[J]. Environ. Sci. Technol., 2006,40,418-42.
    [125]Tam S C. Simulated acid rain and the importance of organic ligands on the availability of aluminum in soil[J], Water Air Soil Pollut,1987,36,193-206.
    [126]Lee R and Sharp G S. Extraction of "available" aluminum from podzolised New Zealand soils of high aluminum status[J]. Comm. Soil Sci. Plant Anal.,1985,16,261-274.
    [127]Dong D, Ramsey M H, Thornton I. Effects of soil pH on Al avaiability in soils and its uptake by the soybean plant[J]. J. Geochem. Explor.,1995,55,223-230.
    [128]Fujita K, Chaudhary M I, Adu-Gyamfi J J, et al. Dinitrogen fixation and growth responses to phosphorus and aluminum application in pigeon pea (Cajanus cajan L.)[J]. Soil Sci. Plant Nutr.,1995,41,729-735.
    [129]Fung K F and Wong M H. Effects of soil pH on the uptake of Al, F and other elements by tea plants[J]. J. Sci. Food Agric.,2001, 82,146-152.
    [130]段小华,邓泽元,胡小飞,等.模拟酸雨和铝添加对茶树铝及一些营养元素吸收积累的影响[J].农业环境科学学报,2010,29(10):1936-1942.
    [131]封红,何宗健,游海,等.南昌市酸雨污染特征分析.南昌大学学报(工科版),2003,25,30-32.
    [132]Lynch J M. Soil Rhizosphere. John Wiley and Sons, New York.1990.
    [133]GB/T 8313-2002.茶多酚的测定[M].北京:中国标准出版社,2002.
    [134]GB/T8312-2002.咖啡碱测定[M].北京:中国标准出版社,2002.
    [135]GB/T 8314-2002.游离氨基酸测定[M].北京:中国标准出版社,2002.
    [136]钟萝.茶叶品质理化分析[M].上海:上海科学技术出版社,1989:476-477.
    [137]王廷峰.李延清,郝永红,等.超声法提取银杏叶黄酮的研究[J].食品科学,2002,23(8):166-167.
    [138]Mirasol J J. Aluminum as a Factor in Soil Acidity[J]. Soil Sci.1920,10,153-218.
    [139]Ding R X and Huang X A. Biogeochemical cycle of aluminum and fluorine in tea garden soil system and its relationship to soil acidification[J]. Acta Pedol. Sin.,1991,28,229-236.
    [140]Gandhapudi S K, Coyne M S, D'Angelo E M, et al. Potential nitrification in alum-treated soil slurries amended with poultry manure[J]. Bioresource Technol.,2006,97,4,664-670.
    [141]Liao B H. Guo Z H, Probst A, et al. Soil heayy metal contamination and acid deposition: experimental approach on two forest soils in Hunan[J], Southern China. Geoderma,2005, 127,91-103.
    [142]Wang P, Bi S P, Ma L P, et al. Aluminum tolerance of two wheat cultivars (Brevor and Atlas 66) in relation to their rhizosphere pH and organic acids exuded from roots[J]. J. Agric. Food Chem..2006,54,10033-10039.
    [143]Song Y K. Fractionation cf extractable aluminium in acid soils:a review and a proposed procedure[J]. Commun. Soil Sci. Plant,1993.24.1683-1708.
    [144]Bertsch P M and Bloom P R. Aluminium. In:Sparks D L, Page A L, Sumner M E, et al. (Eds) Methods of Soil Analysis. Part 3, Chemical Methods. SSSA Book Series No.5. Madison, Wis.1996.
    [145]van Hees P A W, van Hees A M T, Lundstrom U S. Determination of aluminium complexes of low molecular organic acids in soil solution from forest soils using ultrafiltration[J]. Soil Biol. Biochem.,2001,33,867-874.
    [146]Dijkstra F A and Fitzhugh R D. Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States[J]. Geoderma,2003,114,33-47.
    [147]Chaffai R.Sey bou T N, Marzouk B, et al. Changes induced by aluminum stress in the organic acid content of maize seedlings:The crucial role of exogenous citrate in enhancing seedling growth [J]. Biologia,2009,64,6,1129-1135.
    [148]Yang L T, Jiang H X, Tang N, et al. Mechanisms of aluminum-tolerance in two species of citrus:Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots[J]. Plant Sci.,2011,180,3,521-530.
