用户名: 密码: 验证码:
杂交骨髓瘤细胞培养模型化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代基因工程药物主要来自于重组微生物和动物细胞培养,如单克隆抗体、细胞生长因子和生长素等。动物细胞培养的突出优势在于在很多情况下能分泌出具有正确折叠和后修饰的、具有生命活性的蛋白质。然而,采用动物细胞培养获取的生物药品产率相当低。主要的原因有:1)培养条件的专一性;2)在培养条件的微小扰动下动物细胞的产率变化和细胞死亡的敏感性增加。欲实现培养过程的仿真、优化和控制,最终达到提高产率的目的,模型化是先导。本文以杂交骨髓瘤细胞培养为例,根据对动物细胞代谢机理和细胞周期机理的现有认知,研究了在不同应用层面上的动物细胞模型化方法,给出了模型的具体数学描述,并进行了初步验证。详细描述如下:
     首先,本文研究了杂交骨髓瘤细胞培养的改进的集总参数动力学模型(Macrokinetic Model with Lumped Parameters)。
     传统的集总参数动力学模型,尤其是Monod模型,形式简单并取得了广泛应用。然而,众所周知,Monod模型不能描述接种或补料操作后的细胞生长迟滞现象。为此,本文根据细胞代谢酶系调节机理,提出了模仿细胞内酶调节的代谢调节模型,该代谢调节模型与Monod模型相结合,可以更好的描述细胞比生长速率。另外,鉴于细胞培养过程中氨基酸的限制性影响,本文建立了重要氨基酸的代谢模型。通过这两方面的改进,使得集总参数动力学模型的实用性得到了增强,如模型能够描述氨基酸耗尽后细胞维持短期生长的现象。
     利用上述改进模型对杂交骨髓瘤细胞间歇培养和脉冲式补料间歇培养进行仿真,较好描述了活细胞和死细胞的密度以及葡萄糖、谷氨酰胺、赖氨酸和乳酸的浓度的动态变化。论文提供了仿真结果与实验值的对比。
     论文建立的第二个模型是基于细胞周期机理的杂交骨髓瘤细胞培养的群体平衡模型(Population Balance Model)。
     真实的细胞系统往往是一个异质系统,细胞群体中的个体表现出不同的细胞行为或细胞性状。获得细胞群体关于这些细胞行为或细胞性状的分布信息,对于与细胞周期相关的重组蛋白(如单抗)的产率优化至关重要。文献中平衡模型的优势正是在于描述细胞系统的各类分布信息。然而,目前动物细胞培养的平衡模型研究还有很大的提升空间,如细胞周期特性信息的充实和模型的验证。为此,本文根据细胞周期和周期调控机理的生物学信息,把细胞体积和DNA含量作为细胞周期时相以及时相内细胞与细胞之间的区分标志,进而建立了杂交骨髓瘤细胞群体平衡模型。这个模型能够直接仿真DNA和体积分布的动态变化。论文利用DNA分布实验数据验证了上述细胞群体平衡模型。实验验证是文献中现有平衡模型未能做到的事。细胞群体平衡模型还能用来计算细胞周期各时相的细胞分率(各时相细胞数目占总细胞数量的百分比)的动态变化,以及活细胞和死细胞密度、底物(葡萄糖和氨基酸)浓度以及副产物(乳酸)的浓度。对此,论文也给出了实验验证结果。
     与集总参数动力学模型相比,平衡模型能提供更多的用于细胞培养过程优化和控制的信息,如细胞周期各时相的细胞分率和DNA分布的动态变化,可以为细胞群体周期动力学的控制提供理论依据。同时,DNA分布的模型仿真有助于更好的设计细胞周期控制过程。然而,由于模型本身数学描述的复杂性,实现平衡模型仿真的计算负担远比集总参数动力学模型大得多,在实际应用中有一定的难度。
     论文建立的第三个模型是基于酶系调控的杂交骨髓瘤细胞培养控制论模型(Cybernetic Model)。
     控制论模型是从动物细胞内部代谢和代谢酶调节的机理分析出发,研究细胞生长、消耗底物和生成副产物的情况。控制论模型的前提假设为生物系统经过长期的进化,已经形成了一套自我优化的策略。基于这个前提,细胞可以通过对酶水平和酶活性的控制来调节细胞代谢网络生化反应的进行。在控制论代谢网络中,酶系根据最优化原则竞争利用胞内物质资源。根据文献中代谢机理的分析,谷氨酰胺的利用过程中存在转氨和脱氨作用的竞争,这种竞争直接影响到副产物氨和丙氨酸的生成,以往的控制论模型没有考虑到这一竞争关系。另外,以往的控制论模型往往忽略了氨基酸的(谷氨酰胺除外)竞争性利用。本文提出的控制论模型重点考虑了这两方面因素的影响。该模型不但能描述细胞生长、底物(葡萄糖和谷氨酰胺)代谢和副产物(乳酸、氨和丙氨酸)形成等宏观变量的动态变化,还能仿真细胞内部物质(代谢中间产物和酶)的动态变化,为细胞培养提供了胞内水平的控制变量。控制论模型考虑细胞代谢酶调节机理,因而能描述细胞生长对营养扰动的延迟响应。从这一点来看,控制论模型相比其它类型的代谢机理模型更具优势。
     以上三种模型化方法各有优势,适用于不同的场合:集总参数动力学模型结构简单,易于实现,适于环境扰动不太明显、不确定因素较少的培养过程;群体平衡模型侧重于提供细胞群体关于细胞周期特性的动力学信息,适用于重组蛋白对细胞周期特性比较敏感的细胞培养过程;控制论模型的细胞代谢和代谢调节机理性强,模型参数具有明确的物理意义,适用于环境或其它扰动比较明显、不定因素较多的培养过程。
     除此之外,本文还初步探讨了模型在细胞培养过程中补料策略优化和控制中的应用,给出了仿真研究结果。
Nowadays, the recombinant microbial and mammalian cells are used to produce genetic engineering pharmaceuticals, such as monoclonal antibodies, growth factors and hormones. Mammalian cells are characterized by the ability to produce high-value biopharmaceutical products that require post-translation modification in order to become biologically active. These high-value products are produced in relatively small quantities due to the highly specialized culture conditions and their susceptibility to the reduced productivity or cell death as a result of slight deviations in the culture conditions. Models of cell processes are particularly useful for simulating, optimizing and controlling the cell culture processes, and eventually contribute to efforts to increase productivity. In this PhD thesis, three models with different purposes are proposed and validated with myeloma cell cultivations. These three models will be demonstrated as follows:
     Firstly, we developed an improved macrokinetic model with lumped parameters for myeloma cell cultivations.
