化学学科能力及其测评研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
教育的最终的目的是促进学生发展,而能力的发展是其核心内容和主要目标。尽管多年以来,培养能力一直是化学学科教育教学中的重要日标,高考改革也从“知识立意”走向“能力力意”,但由于化学学科能力体系及测评研究的相对滞后,一方面,使得化学学科能力的培养还处于经验总结甚至只停留在“口号”状态,另一方面,也使得对化学学科能力的测量与评价主观性、随意性较强,无法有的放矢。这些都迫切要求我们回答:化学学科能力是什么?化学学科能力究竟由哪些要素所构成?化学学科能力又是如何形成和发展的?如何科学有效地测量和评价化学学科能力?沿着对这些问题的追问,本论文主要分5章展开研究:
     第1章在对国内外相关文献研究的基础上,建立了本研究的基点。一是如何建构化学学科能力要素。目前对于学科能力要素建构的路径大致有两种,逻辑分析的方法和因素分析的方法。本研究认为,化学学科能力的实质问题是从化学科学的本质问题中派生出来的,所以采用逻辑分析的方法,按化学学科的特殊要求来分析化学学科能力要素;二是如何界定化学学科能力水平。对能力水平的界定也大致存在着2种路径,一种以内容与认知的二维框架建立不同的水平(如布卢姆),另一种是以能力为“经”,以每种能力中所涉及的“变量”的复杂度为“纬”构建能力框架,如PISA。这为本论文的后续研究提供了方向。
     第2章在厘清相关概念及其关系的基础上,将化学学科能力定位于“在学校化学课程学习活动中所习得并运用的能力”,且属于特殊能力。在综合考察各国(地区)对化学学科能力共同要求的基础上,论文从化学学科的基本问题出发,基于化学学科本质及其特殊要求的分析,将化学学科能力的核心要素确定为“符号表征能力”、“实验能力”、“模型思维能力”和“定量化能力”
     第3章在综合两种能力水平界定思想的基础上,以“学习进程”理论为指导,结合化学课程的学科传统、国内外课程标准对能力的学段要求以及学生的思维特征等要素,构建化学学科核心能力要素的“学习进程”,明确不同能力水平的学习表现以及相应的知识基础。以此作为后续学科能力测验工具的开发与优化、评分标准的制订与修订、实测结果的分析与讨论的理论依据。“学习进程”是一种假设性理论,需要实证数据的支持。在与第4章、第5章测验数据分析结果的双向互动过程中,化学学科能力的学习进程框架得以不断完善。
     第4章以Rasch模型原理为理论基础,基于Wilson测量建构“四基石”框架,设计了本研究测验工具开发的程序。根据第3章构建的学习进程框架编制了“符号表征”、“实验认知”、“模型思维”和“定量化”共4份测验卷,每一份测验卷都进行了两轮试测。运用Rasch模型的分析软件Bond&Fox Steps1.0.0对数据统计结果进行建模、分析,检验工具的质量。经检验,4份测验卷具有较高的信度和效度,可用于大样本测试,考察学生的化学学科能力。
     第5章运用所开发的测验工具,对化学学科能力进行了大样本测试,测验数据进一步验证了测验工具的可靠性和稳定性。通过进一步的数据分析,研究发现化学学科能力的发展存在着年级差异、性别差异以及学校差异。高一到高二年级学生的化学学科能力发展较为缓慢,二者没有显著性差异,而高三学生的化学学科能力显著高于高一和高二。男生的化学学科能力普遍高于女生,不同层次学校学生的化学学科能力也存在着显著差异等。
     作为一次探索性的研究,本论文虽然获得了一些有价值的成果和结论,如,重新界定了化学学科能力内涵及其核心要素、建立了化学学科能力框架及其发展模型、开发了化学学科能力的测验工具以及揭示了高中生化学学科能力的发展特征等。但不足之处也在所难免,后续的研究方向为学科能力学习进程的再精致研究、基于学科能力诊断的教学改进研究以及不同学科能力的学生化学学习特征研究等。
The ultimate goal of our education is promoting students' self-development, and the development of students' competence is defined as the core element and major target of the education. Although great efforts have been made in cultivating students' competence, and the college entrance examination has been transformed from knowledge-orientation to competence-orientation as well, challenges may still arise due to the inadequate research on assessment of the competence in discipline of chemistry (CDC). On the one hand, while people clame that they develope students' CDC, they do not carry out in-depth practice, on the other hand, the serious subjectivity and randomness lead to aimless assessment of CCDC. The situation brings about the following questions:How to define the CDC? What are components of the CDC? How to develop CDC? How to evaluate CDC? These questions formed the basis for this study, which is divided into5chapters as follows.
     The first chapter, based on a review of literature at home and abroad, was conducted to establish the theoretical foundation of the study. The theoretical underpinnings presented two aspects:1. How to establish the components of CDC?2. How to identify the level of CDC? In general, the logistic analysis and factor analysis are the major methods of constructing the components of CDC. As the topic of CDC is an extensive aspect of the nature of discipline of chemistry, we analyzed the components of CDC in the way of logistic analysis. We hold that there are two ways of defining the levels of CDC, one is the two-dimensional framework using knowledge and its cognitive levels (e.g. Bloom's Taxonomy of educational objectives), and the other framework is taking competence as the "longitude" and the complication of the variables in the CDC as the latitude"(e.g. PISA).
     In the second chapter, CDC was defined as"the competence that students acquire in the learning activities of chemistry curriculum" on the basis of elucidation of relevant conceptions and their relations, and CDC is a kind of special ability. Reviewing the common requirements of the CDC in various countries, we defined the core components of the CDC which consisted of "competence in representation of symbols","competence in experiments","model-based thinking competence" and "quantitative competence"
     In the third chapter, guided by the theory of learning progression, we analyzed the learning progression of the components of CDC and identified the performance and content knowledge of different levels of CDC based on the two ways of defining the levels of CDC, as well as in the consideration of the tradition of chemistry curriculum, the requirements of competence for grades in the curriculum standards, and the characteristics of students'thinking. The above mentioned analysis supported the development and refinement of the assessment instruments of CDC, the development and revisions of rubrics and analysis and discussion of the findings in empirical studies. Additionally, learning progression is a hypothesis and need to be verified by data.
     In the forth chapter, in the light of Rasch model and the Wilson'"Four Building Blooks" framework, we designed the procedures of the assessment instrument in the study. We developed four instrument to test students'"competence in representation of symbols","competence in experiments","model-based thinking competence"and "quantitative competence". Each instrument was received two trial tests. In this study, Bond&Fox Steps1.0.0was used to model and analyze the data, and to verify the validation of the instruments. The results demonstrated the good validation and verification of the instruments, and they were appropriate for testing students' CDC in large scale.
     In the fifth chapter, we conducted the large scale test to examine four students' core competencies in chemistry with the instruments. The obtained data further demonstrated the validation and verification of the instruments. The results indicated that there were significant differences between grades, genders and schools in CDC Specially, no significant differences of CDC between students in grade10and11, which suggested that students'CDC increased in a modest way. In contrast, the CDC of grade12was higher than students in both grade10and11. With respect to the gender, we found that the male's CDC was higher than female's CDC. The significant difference also existed among different levels of schools.
     Despite certain limitations, as an exploration, the study gained a series of valuable findings and conclusions. For example, it redefined the definition of the CDC and its components, created the analytical framework and evolution models of the CDC, developed the assessment instruments of the CDC and revealed the characteristics of students'CDC development. The further work will focus on the refined research on the learning progression of the competence in discipline, the improvement of the instruction of the competence in discipline, and learning performance of students with different levels of competence in discipline.
引文
①中共中央办公厅.中共中央国务院关于深化教育改革全面推进素质教育的决定[Z].中国民族教育,1999(3):4-8.
    ②中共中央国务院.国家中长期教育改革和发展规划纲要(2010-2020)[OB/OL]. http://www.gov.cn/jrzg/2010-07-29/content_1666937.htm.
    ①林崇德.论学科能力的建构[J].北京师范大学学报(社会科学版),1997,(1):6-12。
    ②赵中建,黄丹凤.教育改革浪潮中的“指南针”——美国TIMSS研究的特点和影响分析[J].比较教育研究,2008,(2):1-6.
    ③OECD. The Definition and Selection of Key Competencies:Executive Summary[EB/OL]. http:http://www.oecd.org/dataoecd/47/61/35070367.pdf,2007-11-6
    ①Organization for Economic Co-operation and Developrncnt.Unesco Institute for Statistics. Literacy Skills for the World of Tomorrow-Further Results from PISA 2000(Executive summary)[EB/OL]. http://www.oecdorg/document/49/0,3746,en_2649_37455_2997873_1_1_1_37455,00.html,2012-3-1.
