星载CCD遥感相机图像压缩技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着遥感成像技术的发展,星载遥感相机的覆盖宽度和分辨率不断提高,使得获取的图像数据量急剧增加。在卫星下行信道传输带宽有限的条件下,遥感图像数据必须经过压缩编码处理。星载遥感图像压缩是空间技术应用中的关键技术之一,在保证良好的图像压缩性能前提下,如何设计实现高效且复杂度适中的压缩编码器,是目前研究的热点问题。研究适用于卫星遥感图像的压缩技术具有重要的理论意义及工程应用价值。论文以某“星载CCD遥感相机图像压缩技术研究”项目为依托,对遥感图像压缩技术展开研究,寻找满足工程应用需求的遥感图像压缩解决方案。
     论文首先分析了CCD遥感相机的特点,对满足工程应用的CCD相机图像压缩系统进行了分析。在深入研究JPEG2000标准算法基础上,设计了基于ADV212的遥感相机图像压缩系统。考虑到相机轻型化的需求,提出了将CCD采集单元及图像压缩模块集成于一体的设计方案,使用单片FPGA作为它们的核心控制单元。最终在硬件平台上实现了图像压缩系统的功能,并对系统的实际性能进行了测试。实验结果表明,系统符合预期的技术指标,满足工程应用需求。
     尽管JPEG2000算法性能优秀,但是复杂度过高,对于低功耗等有特殊要求的卫星平台并不是最适用的解决方案;另外,考虑到专用集成芯片ADV212硬件结构固定,实现图像压缩算法有一定的局限性。因此,接下来,论文主要对复杂度适中且性能高的CCSDS图像压缩算法进行了研究。为了提高了小波变换模块的处理速度,针对推扫式CCD遥感相机的成像特点,提出了一种二维小波变换的流水线处理结构,改进后的结构节省了大量缓存资源。另外,针对码率截断方法的不足,提出了一种改进的码率控制算法,提高了重构图像的质量。实验结果表明,与改进前的算法相比,峰值信噪比最大可以提高0.67dB。
     最后,针对小波变换处理图像方向特征的不足,探讨了Bandelet变换在遥感图像压缩中的应用,主要研究了Bandelet变换结合算术熵编码的压缩方案。实验结果表明,该方案对遥感图像主观质量的保持能力优于小波变换编码。
With the increasing development of high spatial resolution and wide swath, an extensive amount of imaging data acquired from satellite remote sensing camera increases dramatically. As the bandwidth of satellite downlink channel is limited, remote sensing image must be compressed first. The remote sensing image compression is one of key technologies for spatial application. How to balance the complexity and performance of image compression is the hot issue. Research on image compression technology used for spatial remote sensing image is very important and valuable for theory and engineering application. Based on the project of image compression research for on-board satellite CCD remote sensing camera, the objective of this dissertation is to search the solution for remote sensing image compression.
     First, the dissertation analyses the characteristics of the CCD remote sensing camera, and also the image compression system used for engineering application. After research on JPEG2000 standard algorithm, the image compression system based on ADV212 is proposed. Taking into account the demand for lightness, the design with CCD imaging data collection and image compression integrated is proposed, and a single FPGA is their core control unit. The image compression system is implemented on hardware platform finally. The experiment results show that the proposed system meets the expected performance index, and satisfies to engineering application.
     Despite the excellent performance of JPEG2000 standard, it is too complicated. The JPEG2000 is not the best solution for satellite application with limited power demand. In addition, the use of ASIC is restricted. Therefore, secondly, the image compression algorithm proposed by CCSDS is described, with moderate complexity and excellent performance. To increase data processing speed of the discrete wavelet transform module, for push-broom type sensors imaging application, the pipeline structure for two-dimension discrete wavelet transform is proposed. Through the proposed pipeline structure, huge memory resource is saved. For the shortage of rate truncation, an improved rate control algorithm is proposed, and the quality of the reconstructed image is enhanced. The experimental results show that the PSNR can be increased at 0.67dB, compared to the original algorithm.
     However, wavelet transform is not optimal for representing directional characteristics for image. Finally, to solve the shortage of wavelet transform, the Bandelet transform used in remote sensing image compression is described. The scheme with Bandelet transform and arithmetic entropy is mainly analyzed. The result proves that the proposed scheme can preserve better subjective performance than compression measure based on wavelet transform.
引文
[1]胡著智,王慧麟,陈钦峦等.航天航空遥感技术与应用[M].南京:南京大学出版社,2007.
    [2]张钧屏,方艾里,万志龙.对地观测与对空监视[M].北京:科学出版社,2001.