     The traditional macrokinetic models with lumped parameters, especially the Monod model, are simple and therefore, are easy to be developed. They are widely used for applications. However, Monod-type kinetics is not able to describe the lag phase after inoculation or after pulse feeding. In order to deal with the this growth lag phase, a model based on the metabolic regulation mechanisms is developed. This metabolic regulation model together with the Monod-type model is better to describe the specific growth rate. In addition, the amino acid limitations are considered in modeling to account for the short-term period of cell growth after amino acid depletion.
     The improved macrokinetic model is validated with batch culture and fed-batch culture with pulse feedings. It shows that the model is able to simulate the concentrations of glucose, glutamine, lysine and lactate, as well as the densities of total, viable and dead cell with a suitable accuracy.
     Secondly, we developed a population balance model based on cell cycle mechanisms for myeloma cell cultivation.
     Mammalian cell cultures comprise heterogeneous cells that differ according to their size and intracellular levels of DNA, protein and other cell properties. Cell population distributions with respect to different cell properties are important for the control of the cell-cycle specific products. Population balance model is the most rigorous approach for describing the dynamics of the distributions of different cell properties. However, futher studies are still needed to improve this model by considering the cell-cycle specific properties. Moreover, few population balance models developed in the literature have been validated by experiments. Therefore, a population balance model here is developed based on cell-cycle mechanisms for myeloma cell cultivations. In this model, both cell volume and DNA content are used to differentiate individual cells in the cell population. Thus, the model can be used to simulate the distributions of cell volume and DNA content. The model simulations of DNA distribution are validated with the DNA measurements from flowcytometer with a reasonable accuracy. The dynamics can also be described by this model in terms of the cell fraction of each phase, concentrations of glucose, glutamine, lysine, ammonia, lactate and alanine, as well as the cell densities of total, viable and dead cells. These are also validated by experimental data.
     Compared with the macrokinetic model with lumped parameters, population balance model can provide more information, such as the dynamics of DNA distribution and phase fractions, for the control of the cell cycle dynamics. Furthermore, the DNA simulation results are helpful for the design of cell-cycle controlling process. Nevertheless, there is a challenge that population balance models may easily suffer from computational intensity.
     Thirdly, we developed a cybernetic model based on the regulation of enzyme systems for myeloma cell cultivations.
     Cybernetic models are structured on the basis of the regulation of the metabolic network and the cybernetic principles. Metabolic network is regulated by enzyme synthesis and enzyme activity that are represented by the cybernetic variabes‘u’and‘v’, respectively. Enzyme systems are hypothesized to compete for optimizing resource utilization, and different pathways can be up and down regulated depending on the outcome of these competitions. The competition between deamination pathway and transamination pathway to use glutamine to produceα-KG is considered in this study. This is because these two pathways lead to different level of glutamine utilization and different quantity of byproducts (i.e. ammonia and alanine). In addition, the competition between lysine utilization for protein formation and energy supply is also involved due to lysine limitation observed in our experiments. In addition to the densities of viable and dead cells, concentrations of substrates, the byproducts, for example ammonia, lactate and alanine are simulated by this model. Model simulations also provide the levels of enzyme and other intracellular species, which are useful for the control of the mammalian cell cultures. Cybernetic models are powerful for capturing the dynamic response to environmental changes because they take into account the metabolic regulation of the network.
     It can be concluded that these three models will be selected for different applications according to their features. The macrokinetic models with lumped parameters have simple mathematical formulations. They are the most suitable alternative if the cell culture processes with slight perturbation and uncertainty are in question. Population balance models are dominant in the applications with the control of cell-cycle specific products involved. Contrary to the macrokinetic model with lumped parameters, cybernetic models show advantages when the cell culture processes with strong perturbation and uncertainty are considered.
     Finally, the models are used for further study of the simulation, optimization and control of the bioprocesses.
引文
[1] 滑静,杨柳,张淑萍,王虹. 生物工程制药研究进展. 中国畜牧兽医. 2006, 33(10): 25-29.
    [2] 谭文松. 大规模培养动物细胞生产药物. 上海化工. 1997, 22(2): 26-31.
    [3] Hu, W.-S., Aunins, J.G. Large-scale mammalian cell culture. Cur. Opin. Biotechnol. 1997, 8: 148-153.
    [4] 沈孝宙. 哺乳动物细胞表达系统. 生物科学信息. 1991, 3(4): 17-18.
    [5] 王静波. 国内外动物细胞产品大规模高效培养技术研发概述. 上海情报服务平台. 2006.
    [6] 弗雷什尼,章静波,徐存拴. 动物细胞培养(4版). 北京:科学出版社. 2004.
    [7] 唐莹,冯君. 动物细胞培养基的发展及应用. 中国临床康复. 2006, 10(41): 146-148.
    [8] Parekh, R.B., Dwek, R.A., Edge, C.J., etc. Trends in Biotechnology. 1989, 7: 117-121.
    [9] Cameron, I.R., Possee, R.D., Bishop, D.H.L. Trends in Biotechnology. 1989, 7: 66-70.
    [10] Rhodes, M., Birch, J. Bio/Technology. 1988, 6: 518-523.
    [11] Rhodes, P.M. In Advances in Animal Cell Biology and Technology for Bioprogresses. Butterworths. R.E.Spier, J.B. Griffiths, J.Stephene et al., (eds). 1989: 472-480.
    [12] 谭文松,陆键,张元兴. 气升式生物反应器在杂交瘤细胞培养中的应用. 生物工程学报. 1996, 12(4): 477-481.
    [13] 贾士儒. 生物反应工程原理(2版). 北京:科学出版社. 2003, 1: 61-71.
    [14] 王佃亮,韩梅胜. 动物细胞培养用生物反应器及相关技术. 中国生物工程杂志. 2003, 23(11): 24-27.
    [15] Van Wezel, A.L. Nature. 1967, 216: 64-65.