    ②OECD. Assessing Scientific, Reading and Mathematical Literacy:A Framework for PISA 2006[EB/OL]. http: //213.253.134.43/oecd/pdfs/browseit/9806031 E.pdf,2006-09-27/2008-09-24.
    ①中共中央办公厅.中共中央国务院关于深化教育改革全面推进素质教育的决定(1999)[z].中国民族教育,1999(3):4-8.
    ②教育部.关于进一步深化普通高等学校招生考试制度改革的意见(1999)[OB/OL].http://www.people.com.cn/gb/channel1/12/20000529/80866.html,2000-12-29.
    ③马金科.对“3+x”高考改革中注重能力和素质考查的思考.中国考试,2000(1):2-5.
    ④中共中央国务院.国家中长期教育改革和发展规划纲要(2010-2020). http://www.gov.cn/jrzg/2010-07/29/content_1666937.htm.
    ①2004年高考化学科考试大纲[EB/OL]. http://www.docin.com/p-48871364.html,2004-4-26.
    ②2010年高考考试大纲(课程标准实验版):化学[EB/OL]. http://www.zxxk.com/Article/1001/91009.shtml, 2010-1-29.
    ③林崇德.论学科能力的建构.北京师范大学学报(社会科学版)[J],1997,(1):6-12.
    ④陈耀亭,赫雷.化学教学里培养能力的几个理论问题初探[J].化学教育,1981,(3):28-30.
    ⑤国家教委.全日制中学化学教学大纲[M].北京:人民教育出版社,1986.
    ⑥陈耀亭.教学大纲里能力培养的提法亟待研讨[J].化学教育,1989,(6):16-18.
    ⑦张国定.大纲中培养能力的提法是合适的[J].化学教育.1991,(1):24-27.
    ①教育部.全日制义务教育化学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.
    ②教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.
    ③司马南,王后雄,王敏.化学学科能力的基本理论问题研究[J].评价与测量.2010,(5):3-11.
    ④魏冰,彭惠琼.“化学教学中能力培养”研究的现状和问题[J].教学与管理,1997,(4):33-35.
    ①Bloom. B., M. Engelhart, E. Furst, W, Hill, and D, Krathwohl. Taxonomy of'Educational Objectives: The Cognitive Domain[M]. New York:Longman's Green,1956.
    ②L·W·安德森等编酱,皮连生主译.学习、教学和评估的分类学——布卢姆教育日标分类学修订版(简缩本)[M],上海华东师范大学出版社,2008.25-28.
    ①吴红耘.修订的布卢姆目标分类与加涅和安德森学习结果分类的比较[J].心理科学,2009,32(4):994-996.
    ①National Center on Education and the Economy and the University of Pittsburgh. New Standards:Perfermance Standards:Volume 3 High School. National Center on Education and the Economy and the University of Pittsburgh,1997,1998.
    ②National Center on Education and the Economy and the University of Pittsburgh. New Standards:Perfermance Standards:Volume 2 Middle School. National Center on Education and the Economy and the University of Pittsburgh,1997,1998.
    ①OECD. PISA 2006:Science Competencies for Tomorrow World[EB/OL]. http://www.oecd.org/dataoecd/30/17/39703267.pdf,2007-04-12/2008-09-22.
    ②陆璟.P1SA能力水平量表的构建及启示[J].教育测量评价,2010,(9):9-14.
    ③占盛丽,文剑冰等.全球化背景下P ISA在美国基础教育质量评估体系中的贡献[J].外国中小学教育,2010,(5):1-6.
    ①IEA. Assessment Frameworks and Specifications 2003(2nd Edition) [M]. Boston College:IEA.2003.70.
    ①林崇德.论学科能力的建构.北京师范大学学报(社会科学版)[J],1997,(1):6-12.
    ②张警鹏.学科能力建模之高考实证分析.湖北招生考试[J],2005,(6):69-74.
    ③B.A.克鲁捷茨基著,李伯黍等译。中小学生数学能力心理学[M]。上海:上海教育出版社,1988.112.
    ①林崇德.学习与发展——中小学生心理能力发展与培养(修订版)[M].北京:北京师范大学出版社,2003.329.
    ②孙以洋.数学能力的成分及其结构[J].南京晓庄学院学报,2003,(6):97-99.
    ③陈仁洋,陈孟达.数学学习能力的因素分析[J].心理学报.1997,29(2):172-176.
    ④胡中锋,莫雷.高中生数学能力结构研究.华南师范大学学报(自然科学版),2001,(2):24-30.
    ①胡卫平.论中学生科学能力的结构.中国教育学刊[J],2001,(6:20-23.
    ①黄小红.物理学科能力的构建及培养[D].湖南:湖南师范大学,2001.
    ②袁孝亭等.重视地理学科的核心能力与地理观点培养[J].课程·教材·教法,2003,(10):20-24.
    ③司马南,王后雄,王敏.化学学科能力的基本理论问题研究.评价与测量,2010,(5):3-11.
    ①林崇德.论学科能力的建构.北京师范大学学报(社会科学版)[J],1997,(1):6-12.
    ①皮连生.智育心理学[M].北京:人民教育出版社,1996.41.
    ②林崇德,杨治良,黄希庭.心理学大辞典[M].上海:上海教育出版社,2003.868.
    ③顾明远主编.教育大辞典[M].上海:上海教育出版社[M],1999.342.
    ①林崇德.学习与发展(修订版)[M].北京:北京师范大学出版社,2003.148.
    ②奥出真丈等主编.现代学校教育大事典(第2卷)[M].东京:行政出版社,1993.316.
    ①佐藤正夫著,钟启泉译.教学原理[M].北京:教育科学出版社,2001.99.
    ②钟启泉.论“学科”与“学科统整”[J].教育探究,2006,(4):5-9.
    ①钟启泉,论“学科”与“学科统整”[J].教育探究,2006,(4):5-9.
    ②袁翰青,应礼文.化学重要史实[M].北京:人民教育出版社,1989.2.
    ③张家治,张培富,李三虎等著.化学教育史[M].南宁:广西教育出版社,1996.4-5.
    ④《中国化学五十年》编辑委员会编.中国化学五十年[M].北京:科学出版社.1985.327.
    ⑤外国百科全书化学条H选译.化学卷参考资料(下)[M].中国大百科全书出版社,1979.2.
    ⑥杨石先.中国大百科全书·化学卷[M].中国大百科全书出版社,1989.1.
    ⑦北京师范大学等编.无机化学(上册)[M].北京:高等教育出版社,1992.2.
    ①徐光宪.21世纪化学的内涵、四大难题和突破口.科学通报,2001,46,(24):2086-2091.
    ②林崇德.论学科能力的建构.北京师范大学学报(社会科学版)[J],1997,(1):6-12.
    ①R.M.加涅著.吴棠译.教学方法的学习基础(教育心理学参考资料选辑).山东:山东教育出版社,1982:129.
    ①奥田真丈.现代学校教育事典[M].日本:行政出版社,1994.487.
    ②王小明.现代心理学的知识与能力观[J].语文建设,2003,(7):13-15,22.
    ③瞿葆奎,施良方.形式教育与实质教育(上)[J].华东师大学报(教科版),1988,(1):9-12.
    ①皮连生.论智力的知识观[J].华东师范大学学报(教育科学版),1997,(3):52-58.
    ①梁平.用广义知识观重建智力理论[J].教育研究与实验,1999,(2):51-55.
    ②皮连生.教育心理学[M], 上海教育出版社,2004.267.
    ③布卢姆等著.罗黎辉等译.教育目标分类学·第一分册:认知领域[M].上海:华东师范大学出版社,1986.36.
    ④吴红耘,皮连生.修订的布卢姆认知教育目标分类学的理论意义与实践意义[J].课程·教材·教法,2009,29(2):92-96.
    ①阿·阿·斯米尔诺夫主编.朱智贤等译.心理学[M].北京:人民教育出版社,1956,459,468.
    ②B.A.克鲁茨基主编,赵璧如译.心理学[M].北京:人民教育出版社,1984.86.
    ③潘菽,荆其诚主编.中国大百科全书·心理学[M].北京:中国大百科全书出版社.1991.153。
    ④朱智贤主编.心理学大词典[M].北京:北京师范大学出版社.1989.300.
    ⑤顾明远主编.教育学大辞典(第一卷)[M].上海:上海教育出版社.1990.147.
    ⑥R.M.加涅著,皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999.47-49.
    ①皮连生.教育心理学[M],上海教育出版社,2004.127.
    ①萨默斯.朗文当代英语大辞典[M].北京:北京商务印书馆,2005.
    ②The National Academies Press. National Science Education Standards(1996):ⅸ[EB/OL]. http://www.nap.edu/catalog/4962.html.
    The American Association for the Advancement of Science. Science Process Skills[EB/OL]. http://education.shu.edu/pt3grant/zinicola/ski lls_source.html.
    ①[英]J.D.贝尔纳著,陈体芳译.科学的社会功能[M].北京:商务印书馆,1982.127.