    [3]王庆有. CCD应用技术[M].天津:天津大学出版社,2006:78-99.
    [4]王珂俨.遥感图像高效压缩编码方法研究[D]:[硕士论文].西安:西安电子科技大学,2005:7-9.
    [5]熊承义.高速图像压缩编码器的VLSI结构设计研究[D]:[博士论文].武汉:华中科技大学,2006:1-16.
    [6]赵秋艳.美国成象侦察卫星的发展[J].航天返回与遥感.1999,30(3):31~39.
    [7]王继东.星载遥感图像实时压缩中的关键技术研究[D]:[博士论文].长沙:国防科技大学.2007:2-23.
    [8]刘荣科,张晓林,廖小涛.星载遥感图像压缩编码技术综述[J].遥测遥控,2004,25(2):7-12
    [9] Antonio Guzman, Marta Beltrzin. Satellite On-Board Image Compression Adviser [J]. Signal Processing and Information Technology, 2004.
    [10] Lier P., Moury G., Latry C. Selection of the SPOT-S Image Compression algorithm [J]. Proc. SPIE 1998, vol.3439-70.
    [11] Y. Zheng, G. Ke, M. Sweeting. Tsinghua micro/nanosatellite research and its application[J].Proceedings of the 13th AIAA/USU Conference on Small Satellites, SSC99-IX-3, Logan, UT, August 1999:23–26.
    [12] Guoxia Yu, Tanya Vladimirova and Martin N. Sweeting. Image compression systems on board satellites [J]. Acta Astronautica, Vol. 64, 2009:989-1001.
    [13] C. Lambert-Nebout, G. Moury. A survey of on-board image compression for CNES space missions, in: Proceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium [J]. 1999: 2032–2034.
    [14] P.R. Christensen, B.M. Jakosky and H.H. Kieffer. The thermal emission imaging system (THEMIS) for the Mars 2001 odyssey mission [J]. Space Science Reviews 110 (1–2),2004:85.
    [15] Thomas W. Fry and Scott A. Hauck. SPIHT Image Compression on FPGAs [J]. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, No. 9, September 2005.
    [16] A.S. Dawood, J.A. Williams, S.J. Visser. On-board satellite image compression using reconfigurable FPGAs [J]. IEEE International Conference on Field-Programmable Technology. Proceedings (Cat. No. 02EX603), 2002:306–310.
    [17] G. Yuksel, O. Belce, H. Urhan, BILSAT-1: first Earth observation satellite of Turkey-operations and lessons learned [J]. Proceedings of Second International Conference on Recent Advances in Space Technologies, RAST 2005, June 9–11, 2005:846–851.
    [18]吴涛.星际图像的压缩方法[J].天津工业大学学报,2002,21(1):49-51.
    [19]徐欣锋.一种适应大数据量遥感图像的星上实时压缩方法[D]:[博士论文].长春:中国科学院长春光学精密机械与物理研究所,2006:66.
    [20]雷杰.遥感图像编码算法及其硬件实现技术研究[D]:[博士论文].西安:西安电子科技大学,2010:19-86.
    [21] Sun Huixian, Wu Ji, Dai Shuwu. Introduction to the payloads and the initial observation results of Chang’E-1[J].Chin. J. Space Sci, 2008, 28(5):374-384.
    [22] A. Kiely, M. Klimesh, J. Maki. ICER on Mars: wavelet- based image compression for the Mars exploration rovers [J]. IND Technology and Science News, Issue 15, June, 2002:15–19.
    [23]史承兴,雷婷.电子元器件应用[J].CCSDS与JPEG20OO图像压缩算法结构的对比分析.2010(6):89-91.
    [24]张学全.基于FPGA的星载图像压缩系统实现方法研究[D]:[博士论文].北京:中国科学院研究生院科学与应用研究中心.2010:79-85.
    [25] P.-S. Yeh, G. Moury, and P. Armbruster. The CCSDS Data Compression Recommendations: Development and Status [J]. Proc. SPIE Application of Digital Image Processing, July 7-10, 2002, Seattle, WA.
    [26] Jiayan Zhang, Tingxian Zhou, Xuejun Sha. Rate-Distortion Model for CCSDS Image Compression Standards Based on Wavelet Transformation[J].科学技术与工程,2007,7(21):5570-5574.
    [27] N. Ismailoglu, O. Benderli, S. Yesil. GEZGIN & GEZGIN-2: adaptive real- time image processing subsystems for earth observing small satellites [J]. Adaptive Hardware and Systems, 2006, AHS 2006, First NASA/ESA Conference, June 15–18, 2006:351–358.