    [16] Van Wezel, A.L. In: Animal Cell Biotechnology, Vol.1, R.E.Spier and J.B. Griffiths (eds). Academic Press. 1985: 266-282.
    [17] Panina, G.F. In: Animal Cell Biotechnology (1). R.E.Spier and J.B. Griffiths (eds). Academic Press. 1985: 211-242.
    [18] 吴方丽,金伟波,王保莉等.动物细胞大规模培养技术研究进展. 仲恺农业技术学院学报. 2005, 18(3): 64-70.
    [19] Herwig, C., Marison, I., von Stockar, U. On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol. Bioeng. 2001, 75(3):345-354.
    [20] Zeng, A.P., Hu, W.S., Deckwer, W.D.Variation of stoichiometric ratios and their correlation for monitoring and control of animal cell cultures. Biotechnol. Prog. 1998, 14: 434-441.
    [21] Sidoli, F.R., Mantalaris, A., Asprey, S.P. Modeling of mammalian cell culture processes. Cytotechnology. 2004, 44: 27-46.
    [22] Andrews, G.F. The yields equations in the modeling and control of bioprocesses. Biotechnol. Bioeng. 1993, 42: 549-556.
    [23] Hu, W.S., Himes, V.B. Stoichiometric consideration of mammalian cell metabolism in bioreactors. In: A.Fiechter, H. Okada, R.D. Tanner (eds.) Bioprod. Bioproc. (pp, 33-46): Second conference to promote Japan/US joint projects and cooperation in biotechnology, Lake Biwa, Japan, Sept. 27-30, Springer-Verlag, Berlin, 1989.
    [24] Hu, W.S., Peshwa, M.V., Animal cell bioreactors—Recent advances and challenges to scale up. Can. J. Chem. Eng. 1991, 69: 409-420.
    [25] Tsuchiya, H.M., Fredrickson, A.G., Aris, R. Dynamics of microbial cell populations. Adv.Chem. Eng. 1966, 6: 125-206.
    [26] Bibila, T.A., Flickinger, M.C. Structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells. Biotechnol. Bioeng. 1991a, 37: 210-226.
    [27] Bibila, T.A., Flickinger, M.C. Model of inter-organelle monoclonal antibody transport and secretion in mouse hybridoma cells. Biotechnol. Bioeng. 1991b, 38: 767-780.
    [28] Bibila, T.A., Flickinger, M.C. Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: Ⅰ. Steady-state analysis. Biotechnol. Bioeng. 1992a, 39: 251-261.
    [29] Bibila, T.A., Flickinger, M.C. Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: Ⅱ. Transient analysis. Biotechnol. Bioeng. 1992b, 39: 262-272.
    [30] Sanderson, C.S., Barford, J.P., Barton, G.W. A structured, dynamic model for animal cell culture systems. Biochem. Eng. J. 1999, 3: 203-211.
    [31] Sanderson, C.S., Jang, J.D., Barford, J.P., Barton, G.W. A structured, dynamic model for animal cell culture systems: application to murine hybridoma. Biochem. Eng. J. 1999, 3: 213-218.
    [32] Ren, H.T., Yuan, J.Q., Ballgardt, K.H.,. Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance. J. Bitechnol. 2003,106: 53-68.
    [33] Zhou, F., Bi, J.X., Zeng, A.P., etc. A macrokinetic and regulator model for myeloma cell culture based on metabolic balance of pathways. Proc. Biochem. 2006, 41: 2207-2217.
    [34] Kompala, D.S., Ramkrishna, D., Jansen, N.B., etc. Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models. Biotechnol. Bioeng. 1986, 28: 1044-1055.
    [35] Namjoshi, A.A., Hu, W.-S., Ramkrishna, D. Unveiling steady-state multiplicity in hybridoma cultures: The cybernetic approach. Biotechnol. Bioeng. 2003, 81: 79-91.
    [36] Ramakrishna, R., Ramkrishna, D., Konopka, A.E. Cybernetic modeling of growth in mixed, substitutable environments: Preferential and simulation utilization. Biotechnology and Bioengineering. 1996, 52: 141-151.
    [37] Namjoshi, A.A., Ramkrishna, D. A cybernetic modeling framework for analysis of metabolic systems. Computers and Chemical Engineering. 2005, 29: 487-498.
    [38] Beiley, J.E., Ollis, D.F. Biochemical engineering fundamentals, 2nd edition, McGraw-Hill, New York 1986.
    [39] Mitchison, J.M. The biology of the cell cycle. Cambridge University Press, Cambridge. 1971.
    [40] Needham, D., Ting-Beall, H.P., Tran-Son-Tay, R. Morphology and mechanical properties of GAP A3 hybridoma cells as related to cell cycle. ASME Bioproc. Eng. Symp. 1990, 16: 5-10.
    [41] Ramirez, O.T., Mutharasan, R. Cell cycle- and growth phase-dependent variations in size distribution, antibody productivity, and oxygen demand in hybridoma cultures. Biotechnol. Bioeng. 1990, 36: 839-848.
    [42] Alberts, B., Bray, D., Lewis, J., etc. Molecular biology of the cell, 2nd ed. Garland Publishing, Inc., New York 1989.
    [43] Novak, B., Tyson, J.J. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 2004, 230: 563-579.
    [44] Novak, B.; Tyson, J.J. Modeling the controls of the eukaryotic cell cyle. Biochem. Soci. Trans. 2003, 31: 1526-1529.
    [45] Ciliberto, A.; Petrus, M.J.; Tyson, J.J.; Sible, J.C. A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos. Biophys. Chem. 2003, 104: 573-589.
    [46] Shaughnessy, T.S., Kargi, F. Growth and product inhibition kinetics of T-cell hybridoma producing lymphokinase in batch and continuous culture. Enzyme Microb. Technol. 1990a, 12: 669-675.
    [47] Gaertner, J.G., Dhurjati, P. Fractional factorial study o f hybridoma hebavior. 1. Kinetics of growth and antibody production. Biotechnol. Prog. 1993a, 9(3): 298-308.
    [48] Glacken, M.W., Adema, E., Sinskey, A.J. Mathematical descriptions of hybridoma culture kinetics: Ⅰ. Initial metabolic rates. Biotechnol. Bioeng.1988, 32: 491-506.