    [149]Wang H, Xu R K, Wang N, et al. Soil Acidification of Alfisols as influenced by tea cultivation in eastern China[J]. Pedosphere,2010,20,6,799-806.
    [150]Pennanen T, Fritze H, Vanhala P, et al. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain[J]. Appl. Environ. Microbiol.,1998, 64,2173-2180.
    [151]Boruvka L, Mladkova L, Drabek O. Factors controlling spatial distribution of soil acidification and A1 forms in forest soils[J]. J. Inorg. Biochem.,2005,99,1796-1806.
    [152]Matu's P. Evaluation of separation and determination of phytoavailable and phytotoxic aluminium species fractions in soil, sediment and water samples by five different methods[J]. J. Inorg. Biochem.,2007,101,1214-1223.
    [153]黄媛,段小华,胡小飞,等.模拟酸雨和铝调控对茶叶品质及铝积累的影响[J].热带亚热带植物学报,2011,19,254-259.
    [154]Gu M H, Tetsuo H, Lu S N, et al. Responses of different crops to effect of temperature on aluminum toxicity[J]. Tropic. Subtropic. Soil Sci.1994,3,59-65.
    [155]Wa G A and Tsuma T. Characteristics of upward translocation of aluminum in plants[J]. Soil Sci. Plant Nutr.,1984,30,345-358.
    [156]Wa G A, Tsuma T, Keneko M. High toxicity of hydroxy-aluminum polymer ions to plant roots[J]. Soil Sci. Plant Nutr.,1987,33,1,57-67.
    [157]Deborah A, Tesfaye M. Plant improvement for tolerance to aluminum in acid soiis-a review[J]. Plant Cell, Tissue and Organ Culture,2003,75:189-207.
    [158]Tomioka R and Takenaka C. Enhancement of root respiration and photosynthesis in Quercus serrata Thunb. seedlings by long-term aluminum treatment[J]. Environ. Sci.,2007, 14,3,141-148.
    [159]Chen Y M, Wang M K, Huang P M. Catechin Transformation As Influenced by Aluminum[J]. J. Agric. Food Chem.,2006,54,212-218.
    [160]Ghanati F, Morita A, Yokota H. Effects of aluminum on the growth of tea plant and activation of antioxidant system[J]. Plant Soil,2005,276,133-141.
    [161]Evans L S, Lewin K F, Patti M J. Effects of simulated acidic rainon yields of field grown soybeans [J]. "New Phytologist,1984,96:207-213.
    [162]Pell E J, Arny C J, Pearson N S. Impact of simulated acidic precipitation on quantity and quality of a field grown potato crop[J]. Environ. Exp. Bot.1987,27(1):7-14.
    [163]Khan T I, Devpura S. Physiological and biochemical effects of simulated acid rain on phaseolus vulgaris var. HUR215[J]. The Environmentalist,2004,24 (4):223-226.
    [164]Li Q K. Study status and progress of soil acidification in tea gardens[J]. Chin. J. Soil Sci., 1987,2,69-71.
    [165]Fracp G A B, Md A S H, Fracp, et al. A case-control study of Alzheimer' disease in A ustralia[J]. Neurology,1990,40,1698-1707.
    [166]Anna C S and Kiss S A. Elemental analysis of tea leaves by atomic apectroscopic methods[J]. Mag. Res.,1994,7(2),77-83.
    [167]李海生,张志权.茶(Camellia sinensis L.)对铝的吸收和累积研究[J].中山大学学报:自然科学版,2002,41(1):72-75.
    [168]Venkatesan S, Ganapathym N K. Impact of nitrogen and potassium fertiliser application on quality of CTC teas[J]. Food Chemistry,2004,84:325-328.
    [169]陆锦时,魏芳华,李春华.茶叶主要化学成分与品质关系的研究[J].西南农业学报,1994,7:1-4.
    [170]Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology,1995, 107:315-321.
    [171]Grabski S, Schindler M. Aluminum induces rigor with the action network of soybean cell [J]. Plant Physiology,1995.108:897-901.
    [172]Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annu Rev Plant Physiol Mol Biol,1995,46:237-260.
    [173]Shu W S. Zhang L Y, Wong M H. Fluoride and aluminum concentration of tea plants and tea product from Sichuan Province PR China [J]. Chemosphere,2003,52(9):1475-1482.
    [174]宋建国,刘伟,尚庆昌.酸胁迫条件下对番茄生长、产量和品质的影响[J].环境化学,2005,24(4):423-425.