    ②邵瑞珍主编.教育心理学[M].上海:上海教育出版社,1997.63.
    ①林崇德.论学科能力的建构.北京师范大学学报(社会科学版)[J],1997,(1):6-12.
    ②林崇德.思维发展心理学.北京:北京师范大学出版社[M].2002:79-80.
    ③童兆页.思维(认知)科学的启示[J].计算机应用.1990,(1):17-23.
    ①林崇德.学习与发展(修订版)[M]北京::北京师范大学出版社,2003.148.
    ②Baughin, J.A., Brod, E.F.,&Page, D.L.. Primary trait analysis:a tool for classroom-based assessment [J]. College Teaehing,2002,50(2):75-50.
    ①教育部.全日制十年制学校中学化学教学大纲(试行草案)[M].北京:人民教育出版社,1978.
    ②课程教材研究所编.20世纪中国中小学课程标准·教学大纲汇编·化学卷.[M].北京:人民教育出版社,2001.
    ①教育部.全日制十年制学校中学化学教学大纲(试行草案)[S].北京:人民教育出版社,2002.
    ②教育部.全日制义务教育化学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.
    ③教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.
    ④上海市教育委员会.上海市中学化学课程标准(试行)[S].上海:上海教育出版社.2004.
    ①2008年高考考试大纲·化学[EB/OL]. http://gaokao.eol.cn/wl_6259/20080308/t20080308_283760_5.shtml, 2008-03-08.
    ②2011年全国新课标高考考试大纲:化学[EB/OL].http://www.chsi.com.cn/gkxx/ss/201103/20110309/171475123-1.html,2011-03-09.
    ③上海市教育考试院编.全国普通高等学校招生统一考试上海卷考试手册[M].上海:上海古典出版社,2010.169.
    ④2011江苏高考化学考试大纲[EB/OL]. http://wenku.baidu.com/view/b3f539f9941ea76e58fa0408.html, 2011-02-12.
    ①林崇德.学习与发展(修订版)[M]北京:北京师范大学出版社,2003:150
    ①朱智贤主编.心理学大词典[M].北京:北京师范大学出版社,1989.953.
    ②顾明远主编.教育学大词典(第一卷)[M].上海:上海教育出版社,1990.145.
    ①全日普通高级中学物理教学大纲(试验修订版)fEB/OL].http://www.pep.com.cn/gzwl/jszx/tbjx/kb/kbdg/jxdg/201008/t20100827_810155.htm,2004-08-04.
    ②普通高中物理课程标准(实验)[EB/OL].http://www.pep.com.cn/gzwl/jszx/tbjx/kb/kbdg/kbjd/200703/t20070305_283756.htm,2006-08-02.
    ③全日制普通高级中学生物教学大约(供试验用)[EB/OL].http://www.pep.com.cn/gzsw/jshzhx/kbdg/dghm/201008/t20100818_667171.html,2004-09-24.
    ④普通高中生物课程标准(实验)[EB/OL].http://www.pep.com.cn/gzsw/jshzhx/kbdg/kchbzh/201008/t20100818_667137.htm,2004-07-05.
    ⑤董纯才主编.中国大百科全书·教育卷.中国大百科全书出版社,1985:525.
    ⑥教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003:7.
    ①王祖浩,王磊主编.化学课程标准(实验)解读.湖北:湖北教育出版社[M],2004:1.
    ①Committee on a Conceptual Framework for New K-12 Science Education Standards. A Framework for K-12 Science Education. Practices, Crosscutting Concepts, and Core Ideas[M]. The National Academies Press. Washington, D. C.,2011.3-5,3-6.
    ①Department for Education. Programme of Study-Science in the National Curriculum (England and Wales)[EB/OL]. http://www.qca.org.uk/changes-to the-nc/main.htm,2000.
    ②程晨.德国化学课程中的“学科能力”研究[D].上海:华东师范大学,2010.17.
    ①程晨,德国化学课程中的“学科能力”研究[D],上海:华东师范大学,2010.28.
    ①刘继和,赵海涛.解读日本新订高中理科课程标准[J].比较教育研究,2008,(8):86-90.
    ②曾涛等.俄罗斯中等教育化学课程标准述评[J].中学化学教学参考,2009,(10):58-59.
    ①自然与科技课程纲要研修小组.国民教育九年一贯课程纲要“自然与科技”学习领域——“自然科学与生活科技”课程纲要(草案)[EB/OL]. http://physical.tcfsh.tc.edu.tw/physical/basic/7.DOC,2005-10-17.
    ②台湾.普通高级中学课程纲要(化学)[EB/OL]. http://www.doc88.com/p-053205330328.html,2012-02-08.
    ①教育部.全日制义务教育化学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.
    ①柏迁顿.化学简史[M].北京:商务印书馆,1979.69-70.
    ①张嘉同.化学哲学[M].江西:江西教育出版社,1994:36-42.
    ①中共中央马克思恩格斯列宁斯大林著作编译局.马克思恩格斯选集(第四卷)[M].北京:人民出版社,1972.240.
    ①唐有祺.化学学科的发展历程[J].化学世界,2002.(10):507-510.
    ①王德胜主编.化学方法论[M].浙江:浙江教育出版社,2007.43-44.
    ①梁慧姝,郑长龙著.化学实验论[M],广西:广西教育出版社,1996.95-97.
    ①《化学哲学基础》编委会编著.化学哲学基础[M].北京:科学出版社,1986.17.
    ②梁慧姝,郑长龙著.化学实验论[M],广西:广西教育出版社,1996.83.
    ①恩斯特·卡西尔著,甘阳译.人论[M].上海:上海译文出版,1985.35.
    ②约翰·齐曼著,许立达等译.知识的力量:科学的社会范畴[M].上海:上海科学技术出版社,1985:82.
    ①郭保章.论化学命名法和化学符号的历史演变[J].北京师范学院学报(自然科学版),1991,12(3):41-47.
    ②思格斯.自然辩证法[M].北京:人民出版社,1971.49.
    ①[美]亨利·M·莱斯特.化学的历史背景[M].北京:商务印书馆,1982.126.
    ②编写组编.化学发展简史[M].北京:科学出版社,1980.83.
    ①《化学思想史》编写组编著.化学思想史[M].湖南教育出版社,1986.108-109.
    ②《化学哲学基础》编委会编著.化学哲学基础[M].北京:科学出版社,1986.305.
    ①Justi, R. S. and J. K. Gilber. Models and Modelling in Chemical Education in Chemical Education:Towards Research-based Practice[M]. New York:Kluwer Academic Publishers,2002.425.
    Justi, R. S. and J. K. Gilber. Models and Modelling in Chemical Education in Chemical Education:Towards Research-based Practice[M]. New York:Kluwer Academic Publishers,2002.425.
    ①National Research Council (NRC). Taking science to school:Learning and teaching science in grade K.-8. In R.A. Duschl, H.A. Schweingruber,& A.W. Shouse (Eds.), Committee on science learning,kindergarten through eighth grade. Washington. DC:The National Academy Press,2007.94.
    ①National Research Council (NRC). Taking science to school:Learning and teaching science in grade K-8. In R.A. Duschl, H.A. Schweingruber,& A.W. Shouse (Eds.), Committee on science learning,kindergarten through eighth grade. Washington. DC:The National Academy Press,2007.98.
    ②Smith, C. L., et al.. Implications of Research on Children's Learning for Standards and Assessment:A Proposed Learning Progression for Matter and the Atomic-Molecular Theory[J]. Measuremen:Interdisciplinary Research and Perspectives,2006,4(1-2):1-98.
    ③ Claesgens, J., et al.. Mapping student unde standing in chemistry:The Perspectives of Chemists[J]. Science Education,2009,93(1):56-85.
    ①Schwarz, C.V., et al.. Developing a Learning Progression for Scientific Modeling:Making Scientific Modeling Accessible and Meaningful for Learners[J]. Journal of Research in Science Teaching,2009,46(6):632-634.
    ②Leema K. Berland, Katherine L. McNeill. A learning progression for scientific argumentation:Understanding student work and designing supportive instructional contexts[J]. Science Education,2010,94(5):765-793.
    ③Liu, X. K.M. Lesniak.. Students' Progression of Understanding the Matter Concept from Elementary to High School[J]. Science Education,2005,89(3):433-50.
    ④Liu, X.& A. McKeough..Developmental Growth in Students' Concept of Energy:Analysis of Selected Items from the TIMSS Database[J]. Journal of Research in Science Teaching,2005,42(5):493-517.
    ⑤Duncan, R.G., A.D. Rogat,& A. Yarden. A Learning Progression for Deepening Students' Understandings of Modern Geneti cs Across the 5th-10th Grades[J]. Journal of Research in Science Teaching,2009,46 (6):655-74.