    [49] Frame, K.K., Hu, W.S. Kinetic study of hybridoma cell growth in continuous culture. Ⅰ. A model for non-producing cells. Biotechnol. Bioeng. 1991a, 37: 55-64.
    [50] Truskey, G.A., Nicolakis, D.P., DiMasi, D., etc. Kinetic studies and unstructured models of lymphocyte metabolism in fed-batch culture. Biotechnol. Bioeng. 1990, 36: 797-807.
    [51] Tziampazis, E., Sambanis, A., Modeling of cell culture processes. Cytotechnology 1994, 14: 191-204.
    [52] Dalili, M., Ollis, D.F. Transient kinetics of hybridoma growth and monoclonal antibody production in serum-limited cultures. Biotechnol. Bioeng. 1989, 33: 984-990.
    [53] Glacken, M.W., Adema, E., Sinskey, A.J. Mathematical descriptions of hybridoma culture kinetics: Ⅱ.The relationship between thiol chemistry and the degradation of serum activity. Biotechnol. Bioeng. 1989a, 33: 440-450.
    [54] Glacken, M.W., Huang, C., Sinskey, A.J. Mathematical descriptions of hybridoma culture kinetics: Ⅲ.Simulation of fed-batch bioreactors. J. Biotechnol. 1989b, 10: 39-66.
    [55] Franek, F., Vomastek, T., Dolnikova, J. Fragmented DNA and apoptotic bodies document the programmed way of cell death in hybridoma cultures. Cytotechnology. 1992, 9:117-123.
    [56] Vomastek, T., Franek, F. Kinetics of development of spontaneous apoptosis in B cell hybridoma cultures. Immunol. Lett. 1993, 35: 19-24.
    [57] Linardos, T.I., Kalogerakis, N., Behie, L.A. Cell cycle model for growth rate and death rate in continuous suspension hybridoma cultures. Biotechnol. Bioeng. 1992, 40: 359-368.
    [58] Dodge, T.C., Ji, G.Y., Hu, W.-S. Loss of viability in hybridoma cell culture-a kinetic study. Enzyme Microb. Technol. 1987, 9: 607-611.
    [59] Zheng, T. A mathematical model of proliferation and aging of cells in culture. J. Theor. Biol. 1991, 149: 287-315.
    [60] Sheldrake, A.R. The aging, growth and death of cells. Nature. 1974, 250: 381-385.
    [61] Hirsch, H.R., Witten, M. The waste-product theory of aging: Simulation of metabolic waste production. Experimental Gerontology. 1991, 26: 549-567.
    [62] Tramper, J., Smit, D., Straatman, J., etc. Bubble column design for growth of fragile insect cells. Bioproc. Eng. 1987, 2: 37-41.
    [63] Martens, D.E., de Grooijer, C.D., Beuvery, E.C., etc. Effect of serum concentration on hybridoma viable cell density and production of monoclonal antibodies in CSTRs and on shear sensitivity in air-lift loop reactors. Biotechnol. Bioeng. 1992, 39: 891-897.
    [64] Tramper, J., Williams, J.B., Joustra, D., etc. Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 1986, 8: 33-36.
    [65] Pirt, S.J. Principles of Microbe and Cell Cultivation. Blackwell, Oxford. 1985
    [66] Gaertner, J.G., Dhurjati, P. Fractional factorial study o f hybridoma hebavior. 2. Kinetics of nutrient uptake and waste production. Biotechnol. Prog. 1993b, 9(3): 309-316.
    [67] Zielke, H.R., Zielke, C.L., Ozand, P.T. Glutamine: A major energy source for culture mammalian cells. FASEB Federation Proceedings 1984, 43: 121-125.
    [68] Shaughnessy, T.S., Kargi, F. Transient behavior of T-cell hybridomas in response to changes in metabolite concentrations in continuous culture. Enzyme Microb. Technol. 1990b, 12: 676-684.
    [69] Batt, B.C., Kompala, D.S. A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody in production in continuous suspension cultures. Biotechnol. Bioeng. 1989, 34: 515-531.
    [70] Domach, M.M., Leung, S.K. Cahn, R.E., etc. Computer model for glucose-limited growth of a single cell of Escherichia Coli B/r-A. Biotechnol. Bioeng. 1984, 26: 203-216.
    [71] Shuler, M.L., Leung, S., Dick, C.C. A mathematical model of the growth of a single bacterial cell. Annals N.Y. Acad. Sci. 1979: 35-55.
    [72] Ray, N.G., Shuler, M.L. Development of a single cell model for mammalian cells. In: Dean, R.C .Jr., R.M. Nerem (eds) Bioprocess Engineering Colloquium (pp. 71-74). Presented at the Winter Annual Meeting of the ASME, Boston, M.A., December 1987.
    [73] Wu, P., Ray, N.G., Shuler M.L. A single-cell model for CHO cells. Ann. N.Y. Acad. Sci. (Biochem. Eng. VII), 1992: 152-187.
    [74] Wu, P., Ray, N.G., Shuler, M.L. A computer model for intracellular pH regulation in Chinese hamster ovary cells. Biotechnol. Prog. 1993: 374-384.
    [75] Palsson, B.O., Joshi, A. On the dynamic order of structured Eschericia coli growth models. Biotechnol. Bioeng. 1987, 29: 789-792.
    [76] Liao, J.C., Lightfoot, E.N.Jr. Lumping analysis of biochemical reaction systems with time scale separation. Biotechnol. Bioeng. 1988, 31: 869-879.
    [77] 王金发.动物细胞生物学. 科学出版社. 北京 2003: 525-528.
    [78] Aguda, B.D. A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system. Proc. Natl. Acad. Sci. 1999, 96:11352-11357.
    [79] Aguda, B.D., Tang, Y. The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif. 1999, 32:321-335.
    [80] Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., etc. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell. 2000, 11: 369-391.
    [81] Gardner, T.S., Dolnik, M., Collins, J.J. A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc. Natl. Acad. Sci. 1998, 95: 14190-14195.
    [82] Goldbeter, A. A minimal cascade model for the mitotic oscillator involving Cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. 1991, 88: 9107-9111.
    [83] Hatzimanikatis, V., Lee, K.H., Bailey, J. E. A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnol. Bioeng. 1999, 65: 631-637.