    [175]梁骏.麦博儒,郑有飞,等.模拟酸雨对油菜(Brassica napus L)生长、产量及品质的影.生态学报.2008,28(1):274-283.
    [176]徐晓燕.孙五三,李章海,等.烤烟根系合成烟碱的能力及pH对其根系品质的影响[J].安徽农业大学学报,2004.31(3):315-319.
    [177]钟萝.茶叫品质理化分析fM].上海:上海科学技术出版社,1989:476-477.
    [178]张志良.植物生理学实验指导(第3版):M].北京:高等教育出版社,2003.127-128.
    [179]Li P. Wang Y H. Mar, et al. Separation of tea poly phenol from green tea leayes by a combined CATUFM-adsorption resin process [J]. Journal of Food Engineering.2005,67 253-260.
    [180]杨秀芳.从生化角度谈提高茶叶品质[J].福建茶叶,1997,(3):34-37.
    [181]李远华,江昌俊,宛晓春.茶树咖啡碱合成酶基因mRNA表达的研究[J].茶叶科学2004、24(1):23-28.
    [182]郑毅男,李想,韩立坤,等.乌龙茶减肥作用机制的研究[J].营养学报.2001,23(4):342-345.
    [183]向勤锃,刘德华.茶树富铝的研究进展及展望[J].茶叶通讯,2003(2):33-36.
    [184]Wa G A, Tsuma T. Characteristics of upward translocation of aluminum in plants[J]. Soil Science and Plant Nutrition,1984,30(3):345-358.
    [185]刘厚田,田仁生.重庆南山马尾松衰亡与土壤铝活化的关系[J].环境科学学报,1992,12(3):297-299.
    [186]西北农学院,华南农业大学.农业化学研究法[M]第2版.北京:农业出版社,1987: 93.
    [187]孙婷,刘鹏,郑人卫,等.茶树体内铝形态及铝累积特性[J].作物学报,2009,35(10):1909-1915.
    [188]梁骏,麦博儒,郑有飞,等.模拟酸雨对油菜(Brassica napus L)生长、产量及品质的影.生态学报,2008,28(1):274-283.
    [189]郑飞翔,温达志,旷远文.模拟酸雨对柚木幼苗生长、光合与水分利用的影响[J].热带亚热带植物学报,2006,14(2):93-99.
    [190]余春珠,温达志,彭长连.三种木本植物对酸雨的敏感性和抗性[J].生态环境,2005,14(1):86-90.
    [191]鲁美娟,江洪,李巍,等.模拟酸雨对刨花楠幼苗生长和光合生理的影响[J].生态学报,2009,29(11):5986-5994.
    [192]廖广社,许建新,许涵,等.模拟酸雨对黄槐幼苗生长的影响[J],广东园林,2005,31(5):37-41.
    [193]刘鹏,徐根娣,姜雪梅,等.铝对大豆种子萌发的影响[J].种子,2003(1):30-32.
    [194]唐剑锋,林咸永,章永松,等.小麦根系对铝毒的反应及其与根细胞壁组分和细胞壁对铝的吸附-解吸性能的关系.生态学报,2005,25(8):1890-1897.
    [195]单运峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社,1994.
    [196]杨妙贤,郑慧明,张伟峰,等.模拟酸雨对菜心生长与部分生理指标的影响[J].仲恺农业技术学院学报,2001,14(3):38-42.
    [197]Muthu chelian K, Nedunchezhian N, Kulandaivelu G. Acid rain:Acidic mist induced response in growth and photosynthetic activities on crop plants[J]. Archives of Environmental Contamination and Toxicology,1994,26(4):521-526.
    [198]Fan H B, Wang Y H. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China[J]. Forest Ecology and Management,2000,126(3):321-329.
    [199]邱栋梁,刘星辉.模拟酸雨对龙眼叶绿体活性的影响[J].应用生态学报,2002,13(12):1559-1562.
    [200]Shan Y. Effects of simulated acid rain on Pinus densiflora Inhibition of net photosynthesis by the pheophytization of chlorophyll[J]. Water, Air, and Soil Pollution,1998,103(1-4): 121-127.
    [201]Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plant[J]. Int Rev Cytol,2000,200:41-46.
    [202]汪洪,褚天铎.植物镁素营养的研究进展[J].植物学通报,1999,16(3):245-250.