    ⑥Kennedy, C.A. and M. Wilson. Using Progress Variables to Interpret Student Achievement and Progress[R]. in EEAR Report Series University of California at Berkeley:Berkeley,2007.
    ⑦Alonzo, A.C.& J.T. Steedle. Developing and Assessing a Force and Motion Learning Progression[J]. Science Education,2009,93(3):389-421.
    ⑧Mohan, L., J. Chen,& C.W.Anderson. Developing a Multi-Year Learning Progression for Carbon Cycling in Socio-Ecological Systems[J]. Journal of Research in Science Teaching,2009,46(6):675-98.
    ⑨Committee on a Conceptual Framework for New K-12 Science Education Standards. A Framework for K-12 Science Education. Practices, Crosscutting Concepts, and Core Ideas[EB/OL]. http://www.nap.edu/openbook.php?record_id=13165&page=Rl,2011.
    ⑩Wilson, M.. Measuring progressions:Assessment structures underlying a learning progression [J]. Journal of Research in Science Teaching,2009,46(6):716-730.
    ①韦斯林.应用Rascl(?)模型构建基于计算机建模的中学生物质结构认知测量的研究[D].上海:华东师范大学,2010.54-56.
    ①A. H. Johnstone. Macro and Microchemistry. Notes and Correspondence.1982.12.
    ②A.H.Johnstone. Why is science difficult to learn? Things are seldom what they seem[J]. Journal of Computer Assisted Learning,1991, (7):701-703
    ①Onno de Jong,, Jan van Driel. Prospective teachers' concerns about teaching chemistry topics at a acro-micro-symbolic interface[C]. Paper presented at the 1999 NARST Annual Meeting. Boston. USA-1999, 3.
    ①刘知新.化学教学论(第2版)[M].北京:高等教育出版社,1997.216-218.
    ②[美]西蒙.人类的认知.北京:科学出版社,1986.118.
    ③王德胜主编.化学方法论[M].浙江:浙江教育出版社,2007.83.
    ①刘知新.化学教学论(第2版)[M].北京:高等教育出版社,1997.216-218.
    ①课程教材研究所编.20世纪中国中小学课程标准·教学大纲汇编·化学卷.[M].北京:人民教育出版社,2001.
    ②教育部.全日制义务教育化学课程标准(实验稿)[s].北京:北京师范大学出版社,2001.
    ①2011年全国新课标高考考试大纲:化学[EB/OL]. http://www.chsi.com.cn/gkxx/ss/201103/20110309/171475123-1.html,2011-03-09.
    ②刘知新.化学教学论(第2版)[M].北京:高等教育出版社,1997:216-218.
    ①王后雄.论中学生学习化学的难度及其成因[J].化学教育,2003,(11):7-11.
    ①刘知新主编.化学教学论[M].北京:高等教育出版社,1990.43.
    ②梁慧姝,郑长龙著.化学实验论[M].广西:广西教育出版社,1996.1.
    ①课程教材研究所编.20世纪中国中小学课程标准教学大纲汇编·化学卷[M].北京:人民教育出版社,2001.288-290.
    ①教育部.全日制义务教育化学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.6.
    ①教育部.义务教育化学课程标准(实验)[S].北京:北京师范大学出版社,2011,8.
    ②中华人民共和国教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.4,7,9,29.
    ①顾明远主编.教育学大辞典(第一卷)[M].上海:上海教育出版社,1990.147.
    ①吴俊明编著.中学化学实验研究导论[M].江苏:江苏:教育出版社,1997.243.
    ②梁慧姝,郑长龙著.化学实验论[M].广西:广西教育出版社,1996.131.
    ①邓永财.试论中学化学实验思维能力的结构与构建.课程·教材·教法,.2004(10):53-58.
    ①吴俊明编著.中学化学实验研究导论[M].江苏:江苏教育出版社,1997.247.
    ②刘继和,赵海涛.解读日本新订高中理科课程标准[J].比较教育研究,2010(8):86-90.
    ①范杰主编.化学实验论[M].山西:科学技术出版社,2001.23.
    ①盖建民.“模型化”思维论析[J].科学技术与辩证法,2001,18(1):17-21.
    ②《化学哲学基础》编委会编著.化学哲学基础[M].北京:科学出版社:305.
    ③吴明珠.科学模型本质剖析:认识论面向初探[J].科学教育月刊[台湾),1997,(307):2-8.
    ①Jungck, J.,& Calley, J.. Strategic simulations and post-socratic pedagogy:constructing computer software to develop Iong-term inference through experimental inquiry.[J]. American Biology Teacher 1985,47,11-15.
    ⑤廖正衡.略论化学思维方法.化学教育[J],1996(1):14.
    ①Kuhn, T. S.. The structure of scientific revolutions (2nd ed.). Chicago:University of Chicago Press,1970.184.
    ②Soloway, E., Joseph Krajcik,& Elizabeth, A.Finkel. Paper presented as part of a Synposium, Finkel, E., (Chair), The Investigators' Workshop Project:Supporting Modeling and Inquiry via Computational Media and Technology, conducted at the annual meeting of the National Association for Reasearch on Science Teaching. San Francisco.CA, April 1995
    ③Gilbert, S. W.. Model building and a definition of science[J]. Journal of Research in Science Teaching,1991, 28(1):73-79.
    ④NRC. Taking Science to School:Learning and Teaching Science in Grades K-8[M]. ed. R.A. Duschl, H.A. Schweingruber, and A.W. Shouse. Washington, D.C.:National Academies Press,2007.
    ⑤邱美虹,模型与建模能力之理论架构[J].科学教育月刊(台湾),2008,306:2-9.
    ①Justi, R.S.& J.K. Gilbert. Models and Modelling in Chemical Education in Chemical Education:Towards Research-b scd Practicc[M]. J.K. Gilbert, et al., Editors. New York:Kluwer Academic Publishers,2002.425.
    ②教育部.全日制义务教育化学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.23.
    ③教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.10.
    ④陈文婷.化学教师对模型的认识和应用研究[D].上海:华东师范大学,2008.26.
    ⑤Van Driel, J. H.& Verloop, N.. Experienced teachers' knowledge of teaching and learning of models and modeling in science cducation[J]. International Journal of Science Education,2002,24(12):1255-1272.
    ⑥Grosslight, L., Unger,C., Jay, E.& Smith, C.. Understanding models and their use in science conceptions of middle and high school students and experts[J]. Journal of Research in Science Teaching,1991,28(9):799-822.
    ⑦Treagust, D. F., Chittleborough, G.,& Mamiala, T. L.. Students' understanding of the role of scientific models in learning science. International Journal of Science Education,2002,24(4):357-368.
    ①Justi, R. S.& Gilbert, J. K.. Teachers' view on the nature of models. International Journal of Science Education, 2003,25(11):1369-1386.
    ②Gobert, J.& Buckley, B. C.. Scaffolding model-based reasoning:Representations and cognitive affordances[C]. Concord,MA:The Concord Consortium,2003.
    ③ Schwarts, C. V.& White, B. Y.. Metamodelling knowledge:Developing students' understanding of scientific model. Cognition and Instruction[J],2005,23(2):165-205.
    ①韩晓丽,李广洲.化学中的模型及其教学启示中学化学教学参考,2010(7):3-4.
    ①Gilbert, J. D.,& Buckley, B. C.. Introduction to model-based teaching and learning in science education[J]. International Journal of Science Education,2000,22(9):891-894.
    ②Saari, H.& Viiri, J.. A research-based teaching sequence for teaching the concept of modeling to seventh-grade students. international Journal of Science Education.2003,25(11):1333-1352.
    ①Gilbert, J. K.,Boulter, C.J.& Elmer, R.. Positioning models in science education and in design and technology education. In J. K. Gilbert and C. J. Boulter (eds.) Developing Models in Science Education[M]. Dordrecht/ Boston/London:Kluwer Academic Publishers,2000.3-17.
    ②Harrison, A. G.,& Treagust, D. F.. A typology of school science models[J]. International Journal of Science Education,2000,22(9):1011-1026.
    ①Hestenes, D.. Modeling software for learning and doing physics. In Bernardini, C., Tarsitani, C.& Vincentini, M. (Eds.).Thinking physics for teaching[C]. New York:Plenum.1995.25-66.
    ②转引自Justi, R. S.& Gilbert, J. K.. Modelling, teachers' views on the nature of modelling, and implications for the education of modellers[J]. International Journal of Science Education,2002,24(4):369-387.
    ①转引自Gilbert, J. K.. Models and Modeling in Science Education. Hatfield. UK:Association for Science Education,1993.
    ②陈文婷.化学教师对模型的认识和应用研究[D].上海:华东师范大学,2008.26.
    ①Buckley, B. C.& Boulter, C. J.. Investigating the Role of Represen-tations and Expressed Models in Building Mental Models[M]. In J. K. Gilbert and C.J. Boulter (eds.), Developing Models in Science Education. Netherlands: Kluwer Academic Publishers,2000.119-135.