    [84] Novak, B., Tyson, J.J. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. 1997, 94: 9147-9152.
    [85] Obeyesekere, M.N., Knudsen, E.S., Wang, J.Y.J., etc. A mathematical model of the regulation of the G1 phase of Rb+/+ and Rb-/- mouse embryonic fibroblasts and an osteosarcoma cell line. Cell Prolif. 1997, 30: 171-194.
    [86] Qu, Z., Weiss, J.N., MacLellan, W. R. Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am. J. Physiol. Cell Physiol. 2003, 284: C349-C364.
    [87] Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., etc. Modeling the fission yeast cell cycle: quantized cycle times in wee1-cdc25d mutant cells. Proc. Natl. Acad. Sci. 2000, 97: 7865-7870.
    [88] Thron, C.D. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene. 1997, 15: 317-325.
    [89] Tyson, J.J. Cell cycle controls. In Computational Cell Biology. C. P. Fall, E. S. Marland, J. M. Wagner, etc., editors. Springer, New York, Berlin. 2002: 261-284.
    [90] Tyson, J.J., Chen, K., Novak, B. Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2001, 2: 908-916.
    [91] Tyson, J.J., Novak, B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 2001, 210: 249-263.
    [92] Novak, B., Tyson, J.J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 1993, 106: 1153-1168.
    [93] Borisuk, M.T., Tyson, J.J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 1998, 195: 69-85.
    [94] Tyson, J.J., Csikasz-Nagy, A., Novak, B. The dynamics of cell cycle regulation. Bioessays. 2002, 24: 1095-1109.
    [95] Qu, Z., MacLellan, W.R., Weiss, J.N. Dynamics of the cell cycle: Checkpoints, sizers, and timers. Biophys. J. 2003, 85: 3600-3611.
    [96] Dalili, M., Sayles, G.D., Ollis, D.F. Glutamine-limited batch hybridoma growth and antibody production: Experimental and model. Biotechnol. Bioeng. 1990, 36: 74-82.
    [97] Frame, K.K., Hu, W.-S. Kinetic study of hybridoma cell growth in continuous culture. Ⅱ. Behavior of producers and comparison to nonproducers. Biotechnol. Bioeng. 1991b, 38: 1020-1028.
    [98] Linardos, T.I., Kalogerakis, N., Behie, L.A., etc. The effect of specific growth rate and death rate on monoclonal antibody production in hybridoma chemostat cultures. Can. J. Chem. Eng. 1991, 69: 429-438.
    [99] Miller, W.M., Wilke, C.R., Blanch, H.W. Kinetic analysis of hybridoma growth in continuous culture. ACS National Meeting, Anaheim, 1986.
    [100] Miller, W.M., Blanch, H.W., Wilke, C.R. A kinetic analysis of hybridoma growth and metabolism in batch and continuous culture: Effect of nutrients concentration, dilution rate and pH. Biotechnol. Bioeng. 1988, 32: 947-965.
    [101] Ozturk, S.S., Palsson, B.O. Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics in continuous culture. Biotechnol. Prog. 1990, 6: 437-446.
    [102] Shi, Y., Ryu, D.Y., Park, S.H. Monoclonal antibody productivity and the metabolic pattern of perfusion cultures under varying oxygen tensions. Biotechnol. Bioeng. 1993, 38: 196-205.
    [103] Mizrahi, A., Vosseller, G.V., Yagi, Y., etc. The effect of dissolved oxygen partial pressure on growth, metabolism, and immunoglobulin production in a permanent human lymphocyte cell line culture. Proc. Soc. Exp. Biol. Med. 1972, 139: 118-122.
    [104] Lin, A.A., Kimura. R., Miller, W.M. Production of tPA in recombinant CHO cells underoxygen-limited conditions. Biotechnol. Bioeng. 1993, 42: 339-350.
    [105] Garatun-Tjeldst?, Pryme I.F., Weltman J.K., etc. Synthesis and secretion of light-chain immunoglobulin in two successive cycles of synchronized plasmacytoma cells. J. Cell Biol. 1976, 68: 232-239.
    [106] Liberti, P., Baglioni, C., Synthesis of immunoglobulin and nuclear protein in synchronized mouse myeloma cells. J. Cell. Physiol. 1973, 82: 113-120.
    [107] Abraham, K.A., Eikom, T.S., Dowben R.S., etc. Cell-free translation of messenger RNA for a myeloma light chain prepared from synchronized plasmacytoma cells. Eur. J. Biochem. 1976, 65: 79-86.
    [108] Ramirez, O.T., Mutharasan, R. Cell cycle- and growth phase-dependent variations in size distribution, antibody productivity, and oxygen demand in hybridoma cultures. Biotechnol. Bioeng. 1990, 36: 839-848.
    [109] Damiani, G., Cosulich, E., Bargellesi, A. Synthesis and secretion of IgG in synchronized mouse myeloma cells. Exp. Cell Res. 1979, 118: 295-303.
    [110] Suzuki, E., Ollis, D.F. Cell cycle model for antibody production kinetics. Biotechnol. Prog. 1989, 35: 1398-1402.
    [111] Cazzador, L., Mariani, L. Growth and production modeling in hybridoma continuous cultures. Biotechnol. Bioeng. 1993, 42: 1322-1330.
    [112] Suzuki, E., Ollis, D.F. Enhanced antibody production at slowed growth rates: Experimental demonstration and a simple structured model. Biotechnol. Prog. 1990, 6(3): 231-236.
    [113] Sambanis, A., Lodish, H.F., Stephanopoulos, Gr. A model of secretary protein trafficking in recombinant AtT-20 cells. Biochenol. Bioeng. 1991, 38: 280-295.
    [114] van Breusegem, V., Thibault, J., Cheruy, A. Adaptive neural models for on-line prediction in fermentation. Can. J. Chem. Eng. 1991, 69: 481-487.
    [115] Syu, M.J., Tsao, G.T. Neural network modeling of batch cell growth pattern. Biotechnol. Bioeng. 1993, 42: 376-380.
    [116] Fielding, A. Applications of fractal geometry to biology. Comp. Appl. Biosci. 1992, 8: 359-366.
    [117] van der Heijden, R.T.J.M., Hellinga, C., Luyben, K.C.A.M., etc. State estimators (observers) for the on-line estimation of non-measurable process variables. Trends Biotechnol. 1989, 7: 205-209.