    [203]Graham C J. The influence of nitrogen source and aluminum on growth and elemental composition of 'Nemaguard' peach seedlings[J]. J Plant Nutr,2001,24:423-439.
    [204]肖祥希,陈立松,蔡艳惠,等.铝胁迫对龙眼幼苗营养元素吸收的影响[J].江西农业大学学报,2005,27(2):230-233.
    [205]邱栋梁,刘星辉,郭素枝.模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响(英文)[J].植物生态学报,2002,26(4):441-446.
    [206]应小芳,刘鹏.铝胁迫对大豆叶片光合特性的影响[J].应用生态学报,2005,16(1):166-170.
    [207]肖祥希,刘星辉,杨宗武,等.铝胁迫对龙眼幼苗光合作用的影响[J].热带作物学报,2005:26(1):63-69.
    [208]周青,黄晓华,王冬燕,等.稀土元素La对酸雨损伤蜡梅的影响[J].生态学杂志,1997,16(6):59-61.
    [209]梁婵娟,陶文沂,李操,等.UV2B与AR胁迫’下油菜光合及CAT活性的恢复过程(Ⅱ)[J].农业环境科学学报,2004,23(5):890-894.
    [210]李海生.不同pH水平下茶苗对铝、铜及矿质养分吸收和累积的研究[J].广东教育学院学报,2005,25(5):78-81.
    [211]李芝喜,孙保平.林业GIS[M].北京:中国林业出版社,2000.
    [212]黄益宗,李志先,黎向东,等.模拟酸雨对华南典型树种生长及营养元素含量的影响[J].生态环境,2006,15(2):331-336.
    [213]王金凤,温远光,梁宏温.柳州酸雨区马尾松年轮元素含量变化研究rJ].生态科学,2005,24(4):310-313.
    [214]曹洪法,高吉喜,舒俭民.铝对马尾松幼苗影响的研究[J].生态学报,1992,12(3):239-246.
    [215]Chibiliti G. Interaction of aluminum and calcium on Nemaguard peach seedling nutrient contents and growth in sand culture[J]. Scientia Horticuhurae,1990,43(1-2):29-36.
    [216]余国泰,奏遂初.有机肥缓解小麦铝毒效果的研究[J].植物营养写与肥料学报,1998,4(1):57-62.
    [217]李海生.张志权.不同铝水平下茶对铝及矿质养分的吸收与累积[J].生态环境,2007,16(1):186-190.
    [218]顾明华,Tersuo Hara陆申年,等.铝毒在不同作物上的差异及温度的影响田[J].热带亚热带土壤科学.1994,3(2):59-65.
    [219]Sasaki M, Yamamoto Y, Matsumoto H. Lignin deposition induced by aluminium in wheat(Triticum aestivum)rooxs[J]. Physiological Plantarum,1996,96(2):193-198.
    [220]For C D, Chang R C, White M C. The physiology of metal toxicity in plants [J]. Annual Review of Plant Physiology,1978,29:511-566.
    [221]丁淑能,阮建云,吴洵.活性腐殖酸在红壤茶园的应用效果[J].中国茶叶,1996,18(2):2-3.
    [222]Konishi S, Miyamoto S, Taki T. Stimulatory effects of aluminum on tea plant grown under low and high phosphorus supply[J]. Soil Science and Plant Nutrition,1985,31(3):361-368.
    [223]陈文荣,刘鹏,黄朝表,等.铝对养麦铝和其它营养元素运输的影响[J].水土保持学报,2006,20(3):173-17,
    [224]Wagatsuma T, Keneko M. High toxicity of hydroxy-aluminum polymer ions to plant roots[J]. Soil Science and Plant Nutrition,1987,33:57-67.
    [225]Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology,1995, 107:315-321.
    [226]王力军,青长乐,牟树森.模拟酸雨对土壤化学及蔬菜生长的影响[J].农业环境保护,1993,12(]):17-20.
    [227]黄建昌,肖艳.模拟酸雨对6种园林植物的影响[J].西南农业大学学报,2002,24(4):360-362.
    [228]Rinallo C, Modi G. Fruit yield of field grown pear pyruscommun is exposed to different levels of raom acidity in Tuscany[J]. Journal Science Food Agriculture,1995,68(1):43-50.
    [229]Makarov M I, Kisclcva V V. Acidification and nutrient in forest soil subjected to nitrogen deposition[J]. Water Air Soil Pollution,1995(85):1137-1142.