    ①Justi, R.S.& J.K. Gilbert. Science Teachers' Knowledge and Attitudes towards the Use of Models and Modelling in Learning Science[J]. International Journal of Science Education,2002,24(12):1273-1292.
    ②Duit, R.& Glynn, S.. Mental modelling[C]. In G. Welford, J. Osborne & P. Scott (Eds.)-Research in Science Education in Europe:current issues and themes. London:Falmer,1996:166-176.
    ③Grosslight, L.,, C. Unger, and E. Jay. Understanding Models and Their Use in Science:Conceptions of Middle and High School Students and Experts[J].. Journal of Research in Science Teaching,1991,28(9):819-836.
    ①Schwarz, C.V., et al.. Developing a Learning Progression for Scientific Modeling:Making Scientific Modeling Accessible and Meaningful for Learners[J]. Journal of Research in Science Teaching,2009,46(6):632-654.
    ①NRC. National Science Education Standards[S]. Washington, DC:National Academy Press.1996..103,145.
    ②何美,裴新宁.科学教学中的建模活动:若干概念与研究主题.全球教育展望,2009,38(2):82-86.
    ③美国科学促进协会著,中国科学技术协会译.科学素养的基准[M].科学普及出版社,2001.198-200.
    ①The New Hampshire Department of Education. K-12 Science Literacy New Hampshire Curriculum Framework[EB/OL]. http://www.education.nh.gov/instruction/curriculum/science/documents/framework.pdf: 21,31,39.
    ②Committee on a Conceptual Framework for New K-12 Science Education Standards. A Framework for K-12 Science Education:Practices, Crosscutting Concepts, and Core Ideas[EB/OL].http://www.nap.edu/catalog.php?record_id=13165.
    ①魏爱民,阎蒙钢.对苏教版高中新课程必修教材化学计算体系的研究.化学教育,2007,(8):28-29,35.
    ①教育部.全日制义务教育化学课程标准(实验稿)[S]。 北京:北京师范大学出版社,2001.
    ①教育部.普通高中化学课程标准(实验)[s].北京:人民教育出版社,2003.
    ②2011年全国新课标高考考试大纲:化学[EB/OL]. http://www.chsi.com.cn/gkxx/ss/201103/20110309/171475123-1.html,2011-03-09.
    ①魏爱民,阎蒙钢.对苏教版高中新课程必修教材化学计算体系的研究.化学教育,2007,(8):28-29,35.
    ②Nakhleh,M.B.. Are our students conceptual thinkers or algorithmic problem solvers? [J]Journal of Chemical Education,1993,70(1):52-53.
    ③Koch, H.. Simplifying stoichiometry[J]. The Science Teacher,1995.62,36-39.
    ④Dori Y J.. Hameiri M. Multidimensional Analysis System for Quantitative Chemistry Problems:Symbol, Macro, Micro, and Process Aspects[J]. Journal of Research in Science Teaching.2003,40(3):278-302.
    ①许祖慰.项目反应理论及其在测验中的应用[M].上海:华东师范大学出版社,1992.1.
    ②Gulliksen H.. Theroy of menal test[M]. Hillsdale, NJ:Lawrence Erlbaum Associates(originally published in 1950 by New York:John Wiely & Sons).1987.
    ③Lord,F.M.& Novick, M.R.. Statistical theories of mental test scores[M]. Reading, MA:Addison-Welsey.1968.
    ①余民宁.试题反应理论(IRT)及其应用[M].台北:心理出版社股份有限公司,2009.11.
    ②Drasgow,F.& Hullin, C. L.. Item response theory[M]. In M. D. Dunnette & L.M.Hough(Eds.).Handbook of industrial and organinational psychology(2nd ed.).Palo Alto,CA:Consulting Psychologists Press 1990(Vol.1).577-636.
    ③Embretson.S.E.& Yang, X.. Item Response Theory[M]. In J.L. Green, G. Canilli & P.B. EI-more(Eds). Handbook of complementary methods in education research[M]. Mahwah,NJ:Lawrence Erlbaum Associates,2006.385-409.
    ④Rasch, G.Probabilistic models for some intelligence and attainment tests[J]. Damish Institute for Educational Research,1960.
    ⑤Wilson, M.. Constructing Measures:An Item Response Modeling Approach. Mahwah, New Jersey:Lawrence Erlbaum Associates,2005.228.
    ⑥Bond, T.G. and C.M. Fox. Applying the Rasch Model:Fundamental Measurement in the Human science(2nd)[M]. Mahwah,New Jersey:Lawrence Erlbaum Associates,2007:281-283.
    ①晏子.心理科学领域内的客观测量—Rasch模型之特点及发展趋势[J].心理科学进展,2010,18(8):1298-1305.
    ②Merrell, C.& Tymms, P..Rasch analyses of inattentive, hyperactive and impulsive behaviour in young children and the link with academic achievement[J]. Journal of Applied Measurement; 2005,6(1):1-18.
    ①Bond, T.G. and C.M. Fox. Applying the Rasch Model:Fundamental Measurement in the Human cience(2nd)[M]. Mahwah,New Jersey:Lawrence Erlbaum Associates,2007:281-283.
    ①Wright, B. D.& Mok, M. M. C.. Rasch models overview[J]. Journal of Applied Measurement,2000,1(1): 83-106.
    ②Embretson, S. E.& Reise, S. P.. Item response theory for psychologists[M]. Mahwah, NJ:Lawrence Erlbaum Associates.2000.
    ①Lord, F. M.. Application of item response theory to practical testing problems. Hillsdale, NJ:Lawrence Erlbaum Associates,1980.
    ②Mok, M. M. C., Cheong, C. Y., Moore, P. J.& Kennedy. K. J.. The development and validation of the Self-directed Learning Scales (SLS)[J]. Journal of Applied Measurement,2006,7(4):418-449.
    ①(美)吉尔伯特·萨克斯.教育和心理的测量与评价原理[M](第4版).南京:江苏教育出版社,2002.13.
    ②Wilson,M.. Constructing Measures:An Item Response Modeling Approcach[M]. Mahwah,New Jersey: Lawrence Erlbaum Associates,2005:228.
    ①转引自韦斯林.应用Rasch模型构建基于计算机建模的中学生物质结构认知测量的研究[D].上海:华东师范大学,2010.78.
    ①Osterlinter,S.J.. Constructing Test Items:Multiple-Choice, Constructed-Response, Perfonnance and Other Formats[M]. Boston/Dordrecht/London:Kluwer Academic Publishers,1998.
    ②(美)迈克尔·罗德里格兹,安东尼·阿尔巴诺等.面向测试开发者、研究者及教师的试题编写技术[J].考试研究,2011,(4):85-94.
    ①高凌飚.开放性试题的编制与评分[J].人民教育,2006,(1):36-38.
    ①Bond, T.G. and C.M. Fox. Applying the Rasch Model:Fundamental Measurement in the Human cience(2nd)[M]. Mahwah,New Jersey:Lawrence Erlbaum Associates,2007.281-283.
    ①(美)迈克尔·罗德里格兹,安东尼·阿尔巴诺等.面向测试开发者、研究者及教师的试题编写技术[J].考试研究,2011,(4):85-94.
    ①Rodriguez, M. C.. Three options are optimal formultiple-choice items:Ameta-analysis of 80 years of research[J]. Educational Measurement:Issues and Practice,2005,24(2):3-13.
    ①Soloway, E., Joseph Krajcik, Elizabeth, A. Finkel. Paper presented as part of a Synposium.. Finkel, E.(Chair). The Investigators' Workshop Project:Supporting Modeling and Inquiry via Computational Media and Technology[C]. conducted at the annual meeting of the National Association for Reasearch on Science Teaching, San Francisco.CA, April 1995.
    1. 阿·阿·斯米尔诺夫主编.朱智贤等译.心理学[M].北京:人民教育出版社,1956.
    2. 奥田真丈.现代学校教育事典[M].日本:行政出版社,1994.
    3. B.A.克鲁茨基主编,赵璧如译.心理学[M].北京:人民教育出版社,1984.
    4. B.A.克鲁捷茨基著,李伯黍等译.中小学生数学能力心理学[M].上海:上海教育出版社,1988.
    5. 北京师范大学等编.无机化学(上册)[M].北京:高等教育出版社,1992.
    6. 布卢姆等著.罗黎辉等泽.教育目标分类学·第一分册:认知领域[M].上海:华东师范大学学出版社,1986.
    7. 桕廷顿.化学简史[M].北京:商务印书馆,1979.
    8. 编写组编.化学发展简史[M].北京:科学出版社,1980.
    9. 程晨,德国化学课程中的“学科能力”研究[D],上海:华东师范大学,2010.
    10.陈仁泽,陈孟达.数学学习能力的因素分析[J].心理学报.1997,29(2):172-176.