    [28] Shannon, C. E. A Mathematical Theory of Communication [J]. The Bell Sys. Tech. J., vol. XXVII, no. 3, 1948:379-423.
    [29]肖自美.图像信息论与压缩编码技术[M].广州:中山大学出版社,2000:103-149.
    [30]原岛博.图像信息压缩[M].薛培鼎等译.北京:科学出版社,2004.
    [31]张春田,苏玉挺,张静.数字图像压缩编码[M].北京:清华大学出版社,2006:2-36.
    [32]孙文军.基于整数小波变换的全色遥感图像压缩技术研究[D]:博士论文.长春:中国科学院研究生院长春光学精密机械与物理研究所.2003,5:36-39.
    [33]刘荣科,张晓林,廖小涛.星载遥感图像压缩编码技术综述[J].遥测遥控,2004,25(2):7-12.
    [34]王明远.空间遥感数据压缩编码技术的发展[J].中国航天,2003(6):20-22.
    [35]徐欣锋.高空间分辨力遥感图像实时压缩进展[J].光学精密工程,2004,12(3): 266-271.
    [36]黄武贤,王加俊,李家华.数字图像处理与压缩编码技术(第一版)[M].成都:电子科技大学出版社,2000:256-280.
    [37]余松煜.现代图像信息压缩技术[M].北京:科学出版社,1998.
    [38]冈萨雷斯著.阮秋琦,阮宇智等译.数字图像处理[M].北京:电子工业出版社,2003:375.
    [39]顾治华,王涛.图像压缩中的变换方法及应用[J].武汉理工大学学报(交通科学与工程版),29(1)2005,2:79-82.
    [40]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [41] A. Grossmann J. Morlet. Decomposition of hardy function into square integrable wavelets of constant shape [J]. SIAM Journal on Mathematical Analysis, 1984(15):723-736.
    [42] Mallat S. A Compact for Multiresolution Representation: The Wavelet Model [M]. Proc. IEEE Computer Soctiety Workshop on Computer Vision, Washington, D.C.: IEEE Computer Soctiety Press.1987:2-7.
    [43] Mallat S. Multiresolution Approximation and Wavelet Orthonormal Bases of L2 [J]. Trans. of the American Mathematical Society,1989, vol.315(1):69-87.
    [44] I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets [J]. Comm. Pure and Applied Math. , vol. 41, Nov. 1988:909-996.
    [45] I. Daubechies. The Wavelet Transform, Time-frequency localization and Signal Analysis [J]. IEEE Trans.IT, 1990(36): 961-1005.
    [46]孟鸿鹰,王志华.基于推举体制的小波构造方法[J].信号处理.第十五卷,第九届全国信号处理学术年会, 1999:87-90.
    [47] Tinku Acharya, Ping-Sing Tsai. JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures [M]. Wiley and Sons, Inc. 2005:93-123
    [48] S.Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation [J]. IEEE Trans.PAAMI, 1989, 11(7):674-693.
    [49]沈兰荪,卓力.小波编码与网路视频传输[M].北京:科学出版社,2005:73-75.
    [50]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999:39-42.
    [51]王相海,张跃平.基于小波的图像及视频编码研究进展[J].计算机工程与应用[J],2004.11:78-80.
    [52] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients [J]. IEEE Transactions on Signal Processing. 1993, 41(11): 3445-3462.
    [53] J. A. Garcia, Rosa Rodriguez-Sanchez, J. Fdez-Valdivia, J. Martinez-Baena.Rate control optimization in embedded wavelet coding [J]. Pattern Recognition Letters, 2003(24): 1469-1487.
    [54] A. Said, W. A. Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees [J]. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, July 1996:243-250.
    [55]鲁则瑜,华林,朱柯等. JPEG2000高速MQ编解码器的VLSI实现[J].复旦学报(自然科学版). 2005.
    [56] A. Islam, W. A. Pearlman. An Embedded and Efficient Low-Complexity Hierarchical Image Codec [J]. Proceedings of SPIE3653, Visual Communications and Image Processing’99. 1999, San Jose, CA: Enero.
    [57] A. Zandi, J. Allen, E. Schwartz. CREW: Compression with Reversible Embedded Wavelets [J]. IEEE Data Compression Conference, Snowbird, UT: [s.n.], 1995:212-221.
    [58] D. Taubman. High performance scalable image compression with EBCOT [J]. IEEE Trans. on Image Processing, vol. 9, no. 7, July 2000: 1158–1170.
    [59]李云松.实时军事图像编码研究[D]: [博士论文].西安:西安电子科技大学,2002:2-23.