    [230]陈美华,欧世金,蒋德书.模拟酸雨对芒果生长及土壤的影响[J].广西农业大学学报,1995,14(4):300-304.
    [231]颜戊利,刘冬英,陈志澄,等.黄皮对酸雨的抗性[J].中国果树,2004,(2):31-33.
    [232]Cronan C S, ReinersW A, Reynods R C, et al. Forest floor leaching:Contributions from mineral, organic and carbonic acids in New Hamp shire subalpine forests [J]. Science,1978, 200:309-311.
    [233]童贯和,刘天骄,黄伟.模拟酸雨及其酸化土壤对小麦幼苗膜脂过氧化水平的影响[J].生态学报,2005,25(6):1509-1516.
    [234]Momen B, Helms J A, Criddle R S. Foliar metabolic heat rate of seedlings and mature trees of Pinus ponderosa exposed to acid rain and ozone[J]. Plant, Cell and Environment,1996, 19 (6):747-753.
    [235]Lee Y, Park J, Im K, et al. Arabidopsis leaf necrosis caused by simulated acid rain is related to the salicylic acid signaling pathway[J]. Plant Physiology and Biochemistry,2006,44(1): 38-42.
    [236]Smith C R, Vasilas B L, Banwart W L, et al. Physiological response of two soybean cultivars to simulated acid rain[J]. New Phytologist,1991,119(1):53-60.
    [237]Zhang J E, Yang Y O, Ling D J. Impacts of simulated acid rain on cation leaching from the latosol in south China[J]. Chemosphere,2007,67(11):2131-2137.
    [238]Wyrwicka A, Sklodowsk M. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves[J]. Environmental and Experimental Botany,2006,56(2):198-204.
    [239]邬新荣,王岳飞,张士康,等.茶多酚保健功能研究进展与保健食品开发[J].茶叶科学,2010.30(增刊1):501-505.
    [240]吴燕春,吴冬,谢金鲜,等.广西甜茶总黄酮的体外抗肿瘤作用[J].中国实验方剂学杂志,2010,16(7):165-167.
    [241]邝满元,邓鹏程,徐松.藤茶总黄酮对肝纤维化大鼠肝组织中Ⅰ、Ⅲ型胶原蛋白表达的影响[J].现代生物医学进展,2009,9(1):2055-2057.
    [242]孙清斌,沈仁芳,尹春芹,等.铝毒胁迫下植物的响应机制[J].土壤,2008,40(5):691-697.
    [243]陈娜,王秀荣,严小龙,等.酸性十壤上缺磷和铝毒对大豆生长的交互作用[J].应用生态学报,2010,21(5):1301-1307.
    [244]朱韦,魏虹,彭月,等.模拟酸雨对四川大头茶幼苗的生理生态影响[J].西南师范大学学报(自然科学版),2006,31(2):147-150.
    [245]蔡哲,贺志明,唐春燕,等.南昌市酸雨特征与气象条件关系分析研究[J].安徽农业科学,2010,38(21):11292-11294.
    [246]汤章城主编.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [247]王以柔,刘鸿先、李平,等.在光照和黑暗条件下低温水稻幼苗光合器官膜脂过氧化作用的影响[J].植物生物学报,1986:12(3):244-251.
    [248]NakanoY, AsadaK. Hydrogen peroxide is scavenged by ascorabate specific peroxidase in spinach chloroplasts[J]. plant Cell Physiology,1981.22:867-880.
    [249]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55-57.
    [250]李合生.植物生理生化试验原理与技术[M].北京:高等教育出版社,2000.184-185,258-260.
    [251]Schutzendubel A, Polle A. Plant responses to abiotic stress:heavy metal induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany,2002,53: 1351-1365.
    [252]严明理,刘丽莉.王海华,等.模拟酸雨和Pb对羽叶鬼针草(Bidensmax imowicziana)生理特性的影响[J].水土保持学报,2009,23(1):217-222.
    [253]余苹中,廖柏寒,宋稳成.模拟酸雨和Zn对四季豆(Phaseolus vulgaeis L)根与叶酶活性的影响[J].农业环境科学学报,2004,23(5):917-920.
    [254]徐苏凌,方勇,邢承华.酸雨和Cd胁迫对紫花苜蓿生长和抗氧化酶系统的影响[J].浙江大学学报·农业与生命科学版.2068,34(4):467-472.