    11.陈文婷.化学教师对模型的认识和应用研究[D].上海:华东师范大学,2008.
    12.陈耀亭,赫雷.化学教学里培养能力的几个理论问题初探[J].化学教育,1981,(3):28-30.
    13.陈耀亭.教学大纲里能力培养的提法亟待研讨[J].化学教育,1989,(6):16-18.
    14.董纯才主编.中国大百科全书·教育卷[M].中国大百科全书出版社,1985.
    15.邓永财.试论中学化学实验思维能力的结构与构建[J].课程·教材·教法,2004(10):53-58.
    16.恩格斯.自然辩证法[M].北京:人民出版社,1971.
    17.恩斯特·卡西尔著,甘阳译.人论[M].上海:上海泽文出版,1985.
    18.范杰主编.化学实验论[M].山西:科学技术出版社,2001.
    19.郭保章.论化学命名法和化学符号的历史演变[J].北京师范学院学报(自然科学版),1991,12(3):41-47.
    20.国家教委.全日制中学化学教学大纲[M].北京:人民教育出版社.1986.
    21.高凌飚.开放性试题的编制与评分[J].人民教育,2006,(1):36-38.
    22.顾明远主编.教育学大辞典(第一卷)[M].上海:上海教育出版社,1990.
    23.顾明远主编.教育大辞典[M].上海:上海教育出版社[M],1999.
    24.[美]亨利·M·莱斯特.化学的历史背景[M].北京:商务印书馆,1982.
    25.《化学思想史》编写组编著.化学思想史[M].湖南教育出版社,1986.
    26.《化学哲学基础》编委会编著.化学哲学基础[M].北京:科学出版社,1986.
    27.何美,裴新宁.科学教学中的建模活动:若干概念与研究主题.全球教育展望,2009,38(2):82-86.
    28.黄小红.物理学科能力的构建及培养[D].湖南:湖南师范大学,2001.
    29.韩晓丽,李广洲.化学中的模型及其教学启示中学化学教学参考,2010(7):3-4.
    30.胡中锋,莫雷.高中生数学能力结构研究[J].华南师范大学学报:自然科学版,2001,(2):24-30.
    31.胡卫平.论中学生科学能力的结构.中国教育学刊[J],2001,(6):20-23.
    32.[英]J.D.贝尔纳著,陈体芳译.科学的社会功能[M].北京:商务印书馆,1982.
    33.教育部.关于进一步深化普通高等学校招生考试制度改革的意见(1999)[OB/OL].http://www.people.com.cn/gb/channe11/12/20000529/80866.html,2000-12-29.
    34.[美]吉尔伯特·萨克斯.教育和心理的测量与评价原理[M](第4版).南京:江苏教育出版社,2002.
    35.江苏省教育考试院.2011江苏高考化学考试大纲[EB/OL].http://wenku.baidu.com/view/b3f539f9941ea76e58fa0408.html,2011-02-12.
    36.教育部.全日制义务教育化学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.
    37.教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.
    38.教育部.义务教育化学课程标准(实验)[M].北京:北京师范大学出版社,2011.
    39.教育部.全日制十年制学校中学化学教学大纲(试行草案)[M].北京:人民教育出版社,1978.
    40.教育部.全日制十年制学校中学化学教学大纲(试行草案)[S].北京:人民教育出版社,2002.
    41.教育部.全日制普通高级中学物理教学大纲(试验修订版)[EB/OL].http://www.pep.com.cn/gzwl/jszx/tbjx/kb/kbdg/jxdg/201008/t20100827_810155.htm, 2004-08-04
    42.教育部.普通高中物理课程标准(实验)[EB/OL].http://www.pep.com.cn/gzwl/jszx/tbjx/kb/kbdg/kbjd/200703/t20070305_283756.htm, 2006-08-02.
    43.教育部.全日制普通高级中学生物教学大纲(供试验用)[EB/OL].http://www.pep.com.cn/gzsw/jshzhx/kbdg/dghm/201008/t20100818_667171.htm, 2004-09-24
    44.教育部.普通高中生物课程标准(实验)[EB/OL].http://www.pep.com.cn/gzsw/jshzhx/kbdg/kchbzh/201008/t20100818_667137.ht m, 2004-07-05.
    45.教育部考试院.2004年高考化学科考试大纲[EB/OL]. http://www.docin.com/p-48871364.html,2004-4-26.
    46.教育部考试院.2008年高考考试大纲·化学[EB/OL].http://gaokao.eol.cn/wl_6259/20080308/t20080308_283760_5.sh.tml,2008-03-08
    47.教育部考试院.2010年高考考试大纲(课程标准实验版):化学[EB/OL].http://www.zxxk.com/Article/1001/91009.shtml,2010-1-29.
    48.教育部考试院.2011年全国新课标高考考试大纲:化学[EB./OL]. http://www.chsi.com.cn/gkxx/ss/201103/20110309/171475123-1.html, 2011-03-09.
    49.课程教材研究所编.20世纪中国中小学课程标准·教学大纲汇编·化学卷.[M].北京:人民教育出版社,2001.
    50.课程教材研究所编.20世纪中国中小学课程标准教学大纲汇编·化学卷[M].北京;人民教育出版社,2001.
    51.课程发展议会与香港考试及评核局.科学教育学习领域化学课程及评估指引(中四至中六)[EB/OL].http://334.edb.hkedcity.net/doc/chi/com_sci_fmal_c_20091005.pdf,2008-09-03.
    52.课程教材研究所编.20世纪中国中小学课程标准·教学大纲汇编·化学卷.[M].北京:人民教育出版社,2001.
    53.林崇德.论学科能力的建构[J].北京师范大学学报(社会科学版),1997,(1):6-12.
    54.林崇德.学习与发展——中小学生心理能力发展与培养(修订版)[M].北京:北京师范大学出版社,2003.
    55.林崇德,杨治良,黄希庭.心理学大辞典[M].上海:上海教育出版社,2003.
    56.梁慧姝,郑长龙著.化学实验论[M],广西:广西教育出版社,1996.
    57.陆璟PISA能力水平量表的构建及启示[J].教育测量评价,2010,(9):9-14
    58.刘继和,赵海涛.解读日本新订高中理科课程标准[J].比较教育研究,2008,(8):86-90.
    59.罗国忠.初中生科学探究能力评价方式的比较研究[D],重庆:西南大学,2007.
    60.L·W·安德森等编著,皮连生主泽.学习、教学和评估的分类学——布卢姆教育目标分类学修订版(简缩本)[M],上海:华东师范大学出版社,2008.
    61.梁平.用广义知识观重建智力理论[J].教育研究与实验,1999,(2):51-55.
    62.廖正衡.略论化学思维方法.化学教育[J],1996(1):14.
    63.刘知新主编.化学教学论(第2版)[M].北京:高等教育出版社,1997.
    64.刘知新主编.化学教学论[M].北京:高等教育出版社,1990.
    65.美国科学促进协会著,中国科学技术协会译.科学素养的基准[M].科学普及出版社,2001.
    66.马金科.对“3+x”高考改革中注重能力和素质考查的思考.中国考试,2000(1):2-5.
    67.[美]迈克尔·罗德里格兹,安东尼·阿尔巴诺等.面向测试开发者、研究者及教师的试题编写技术[J].考试研究,2011,(4):85-94.
    68. 潘菽,荆其诚主编.中国大百科全书心理学[M].北京:中国大百科全书出版社.1991.153.
    69.皮连生.智育心理学[M].北京:人民教育出版社,1996.
    70.皮连生.教育心理学[M],上海教育出版社,2004.
    71.皮连生.论智力的知识观[J].华东师范大学学报(教育科学版),1997,(3):52-58.
    72.邱美虹,模型与建模能力之理论架构[J].科学教育月刊(台湾),2008,306:2-9.
    73.R.M.加涅著.吴棠译.教学方法的学习基础(教育心理学参考资料选辑).山东:山东教育出版社,1982.
    74.R.M.加涅著,皮连生等译.学习的条件和教学论[M].上海:华东师范大学出版社,1999.
    75.上海市教育委员会.上海市中学化学课程标准(试行)[M].上海:上海教育出版社.2004.
    76.上海市教育考试院编.全国普通高等学校招生统一考试上海卷考试手册[M].上海:上海古典出版社,2010.
    77.邵瑞珍主编.教育心理学[M].上海:上海教育出版社,1997.
    78.司马南,王后雄,王敏.化学学科能力的基本理论问题研究[J].评价与测量.2010,(5):3-11.
    79.萨默斯.朗文当代英语大辞典[M].北京:北京商务印书馆,2005.
    80.孙以泽.数学能力的成分及其结构[J].南京晓庄学院学报,2003,(6):97-99.
    81.台湾.普通高级中学课程纲要(化学)[EB/OL].http://www.doc88.com/p-053205330328.html,2012-02-08.