    [118] Vallino, J.J., Stephanopoulos, G.N. Intelligent sensors in biotechnology: Applications for the monitoring of fermentations and cellular metabolism. Ann. N.Y. Acad. Sci. (Biochem. Eng V). 1987: 415-430.
    [119] Dean, P.N., Jett, J.H. Mathematical analysis of DNA distributions derived from flow cytometry. J. Cell Biol. 1974, 60: 523-527.
    [120] Simpson, N.H., Singh, R.P., Perani, A., etc. In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 1998, 59: 90-98.
    [121] Hiller, G.W., Clark, D.S., Blanch, H.W. Transient response of hybridoma cells in continuous culture to step changes in amino acid and vitamin concentrations. Biotechnol. Bioeng. 1994, 44: 303-321.
    [122] Europa, A.F., Gambhir, A., Fu, P.-C., etc. Multiple steady states with distinct cellularmetabolism in continuous culture of mammalian cells. Biotechnol. Bioeng. 2000, 67: 25-34.
    [123] Gambhir, A., Korke, R., Lee, J., etc. Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J. Biosci Bioeng. 2003, 95: 317-327.
    [124] Zupke, C., Metabolic flux analysis in mammalian cell culture. PhD thesis, Massachusetts Institute of Technology, 1993.
    [125] Karp, G. Cell and Molecular: Concepts and experiments, 2nd ed. New York: John Wiley & Sons, Inc. 1999.
    [126] Liskay, R.M. Absence of a measurable G2 phase in two Chinese hamster cell lines. Proc. Natl. Acad. Sci. 1977, 74: 1622-1625.
    [127] Mitchison, J.M. Changing perspectives in the cell cycle. In: John PCL (ed.) The Cell Cycle. Cambridge University Press, Cambridge. 1981: 1-10.
    [128] Brooks, R.F. Variability in the cell cycle and the control of proliferation. In: John PCL (ed.) The Cell Cycle. Cambridge University Press Cambridge. 1981: 35-61.
    [129] Chiorino, G., Lupi, M. Variability in the timing of G1/S transition. Math. Biosci. 2002, 177&178: 85-101.
    [130] Darnell, J., Lodish, H., Baltimore, D. Molecular Cell Biology. Scientific American Books, New York. 1986
    [131] Fantes, P.A., Nurse, P. Division timing: Controls, models and mechanisms. In: John PCL (ed.) The Cell Cycle. Cambridge University Press, Cambridge. 1981: 11-33.
    [132] Stiles, C.D., Cochran, B.H., Scher, C.D. Regulation of the mammalian cell cycle by hormones. In: John PCL (ed.) The Cell Cycle. Cambridge University Press Cambridge. 1981: 119-138.
    [133] O'Neil, M. A general method for modeling cell populations undergoing G1→G0 transitions during development. J. Theor. Biol. 1991, 153: 499-518.
    [134] Wice, B.M., Reitzer, L.J., Kennel, D. The continuous growth of vertebrate cells in the absence of sugar. J. Biol. Chem. 1981, 256: 7812-7819.
    [135] Renner, E.D., Plagemann, P.G.W, Bernlohr, R.W. Permeation of glucose by simple and facilitated diffusion by novikoff rat Hepatoma cells in suspension culture and its relationship to glucose metabolism. J. Biol. Chem. 1972, 247: 5765-5776.
    [136] McKeehan, W.L. In Carbohydrate Metabolism in Cultured Cells (Morgan MJ, ed.). Plenum Press. New York. 1986: 111-150.
    [137] Raivio, K.O., Seegmiller, J.E. Role of glutamine in purine synthesis and in guanine nucleotide formation in normal fibroblasts and in fibroblasts deficient in hypoxanthine phosphoribosyltransferase activity. Biochim. Biophys. Acta. 1973, 299: 283-292.
    [138] Brand, K., von Hintzenstern, J., Langer, K., etc. Pathways of glutamine and glutamate metabolism in resting and proliferating rat thymocytes: comparison between free and peptide-bound glutamine. J. Cell. Physiol. 1987, 132: 559-564.
    [139] Roth, E., Ollenschlager, G., Hamilton, G., etc. Influence of two glutamine-containing dipeptides on growth of mammalian cells. In Vitro Cellular Devel. Biol. 1988, 24: 696-698.
    [140] Barnabé, N., Butler, M. The effect of glucose and glutamine on the intracellular nucleotide pool and oxygen uptake rate of a murine hybridoma. Cytotechnology. 2000, 34: 47-57.
    [141] Mancuso, A., Sharfstein, S.T., Fernandez, E.J., etc. Effect of extracellular glutamine concentration on primary and secondary metabolism of a murine hybridoma: an in vivo 13Cnuclear magnetic resonance study. Biotechnol. Bioeng. 1998, 57: 172-186.
    [142] Jo, E.C., Park, H.J., Park, J.M., etc. Balanced nutrient fortification enables high-density hybridoma cell culture in batch culture. Biotechnol. Bioeng. 1990, 36: 717-722.
    [143] Al-Rubeai, M., Singh, R.P. Apoptosis in cell culture. Cur. Opin. Biotechnol. 1998, 9: 152-156.
    [144] Mercille, S., Massie, B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 1994, 44: 1140-1154.
    [145] Singh, R.P., Al-Rubeai, M., Gregory C.D., Emery, A.N. Cell death in bioreactors: A role for apoptosis. Biotechnol. Bioeng. 1994, 44: 720-726.
    [146] Reuveny, S., Velez, D., Macmillan, J.D., etc. Factors affecting cell growth and monoclonal antibody production in stirred reactors. J. Immunol. Methods 1986, 86: 53-59
    [147] Iio, M., Moriyama, A., Murakami, H. In Growth and differentiation of cells in defined environment (H. Murakami, I. Yamane, D.W. Barnes, etc. eds.), Kodansha. Tokyo and Springer-Verlag, Berlin. 1985:437-442.
    [148] Linz, M. Qualitative und quantitative Charakterisierung des Zelltodes in Saeugerzellinien –Induktion und Kinetik von Apoptose. PhD Dissertation, University Hannover, Germany. 1999.
    [149] Nakashima, R.A., Paggi, M.G., Pedersen, P.L. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. Cancer Research. 1984, 44: 5702-5706.