    [255]涂俊芳,王兴明,刘登义,等.不同浓度铜对紫背萍(Spirodela polyrrhiza)和青萍(Lemna minor)色素含量及抗氧化酶系统的影响[J].应用生态学报,2006,17(3):502-506.
    [256]孙守琴,何明,曹同,等.Pb、Ni胁迫对大羽藓(Thuidium cym bifolium)抗氧化酶系统的影响[J].应用生态学报,2009,20(4):937-942.
    [257]何闪英,高永杰,申屠佳丽,等.铜和模拟酸雨复合胁迫对酸模铜富集、生长及抗氧化酶系统的影响[J].应用生态学报.2011,22(2):481-487.
    [258]Khatun S, Ali M B, Hahn E J. et al. Copper toxicity in Withania somnifera:Growth and antioxidant enzymes responses of in vitro grown plants[J]. Environmental and Experimental Botany,2008,64:279-285.
    [259]王学,施国新,徐勤松,等.镧、铈及重金属元素铬、锌对竹叶眼子菜的毒害作用[J].中国稀土学报,2004,22(5):682-686.
    [260]刘可慧,于方明,李明顺,等.镉胁迫对小白菜(Brassica campestris L.)抗氧化机理的影响[J].生态环境,2008,17(4):1466-1470.
    [261]郭平,刘畅,张海博,等.向日葵幼苗对Pb,Cu富集能力与耐受性研究[J].水土保持学报,2007,21(6):92-95.
    [262]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.
    [263]白嵩,李青芝,白岩,等.水体镉污染对水稻种苗初期生长的影响[J].吉林农业大学学报,2003,25(2):128-130.
    [264]杨居荣,蒋婉茹.小麦耐受Cd胁迫的生理生化机制探讨[J].农业环境保护,1996,15(3):97-101.
    [265]丁海东,朱为民,杨少军,等.镉、锌胁迫对番茄幼苗生长及脯氨酸和谷胱甘肽含量的影响[J].江苏农业学报,2005,21(3):191-196.
    [266]Costa G, Spitz E. Influence of cadmiumon soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus[J]. Plant Sci,1997,128:131-140.
    [267]Prasad M N V. Cadmium toxicity and tolerance in vascular plants[J]. Environ & Exp Bot, 1995,35(4):525-545.
    [268]Trevisanato S I, Kim Y I. Tea and health[J]. Nutrition Reviews,2000,58(1):1-10.
    [269]Bushd S. Calcium regulation in plant cells and its role in signaling[J]. Annu Rev Plant Physiol Plant Mol Biol,1995,46,95-122.
    [270]Shinozaki K,Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stress response [J]. Plant Physiol,1997,115,327-334.
    [271]蒋廷惠,占新华,徐阳春,等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态报,2005,16(5):971-976.
    [272]Pandey S, Tiwaril S B, Upadhyaya K C, et al. Calcium signaling: linking environmental signals to cellular functions[J]. Critical Reviews in Plant Sciences,2000,19(4):291-318.
    [273]Richauer M,Tanner W. Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris[J]. Plant Physiol,1986,83,41-47.
    [274]》臧小平.土壤铝毒与植物钙镁营养[J].广西农业科学,1997,(2):80-82.
    [275]Chibiliti G. Interaction of aluminum and calcium on Nemaguard peach seedling nutrient contents and grow in sand culture[J]. Scientia Horticulrurac,1990,43(1/2):29-36.
    [276]李益清,李天来.钙对弱光胁迫下番茄生长发育及产量和品质的影响[J].沈阳农业大学学报,2010-10,41(5):526-530.
    [277]钟萝.茶叶品质理化分析[M].上海:上海科学技术出版社,1989,476-477
    [278]Deborah A, Tesfaye M. Plant improvement for tolerance to aluminum in acid soils-a review[J]. Plant Cell, Tissue and Organ Culture,2003,75:189-207.
    [279]王小平,刘鹏,罗虹,等.铝氟交互处理对茶叶品质的影响[J].茶叶科学,2009,29(1):9-14.
    [280]杨亚军.中国茶树栽培学[M].上海:上海科学技术出版社,2005,384-385.
    [281]姚元涛,宋鲁彬,田丽丽.茶树钙素营养研究进展[J].落叶果树,2011(2):37-39.
    [282]Rengel Z. Role of Calcium in aluminum toxicity [J]. New Phytol,1992,121:499-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700