    82.唐有祺.化学学科的发展历程[J].化学世界,2002.(10):507-510.
    83.童兆页.思维(认知)科学的启示[J].计算机应用.1990,(1):17-23.
    84.魏冰,彭惠琼.“化学教学中能力培养”研究的现状和问题[J].教学与管理,1997,(4):33-35.
    85.外国百科全书化学条目选译.化学卷参考资料(下)[M].中国大百科全书出版社,1979.
    86.王德胜主编.化学方法论[M].浙江:浙江教育出版社,2007.
    87.王后雄.论中学生学习化学的难度及其成因[J].化学教育,2003,(11):7-11.
    88.吴俊明编著.中学化学实验研究导论[M].江苏:江苏教育出版社,1997.
    89.吴明珠.科学模型本质剖析:认识论面向初探[J].科学教育月刊(台湾),1997,(307):2-8.
    90.魏爱民,阎蒙钢.对苏教版高中新课程必修教材化学计算体系的研究[J].化学教育,2007,(8):28-29,35.
    91.吴红耘.修订的布卢姆目标分类与加涅和安德森学习结果分类的比较[J].心理科学2009,32(4):994-996.
    92.王小明.现代心理学的知识与能力观[J].语文建设,2003,(7):13-15,22.
    93.王祖浩,王磊主编.化学课程标准(实验)解读.湖北:湖北教育出版社[M],2004.
    94.韦斯林.应用Rasch模型构建基于计算机建模的中学生物质结构认知测量的研究[D].上海:华东师范大学,2010.
    95. 瞿葆奎,施良方.形式教育与实质教育(上)[J].华东师大学报(教科版),1988,(1):9-12.
    96.徐光宪.21世纪化学的内涵、四大难题和突破口[J].科学通报,2001,46,(24):2086-2091.
    97. 新田义弘.现象学与解释学[M].东京:筑摩书房,2006.
    98. [美]西蒙.人类的认知.北京:科学出版社,1986.
    99. 许祖慰.项目反应理论及其在测验中的应用[M].上海:华东师范大学出版社,1992.
    100.袁翰青,应礼文.化学重要史实[M].北京:人民教育出版社,1989.
    101.约翰·齐曼著,许立达等译.知识的力量:科学的社会范畴[M].上海:上海科学技术出版社,1985.
    102.余民宁.试题反应理论(IRT)及其应用[M].台北:心理出版社股份有限公司,2009.
    103.杨石先.中国大百科全书·化学卷[M].中国大百科全书出版社,1989.1.
    104.袁孝亭等.重视地理学科的核心能力与地理观点培养[J].课程·教材·教法.2003,(10):20-24.
    105.晏子.心理科学领域内的客观测量—Rasch模型之特点及发展趋势[J].心理科学进展,2010,18(8):1298-1305.
    106.张国定.大纲中培养能力的提法是合适的[J].化学教育.1991,(1):24-27.
    107.《中国化学五十年》编辑委员会编.中国化学五十年[M].北京:科学出版社.1985.
    108.中共中央办公厅.中共中央国务院关于深化教育改革全面推进素质教育的决定[Z].中国民族教育,1999(3):4-8.
    109.中共中央国务院.国家中长期教育改革和发展规划纲要(2010-2020)[OB/OL].http://www.gov.cn/jrzg/2010-07/29/content_1666937.htm.
    110.中共中央马克思恩格斯列宁斯大林著作编译局.马克思恩格斯选集(第四卷)[M].北京:人民出版社,1972.
    111.张警鹏.学科能力建模之高考实证分析.湖北招生考试[J],2005,(6):69-74.
    112.钟启泉,论“学科”与“学科统整”[J].教育探究,2006,(4):5-9.
    113.张嘉同.化学哲学[M].江西:江西教育出版社,1994.
    114.张家治,张培富,李三虎等著.化学教育史[M].南宁:广西教育出版社,1996.4-5.
    115.自然与科技课程纲要研修小组.国民教育九年一贯课程纲要“自然与科技”学习领域 ——“自然科学与生活科技”课程纲要(草案)[EB/OL].http://physical.tcfsh.tc.edu.tw/physical/basic/7.DOC,2005-10-17.
    116.古盛丽,文剑冰等.全球化背景下、PISA在美国基础教育质量评估体系中的贡献[J].外国中小学教育,2010,(5):1-6.
    117.佐藤正夫著,钟启泉译.教学原理[M].北京:教育科学出版社,2001.
    118.曾涛等.俄罗斯中等教育化学课程标准述评[J].中学化学教学参考,2009,(10):58-59.
    119.赵中建,黄丹凤.教育改革浪潮中的“指南针”美国TIMSS研究的特点和影响分析[J].比较教育研究,2008,(2):1-6.
    120.朱智贤主编.心理学大词典[M].北京:北京师范大学出版社.1989.
    1. A. H. Johnstone. Macro and Microchemistry[J]. Notes and Correspondence,1982,12.
    2. A.H.Johnstone. Why is science difficult to learn? Things are seldom what they seem[J]. Journal of Computer Assisted Learning,1991, (7):701-703
    3. Alonzo, A.C.& J.T. Steedle. Developing and Assessing a Force and Motion Learning Progression[J]. Science Education,2009,93(3):389-421.
    4. Bloom, B., M. Engelhart, E. Furst, W, Hill, and D, Krathwohl. Taxonomy of Educational Objectives:The Cognitive Domain[M]. New York:Longman's Green,1956.
    5. Bond, T.G. and C.M. Fox. Applying the Rasch Model:Fundamental Measurement in the Human Science(2nd)[M]. Mahwah,New Jersey:Lawrence Erlbaum Associates,2007.
    6. Buckley, B. C.& Boulter, C. J.. Investigating the Role of Represen-tations and Expressed Models in Building Mental Models[M]. In J. K. Gilbert and C.J. Boulter (eds.), Developing Models in Science Education. Netherlands:Kluwer Academic Publishers,2000.
    7. Claesgens, J., et al.. Mapping student unde standing in chemistry:The Perspectives of Chemists[J]. Science Education,2009,93(1):56-85.
    8. Committee on a Conceptual Framework for New K-12 Science Education Standards. A Framework for K-12 Science Education. Practices, Crosscutting Concepts, and Core Ideas[M]. The National Academies Press. Washington, D. C.,2011.
    9. Committee on a Conceptual Framework for New K-12 Science Education Standards. A Framework for K-12 Science Education:Practices, Crosscutting Concepts, and Core Ideas[EB/OL]. http://www.nap.edu/catalog.php?record_id=13165.2011.
    10. Department for Education. Programme of Study-Science in the National Curriculum (England and Wales)[EB/OL]. http://www.qca.org.uk/changes-to the-nc/main.htm,2000.
    11. Symbol, Macro, Micro, and Process Aspects[J]. Journal of Research in Science Teaching. 2003,40(3):278-302.
    12-Drasgow, F.& Hullin, C. L.. Item response theory[M]. In M. D. Dunnette & L.M.Hough(Eds.). Handbook of industrial and organinational psychology(2nd ed.).Palo Alto,CA:Consulting Psychologists Press.1990(Vol.1).
    13. Duit, R.& Glynn, S.. Mental modelling[C]. In G. Welford, J. Osborne & P. Scott (Eds.). Research in Science Education in Europe:current issues and themes. London:Falmer. 1996:166-176.
    14. Duncan, R.G., A.D. Rogat,& A. Yarden. A Learning Progression for Deepening Students' Understandings of Modern Geneti cs Across the 5th-10th Grades [J].Journal of Research in Science Teaching,2009,46 (6):655-74.
    15. Embretson, S. E.& Reise, S. P.. Item response theory for psychologists[M]. Mahwah, NJ: Lawrence Erlbaum Associates.2000.
    16. Embretson,S.E.& Yang, X.. Item Response Theory[M]. In J.L. Green, G. Canilli & P.B. E1-more(Eds). Handbook of complementary methods in education research[M]. Mahwah,NJ:Lawrence Erlbaum Associates,2006.
    17. Gilbert, S. W.. Model building and a definition of science[J]. Journal of Research in Science Teaching,1991,28(1):73-79.
    18. Gilbert, J. K.. Models and Modeling in Science Education. Hatfield. UK:Association for Science Education,1993.
    19. Gilbert, J. D.,& Buckley, B. C Introduction to model-based teaching and learning in science education[J]. International Journal of Science Education,2000,22(9):891-894.
    20. Gilbert, J. K., Boulter, C.J.& Elmer, R.. Positioning models in science education and in design and technology education. In J. K. Gilbert and C. J. Boulter (eds.) Developing Models in Science Education[M]. Dordrecht/Boston/London:Kluwer Academic Publishers,2000.
    21. Gobert, J.& Buckley, B. C. Scaffolding model-based reasoning:Representations and cognitive affordances[C]. Concord, MA:The Concord Consortium,2003.