    [150] Eagle, H. The effect of environmental pH on the growth of normal and malignant cells. Journal of Cellular Physiology. 1973, 82: 1-8.
    [151] Birch, J.R., Edwards, D.J. The effect of pH on the growth and carbohydrate metabolism of a lymphoblastoid cell line. Develop. Biol. Standard. Stand. 1980, 46: 59-63.
    [152] Haveman, J., Hahn, G.M. The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. J. Cell. Physiol. 107: 237-241.
    [153] Akatov, V.S., Lezhnev, E.I., Vexler, A.M., etc. Low pH value of pericellular medium as a factor limiting cell proliferation in dense cultures. Exp. Cell Res. 1985, 160: 412-418.
    [154] Portner, R., Schafer, J., Modeling hybridoma cell growth and metabolism — a comparison of selected models and data. J. Biotechnol. 1996, 49: 119-135.
    [155] de Tremblay, M., Perrier, M., Chavarie, C., etc. Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed case. Bioproc. Eng. 1992, 7: 229-234.
    [156] Bree, M.A., Dhurjati, P., Geoghegan, R.F., etc. Kinetic modelling of hybridoma cell growth and immunoglobulin production in a large-scale suspension culture. Biotechnol. Bioeng. 1988, 32:1067-1072.
    [157] Kurokawa, H., Park, Y.S., Lijima, S., etc. Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentration. Biotechnol. Bioeng. 1994, 44: 95-103.
    [158] Hiller, G.W., Aeschlimann, A.D., Clark, D.S, etc. A kinetic analysis of hybridoma growth and metabolism in continuous suspension culture on serum-free medium. Biotechnol. Bioeng. 1991, 38: 733-741.
    [159] Harigae, M., Matsumura, M., Kataoka, H. Kinetic study on HBs-MAb production incontinuous cultivation. J. Biotechnol. 1994, 34: 227-235.
    [160] Kurokawa, H., Ogawa, T., Kamihira, M., etc Kinetic study of hybridoma metabolism and antibody production in continuous culture using serum-free medium. J. Ferment. Biotechnol. Bioeng. 1993, 76(2): 128-133.
    [161] Zeng, A.P. Mathematical modeling analysis of monoclonal antibody production by hybridoma cells. Biotechnol. Bioeng. 1996, 50: 238-247.
    [162] Portner, R., Ludemann, I., Bohmann, A., etc. () Evaluation of process strategies for efficient cultivation of hybridoma cells based on mathematical models. In: Beuvery, E.C. et al. (Eds.), Animal Cell Technology: Developments Towards the 21st Century. Kluwer, Dordrecht, 1995: 829-833.
    [163] Ray, N.G., Karkare, S.B., Runstadler, P.W. Cultivation of hybridoma cells in continuous cultures: Kinetics of growth and product formation. Biotechnol. Bioeng. 1989, 33: 724-730.
    [164] Reitzer, L.J., Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 1979, 254: 2669-2676.
    [165] Zielke, H.R., Oznard, P.T., Tildon, J.T., etc. Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. J. Cell. Physiol. 1978, 95: 41-48.
    [166] Musielski, H., Ruger, K., Zwanzig, M., etc. Monoclonal antibodies released from viable hybridoma cells at different stages of growth. In: Spier, R.E., Griffiths, J.B. and Berthold, W. (Eds.). Animal Cell Technology: Products of Today, Prospects for Tomorrow. Butterworth-Heinemann. London, 1994: 485-492.
    [167] Ludemann, I., Portner, R., Schaefer, C., etc. Improvement of the culture stability of non-anchorage-dependent animal cells grown in serum-free media through immobilization. Cytotechnology. 1995, 19: 111-124.
    [168] Ludemann, I., Portner, R., Markl, H. Effect of NH3 on the cell growth of a hybridoma cell line. Cytotechnology. 1994, 14: 11-20.
    [169] Omase, T., Higashiyama, K.I., Shioya, S., etc. Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation. Biotechnol. Bioeng. 1992, 39: 556-564.
    [170] Cruz, H.J., Freitas, C.M., Alvers, P.M., etc. Effect of ammonia and lactate on growth, metabolism, and productivity of BHK cells, Enzyme Microbial Technol. 2000, 27: 43-52.
    [171] Hod, Y., Hershko, A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J. Biol. Chem. 1976, 251:4458-4467.
    [172] Zeng, A.P., Bi, J.X. Cell culture kinetics and modeling. In: Ozturk SS, Hu W-S, editors. Cell Culture Technology for Pharmaceutical and Cellular Therapies. Atlanta: Taylor and Francis Group, 2005: 299-347.
    [173] Heidemann, R., Lutkemeyer, D., Buntemeyer, H., etc. Effects if dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. Cytotechnology 1998, 26: 185-197.
    [174] Lu, S.B., Sun, X.M., Zhang, Y.X. Insight into metabolism of CHO cells at low glucose concentration on the basis of the determination of intracellular metabolites. Proc. Biochem. 2005, 40: 1917-1921.
    [175] Baydoun, A.R., Emery, P.W., Pearson, J.D. Substrate-dependent regulation ofintracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem. Biophys. Res. Commun. 1990, 173: 940-948.
    [176] Claes J. E., Van Impe J. E. Combining yield coefficients and exit-gas analysis for monitoring of the baker’s yeast fed-batch fermentation. Bioproc. Eng. 2000, 22:195–200.
    [177] Mantzaris, N.V., Srienc, F., Daoutidis, P. Nonlinear productivity control using a multi-staged cell population balance model. Chem. Eng. Sci. 2002, 57: 1-14.
    [178] Fredrickson, A.G., Tsuchiya, H.M. Continuous propagation of microorganisms. A.I.Ch.E. Journal. 1963, 9: 459–468.
    [179] Fredrickson, A.G., Ramkrishna, D., Tsuchiya, H.M. Statistics and dynamics of procaryotic cell populations. Math. Biosci. 1967, 1: 327-374.
    [180] Srienc, F. Flow cytometry in biotechnology: Potential and limitation. ECB6. Florence, Italy. 1993.
    [181] Abu-Absi, N.R., Zamamiri, A., Kacmar, J., etc. Automated flow cytometry for acquisitition of time-dependent population data. Cytometry 2003, 51: 87-96.