    [60]张宗平等.基于小波的视频图像压缩研究进展[J].电子学报,2002,30(6):88-89.
    [61]张文忠.基于小波变换的图像编码技术的研究[D]:[博士论文].合肥:中国科技大学,1999.
    [62] Daivd S. Taubman, Michael W. Marcellin等.魏江力等译. JPEG2000图像压缩基础、标准和实践[M].北京:电子工业出版社,2004:244-246.
    [63] Shannon C E. Coding theorems for a discrete with a fidelity criterion [J]. IRE National Conf. Record, Part 4, 1959:142-163.
    [64]蒋伟.图像编码中率失真优化算法的研究[D]:博士论文.上海:上海交通大学,2008:1-3.
    [65]薛旭成,张淑艳,郭永飞.无链表SPIHT图像压缩算法的FPGA实现[J].微计算机信息,2008(6).
    [66] Diego Santa-Cruz, Raphael Grosbois and Touradj Ebrahimi. JPEG2000 performance evaluation and assessment [J]. Signal Processing: Image Communication,2002,17 (1):113–130.
    [67]张浩,张育林.卫星遥感图像数据压缩质量评价研究[J].中国空间科学技术. 2007, 2:
    [68]小野定康,铃木纯司.强增福译. JPEG2000技术.北京:科学出版社,2004:83-138.
    [69] ISO/IEC JTC1/SC29/WG1 N390R, New work item: JPEG2000 image coding system[S], March 1997.
    [70] M. Rabbani and R. Joshi. An overview of the JPEG2000 still image compression standard [J]. Signal Processing: Image Communication, vol.17, no. 1, Jan.2002:3–51.
    [71] M. D. Adams. Reversible Integer-to-Integer Wavelet Transforms for Image Coding [D]: Ph.D. thesis, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada. Sept. 2002.
    [72] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression [J]. Communications of the ACM, vol. 30, no. 6, 1987: 520–540.
    [73] ISO/IEC 14492-1: Lossy/lossless coding of bi-level images[S]. 2000.
    [74] D. Taubman, E. Ordentlich, and M. Weinberger. Embedded block coding in JPEG2000 [J]. Signal Processing: Image Communication, vol. 17, no. 1, Jan. 2002: 49–72.
    [75] Adams M D, KOSSENTINI F. Jasper: a software-based JPEG2000 codec implementation [J]. Proc of IEEE International Conference on Image Processing. Vancouver. 2000: 53-56.
    [76]刘雷波. JPEG2000静止图像压缩关键技术研究及VLSI实现[D]:博士论文.北京:清华大学,2004:34-137.
    [77] M. D. Adams and F. Kossentini, Reversible Integer-To-Integer Wavelet Transforms For Image Compression: Performance Evaluation And Analysis [J].IEEE Trans. Image Processing, Vol. 9, No. 6, June 2000: 1010-1024.
    [78] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies: Image Coding Using the Wavelet Transform [J]. IEEE Trans. Image Proc., April 1992: 205-220.
    [79] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 still image coding system: an overview [J]. IEEE Transactions on Consumer Electronics, Vol. 46, No. 4, November 2000:1103-1127.
    [80]刘凯,吴成柯,李云松等.比特平面并行的EBCOT编码及其VLSI结构[J].计算机学报,2004,27(7):928-935.
    [81] D. Taubman, M. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standarda. Kluwer Academic Publishers, 2001.
    [82]钟萃相,韩国强,黄明和.JPEG2000的系数位上下文建模算法[J].计算机应用研究,2007(24):370-373.
    [83] Li J., Lei S. An Embedded Still Image Coder with Rate-distortion Optimization [J].IEEE Trans. on Image Processing. 1999, 8(7):913-924.
    [84] H. Everett. Generalized Lagrange multiplier method for solving problems of optimum allocation of resources [J]. Oper. Res., vol.11, 1963:399–417.
    [85]刘雷波,李德建,孟鸿鹰等. JPEG2000 EBCOT编码器的VLSI结构设计[J] .北京邮电大学学报,2003,26(4):67-71.
    [86]雷杰,孔繁锵,吴成柯等.适合硬件实现的JPEG2000码率控制算法及其VLSI结构设计[J].西安电子科技大学学报,2008,35(4):645-663.
    [87] G. Yuksel, O. Belce, H. Urhan, BILSAT-1: first Earth observation satellite2002:3–51.
    [71] M. D. Adams. Reversible Integer-to-Integer Wavelet Transforms for Image Coding [D]: Ph.D. thesis, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada. Sept. 2002.