    22. Grosslight, L., C. Unger,& E. Jay.. Understanding Models and Their Use in Science: Conceptions of Middle and High School Students and Experts[J]. Journal of Research in Science Teaching,1991,28(9):819.
    23-Gulliksen H.. Theroy of menal test[M]. Hillsdale,NJ:Lawrence Erlbaum Associates(originally published in 1950 by New York:John Wiely & Sons).1987.
    24. Harrison, A. G.,& Treagust, D. F.. A typology of school science models[J]. International Journal of Science Education,2000,22(9):1011-1026.
    25. Hestenes, D.. Modeling software for learning and doing physics. In Bernardini, C. Tarsitani, C.& Vincentini, M. (Eds.).Thinking physics for teaching[C]. New York:Plenum, 1995.25-66.
    26. IEA. Assessment Frameworks and Specifications 2003(2nd Edition) [M]. Boston College: IEA.2003.
    27. Jungck, J.,& Calley, J..Strategic simulations and post-socratic pedagogy:constructing computer software to develop long-term inference through experimental inquiry[J]. American Biology Teacher 1985,47,11-15.
    28. Justi, R.S.& J.K. Gilbert, Models and Modelling in Chemical Education in Chemical Education:Towards Research-bsed Practice[M]. J.K. Gilbert, et al., Editors. New York: Kluwer Academic Publishers,2002.
    29. Justi, R. S.& J.K. Gilbert. Teachers' view on the nature of models. International Journal of Science Education,2003,25(11):1369-1386.
    30. Justi, R. S.&. Modelling, teachers' views on the nature of modelling, and implications for the education of modellers [J]-International Journal of Science Education[J],2002,24(4): 369-387.
    31. Justi, R.S.& J.K. Gilbert. Science Teachers' Knowledget and Attitudes towards the Use of Models and Modelling in Learning Science[J]. International Journal of Science Education, 2002,24(12):1273-1292.
    32. Kennedy, C.A. and M. Wilson. Using Progress Variables to Interpret Student Achievement and Progress[R]. in EEAR Report Series University of California at Berkeley:Berkeley,2007.
    33. Koch, H.. Simplifying stoichiometry[J]. The Science Teacher,1995,62,36-39.
    34. Kuhn, T. S.. The structure of scientific revolutions (2nd ed.)[M]. Chicago:University of Chicago Press,1970.
    35. Leema K. Berland, Katherine L. McNeill. A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts[J]. Science Education,2010,94(5):765-793.
    36. Liu, X. K.M. Lesniak.. Students' Progression of Understanding the Matter Concept from Elementary to High School[J]. Science Education,2005,89(3):433-50.
    37. Liu, X.& A. McKeough..Developmental Growth in Students' Concept of Energy:Analysis of Selected Items from the TIMSS Database[J]. Journal of Research in Science Teaching, 2005,42(5):493-517.
    38. Lord,F.M.& Novick, M.R..Statistical theories of mental test scores[M]. Reading, MA:Addison-Welsey.1968.
    39. Lord, F. M.. Application of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates,1980.
    40. Merrell, C.& Tymms, P.. Rasch analyses of inattentive, hyperactive and impulsive behaviour in young children and the link with academic achievement[J]. Journal of Applied Measurement,2005,6(1):1-18.
    41. Mohan, L., J. Chen,& C.W. Anderson. Developing a Multi-Year Learning Progression for Carbon Cycling in Socio-Ecological Systems[J]. Journal of Research in Science Teaching, 2009,46(6):675-98.
    42.Mok, M. M. C.Cheong, C. Y., Moore, P. J.& Kennedy, K. J..The development and validation of the Self-directed Learning Scales (SLS)[J]. Journal of Applied Measurement,2006,7(4): 418-449.
    43. Nakhleh,M.B.. Are our students conceptual thinkers or algorithmic problem solvers? [J]. Journal of Chemical Education,1993,70(1):52-53.
    44. National Center on Education and the Economy and the University of Pittsburgh. New Standards:Perfermance Standards:Volume 3 High School[M]. National Center on Education and the Economy and the University of Pittsburgh,1997、1998.
    45. National Center on Education and the Economy and the University of Pittsburgh. New Standards:Perfermance Standards:Volume 2 Middle School[M]. National Center on Education and the Economy and the University of Pittsburgh,1997、1998.
    46. National Research Council (NRC). Taking science to school:Learning and teaching science in grade K-8. In R.A. Duschl, H.A. Schweingruber,& A.W. Shouse (Eds.), Committee on science learning,kindergarten through eighth grade. Washington. DC:The National Ac ademy Press,2007.
    47. NRC. National Science Education Standards[S]. Washington, DC:National Academy Press.1996.
    48. OECD. Assessing Scientific, Reading and Mathematical Literacy:A Framework for PISA 2006[EB/OL]. http://213.253.134.43/oecd/pdfs/browseit/9806031E.pdf, 2006-09-27/2008-09-24.
    49. OECD. PISA 2006:Science Competencies for Tomorrow World[EB/OL]. http://www.oecd.org/dataoecd/30/17/39703267.pdf,2007-04-12/2008-09-22.
    50. OECD. The Definition and Selection of Key Competencies:Executive Summary[EB/OL]. http:http://www.oecd.org/dataoecd/47/61/35070367.pdf,2007-11-6
    51. Onno de Jong,, Jan van Driel. Prospective teachers' concerns about teaching chemistry topics at a acro-micro-symbolic interface[C]. Paper presented at the 1999 NARST Annual Meeting. Boston. USA,1999,3.
    52. Organization for Economic Co-operation and Development.Unesco Institute for Statistics. Literacy Skills for the World of Tomorrow-Further Results from PISA 2000(Executive summary)[EB/OL]. http://www.oecd.org/document/49/0,3746,en_2649_37455_2997873_1_1_1_37455,00.html, 2012-3-1.
    53. Osterlinter.S.J.. Constructing Test Items:MultipIe-Choice, Constructed-Response, Performance and Other Formats[M]. Boston/Dordrecht/London:Kluwer Academic Publishers,1998.
    54. Rasch, G.Probabilistic models for some intelligence and attainment tests[J]. Damish Institute for Educational Research,1960.
    55. Rodriguez, M. C Three options are optimal formultiple-choice items:Ameta-analysis of 80 years of research[J]. Educational Measurement:Issues and Practice,2005,24(2):3-13.
    56. Saari, H.& Viiri, J.. A research-based teaching sequence for teaching the concept of modeling to seventh-grade students[J]. International Journal of Science Education,2003,25(11): 1333-1352.
    57. Schwarts, C. V.& White, B. Y.. Metamodelling knowledge:Developing students' understanding of scientific model [J]. Cognition and Instruction[J],2005,23(2):165-205.
    58. Schwarz, C.V., et al.. Developing a Learning Progression for Scientific Modeling:Making Scientific Modeling Accessible and Meaningful for Learners[J]. Journal of Research in Science Teaching,2009,46(6):632-654.
    59. Smith, C. L., et al.. Implications of Research on Children's Learning for Standards and Assessment:A Proposed Learning Progression for Matter and the Atomic-Molecular Theory [J]. Measuremen:Interdisciplinary Research and Perspectives,2006,4(1-2): 1-98.
    60. Soloway, E., Joseph Krajcik, Elizabeth, A. Finkel. Paper presented as part of a Synposium.. Finkel, E.(Chair). The Investigators' Workshop Project:Supporting Modeling and Inquiry via Computational Media and Technology[C]. conducted at the annual meeting of the National Association for Reasearch on Science Teaching, San Francisco.CA, April 1995.
    61. The National Academies Press. National Science Education Standards(1996):ix, http://www.nap.edu/catalog/4962.html.
    62. The American Association for the AdVancement of Science. Science Process Skills.http://education.shu.edu/pt3grant/zinicola/skills_source.html.
    63. The New Hampshire Department of Education. K-12 Science Literacy New Hampshire Curriculum Framework[EB/OL]. http://www.education.nh.gov/instruction/curriculum/science/documents/framework.pdf 21,31,39.
    64. Treagust, D. F., Chittleborough, G.,& Mamiala, T. L.. Students' understanding of the role of scientific models in learning science[J]. International Journal of Science Education-2002, 24(4):357-368.
    65. Van Driel, J. H.& Verloop, N.. Experienced teachers' knowledge of teaching and learning of models and modeling in science education[J].International Journal of Science Education, 2002,24(12):1255-1272.
    66. Wilson, M.. Measuring progressions:Assessment structures underlying a learning progression [J]. Journal of Research in Science Teaching,2009,46(6):716-730.
    67. Wilson,M.. Constructing Measures:An Item Response Modeling Approcach[M]. Mahwah,New Jersey. Lawrence Erlbaum Associates,2005.
    68. Wright, B. D.& Mok, M. M. C..Rasch models overview[J]. Journal of Applied Measurement, 2000,1(1):83-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700