    [182] Fredrickson, A.G., Mantzaris, N.V. A new set of population balance equations for microbial and cell cultures. Chem. Eng. Sci. 2002, 57: 2265-2278.
    [183] Fredrickson, A.G. Population balance equations for cell and microbial cultures revisited. A.I.Ch.E. J. 2003, 49: 1050-1059.
    [184] Mantzaris, N.V., Daoutidis, P., Srienc, F. Numerical solution of cell population balance models: I. Finite difference methods. Comp. Chem. Eng. 2001a, 25: 1411-1440.
    [185] Mantzaris, N.V., Daoutidis, P., Srienc, F. Numerical solution of cell population balance models: II. Spectral methods. Comp. Chem. Eng. 2001b, 25: 1441-1462.
    [186] Mantzaris, N.V., Daoutidis, P., Srienc, F. Numerical solution of cell population balance models: III. Finite elements methods. Comp. Chem. Eng. 2001c, 25: 1463-1481.
    [187] Kendall, D. G. On the role of variable generation time in the development of a stochastic birth process. Biometrika, 1948, 35: 316-330.
    [188] von Foerster, H. Some remarks on changing populations. In F. Stohlman (Ed.), The kinetics of cellular proliferation. New York: Grune & Stratton. 1959: 382–407
    [189] Eakman, J.M., Frederickson, A.G., Tsuchiya, H.M. Statistics and dynamics of microbial cell populations. Chem. Eng. Prog. Symp. 1966, 62: 37-49.
    [190] Ramkrishna, D. Population balances. Theory and applications to particulate systems in engineering. Academic Press New York, 2000.
    [191] Fredrickson, A.G., Hu, W.S. Conversion of nutrients into biomass and other products in bioreactors. In M. L. Shuler (Ed.), Chemical engineering problems in biotechnology. New York: American Institute of Chemical Engineers. 1989: 231-264
    [192] Koshland, O.E. The cell cycle. Sci. 1989, 246, 4930.
    [193] Smith, J.A., Martin, L. Do cell cycle? Proc. Nat. Acad. Sci. 1973, 70: 1263-1267.
    [194] Pardee, A.B. A restriction point for control of normal animal cell proliferation. Pro. Nat. Sci. 1974, 71: 1286-1290.
    [195] Blagoskonny, M., Pardee, A. The restriction point of the cell cycle. Cell Cycle .2002, 1: 103-110.
    [196] Zetterberg, A., Larsson, O. Cell cycle progression and cell growth in mammalian cells: kinetic aspects of transition events. In Cell Cycle Control. C. Hutchinson and C. M. Glover, editors. Oxford University Press, Oxford, New York. 1995: 206-227.
    [197] Chignola, R., Milotti, E. A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations. Phys. Biol. 2005, 2: 8-22.
    [198] Mantzaris, N.V., Liou, J.J., Daoutidis, P, etc. Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration. J. Biotechnol. 1999, 71: 157-174.
    [199] Hatzis, C., Fredrickson, A.G., Srienc, F. Cell-cycle analysis in phagotrophic microorganisms from Low cytometric histograms. J. Theor. Biol. 1997, 186: 131-144.
    [200] Liou, J.J., Srienc, F., Fredrickson, A.G. Solution of population balance models based on a successive generations approach. Chem. Eng. Sci. 1996, 52: 1529-1540.
    [201] Bell, G.I., Anderson, E.C. Cell growth and division I. A mathematical model with application to cell volume distributions. Biophys. J. 1967, 7: 329-351.
    [202] Anderson, E.C., Petersen, D.F. Cell growth and division Ⅱ.Experimental studies of cell volume distributions in mammalian suspension cultures. Biophys. J. 1967, 7: 353-364.
    [203] Shoemaker, J., Reeves, G.T., Gupta, S., etc. The dynamics of single-substrate continuous cultures: the role of transport enzymes. J. Theor. Biol. 2003, 222: 307-322.
    [204] Tyson, J.J.; Csikasz-Nagy, A.; Novak, B. The dynamics of cell cycle regulation. BioEssays 2003, 24, 1095-1109.
    [205] Ramkrishna, D. A cybernetic perspective of microbial growth. In Foundations of biochemical engineering: Kinetics and thermodynamics in biological systems (E. Papoutsakis, G.N. Stephanopoulos and H. Blanch, eds.), American Chemical Society, Washington, DC, 1982.
    [206] Straight, J.V., Ramkrishna, D. Regulation of complex growth dynamics-substitutable and complementary process, Abstracts of Papers of the American Chemical Society, 1990, 200, 4-BIOT.
    [207] Varner, J., Ramkrishna, D. Metabolic engineering from a cybernetic perspective: 1, theoretical preliminaries. Biotechnology Process. 1999a, 15: 407-425.
    [208] Varner, J., Ramkrishna, D. Metabolic engineering from a cybernetic perspective: 2, qualitative investigation of nodal architectures and their response to genetic perturbation. Biotechnology Process. 1999b, 15: 426-438.
    [209] Baloo, S., Ramkrishna, D. Metabolic regulation in bacterial continuous cultures-Ⅰ. Biotechnol. Bioeng. 1991, 38: 1337-1352.
    [210] Straight, J.V., Ramkrishna, D. Cybernetic modeling and regulation of metabolic pathways growth on complementary nutrients. Biotechnol. Prog. 1994, 10: 574-587.
    [211] Guardia, M.J., Gambhir, A., Europa, A. F., etc. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells. Biotechnol. Prog. 2000, 16: 847-853.
    [212] Straigtht, J.V., Ramkrishna, D. Cybernetic modeling and regulation of metabolic pathway. Growth on Complementary nutrients. Biotechnol. Prog. 1994, 10: 574-587.
    [213] Vrienzen, N., Dijken, J.P.V. Fluxes and enzyme activities in central metabolism of myeloma cells grown in chemostat culture. Biotechnol. Bioeng. 1998, 59: 28-39.
    [214] Paredes, C., Sanfeliu, A., Cardenas, F., etc. Estimation of the intracellular fluxes for a hybridoma cell line by material balances. Enzyme Microbial technol. 1998, 23: 187-198.
    [215] 张元兴,易小萍,张立等. 动物细胞培养工程 北京 化学工业出版社 2007,1:37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700