    [72] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression [J]. Communications of the ACM, vol. 30, no. 6, 1987: 520–540.
    [73] ISO/IEC 14492-1: Lossy/lossless coding of bi-level images[S]. 2000.
    [74] D. Taubman, E. Ordentlich, and M. Weinberger. Embedded block coding in JPEG2000 [J]. Signal Processing: Image Communication, vol. 17, no. 1, Jan. 2002: 49–72.
    [75] Adams M D, KOSSENTINI F. Jasper: a software-based JPEG2000 codec implementation [J]. Proc of IEEE International Conference on Image Processing. Vancouver. 2000: 53-56.
    [76]刘雷波. JPEG2000静止图像压缩关键技术研究及VLSI实现[D]:博士论文.北京:清华大学,2004:34-137.
    [77] M. D. Adams and F. Kossentini, Reversible Integer-To-Integer Wavelet Transforms For Image Compression: Performance Evaluation And Analysis [J].IEEE Trans. Image Processing, Vol. 9, No. 6, June 2000: 1010-1024.
    [78] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies: Image Coding Using the Wavelet Transform [J]. IEEE Trans. Image Proc., April 1992: 205-220.
    [79] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 still image coding system: an overview [J]. IEEE Transactions on Consumer Electronics, Vol. 46, No. 4, November 2000:1103-1127.
    [80]刘凯,吴成柯,李云松等.比特平面并行的EBCOT编码及其VLSI结构[J].计算机学报,2004,27(7):928-935.
    [81] D. Taubman, M. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standarda. Kluwer Academic Publishers, 2001.
    [82]钟萃相,韩国强,黄明和.JPEG2000的系数位上下文建模算法[J].计算机应用研究,2007(24):370-373.
    [83] Li J., Lei S. An Embedded Still Image Coder with Rate-distortion Optimization [J].IEEE Trans. on Image Processing. 1999, 8(7):913-924.
    [84] H. Everett. Generalized Lagrange multiplier method for solving problems of optimum allocation of resources [J]. Oper. Res., vol.11, 1963:399–417.
    [85]刘雷波,李德建,孟鸿鹰等. JPEG2000 EBCOT编码器的VLSI结构设计[J] .北京邮电大学学报,2003,26(4):67-71.
    [86]雷杰,孔繁锵,吴成柯等.适合硬件实现的JPEG2000码率控制算法及其VLSI结构设计[J].西安电子科技大学学报,2008,35(4):645-663.
    [87] G. Yuksel, O. Belce, H. Urhan, BILSAT-1: first Earth observation satellite–446.
    [104]雷杰,孔繁锵,吴成柯等.适合硬件实现的JPEG2000码率控制算法及其VLSI结构设计[J].西安电子电学报,35-4,2008(8):645-663.
    [105] ITU-T: Information technology– Lossless and near-lossless compression of continuous-tone still images–Baseline[S]. June 1998:7-23.
    [106] Hongqiang Wang. CCSDS Image Data Compression C source codes. http://hyperspectral.unl.edu/, University of Nebraska-Lincoln, Sept 2010.
    [107]段贵多,李建平,黄添喜.图像的多尺度几何分析概述[J].计算机应用研究,2007(10):9-12.
    [108] E.Pennece, S.Mallat. Image compression with geometrical wavelets [J]. Proceedings of the IEEE International Conference on Image Processing, Vancouver, Canda, 2000:661-664.
    [109]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用[M].西安:西安科技大学出版社,2008:397-423.
    [110]宋蓓蓓,孙媛,孙文芳.第二代Bandelets变换定码率图像压缩.计算机工程与应用[J],2009,45(6):194-196.
    [111] G. Peyre, S. Mallat. Surface compression with geometric Bandelets [J]. ACM Transactions on Graphics, July 2005, 24(3):601-608.
    [112]梁锐华.基于Bandelet变换的图像稀疏表示及压缩编码方法研究[D]:[硕士论文].长沙:国防科学技术大学,2006:29-42.
    [113] X. Delaunay, E. Christophe, C. Thiebaut. Best post-transform selection in a rate-distortion sense [J]. Proc. of ICIP'08, Oct. 2008.
    [114] X. Delaunay, M. Chabert, V. Charvillat. Satellite image compression by directional decorrelation of wavelet coefficients [J]. IEEE Int. Conf. on Acoust. Speech and Sig. Proc., Apr. 2008:1193–1196.
    [115] X. Delaunay, M. Chabert, V. Charvillat. Satellite Image Compression by Post-Transforms in the Wavelet Domain [J].Signal Processing, 2010:599-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700