内腔光参量振荡器及新波长固体激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光参量振荡(Optical Parametric Oscillation, OPO)是一种实现光学频率变换的有效途径,它利用非线性晶体的混频特性,通过相位匹配获得信号光与闲频光两个波长,可实现宽频可调谐的激光输出。对于光参量振荡器的研究目前主要集中在以下几个方面:(1)以最常用的1.06μm激光作为泵浦源,通过光参量振荡产生1.5μm左右的人眼安全激光输出;(2)以1.06μm激光泵浦磷锗锌光参量振荡(ZGP-OPO),产生2μm的激光输出。由于2μm激光对大气和烟雾的穿透能力强,因而在激光雷达、激光测距、遥控传感及医学和光通讯等方面都有着重要的应用;(3)通过非线性频率变换实现中红外3-5μm的激光输出。由于3-5μm是一个重要的大气窗口波段,位于这一波段的激光对大雾、烟尘等都具有较强的穿透力,因此在雷达系统、光谱测量、激光测距、红外遥感和医学等方面都有着广泛的应用。中红外光参量振荡器一直是国内外研究的热点,它具有调谐范围宽、效率高、结构紧凑、全固化等优点,且随着各种新型优质的中红外非线性晶体的出现,使中红外光参量振荡器向世人展示出了其越来越广泛的发展前景。
     受激拉曼散射(Stimulated Raman Scattering, SRS)属于三阶非线性效应,也是实现激光频率变换,产生新波长的重要途径之一,频率转换后的激光波长由泵浦光波长和拉曼介质决定。通过选择不同波长的泵浦光和不同材质不同频移的拉曼介质,可以得到从紫外到近红外范围的受激拉曼散射光谱。与传统的气体和液体拉曼介质相比较,固体拉曼介质具有粒子浓度大、体积小、拉曼增益高、热传导性好、机械性能好、易于和全固态激光技术相结合等优点。以晶体作为拉曼介质的固体拉曼激光器具有结构紧凑、效率高、稳定性好等优点,在军事、医疗、交通、信息和农业等领域都有重要的应用。目前,美国、俄罗斯、澳大利亚,及中国台湾等国家和地区的研究者都在积极地参与固体拉曼激光器的研究,其中,俄罗斯的科学家在拉曼晶体生长和特性研究方面做了许多开创性的工作。我国在晶体生长领域也居世界领先水平,这为我国的固态拉曼激光器的研究提供了便利的条件。
     本论文主要分两部分,一部分是以Nd:YAG产生的1064 nm激光作为泵浦源,对内腔式砷酸钛氧钾(KTiOAsO4,KTA)晶体中红外波段光参量振荡器进行了理论和实验研究;另一部分是对两种新波长激光器的实验研究。本文的研究内容主要有:
     1.对光参量振荡中的三波互作用的基本理论进行了分析,对KTA晶体的相位匹配角和有效非线性系数进行了计算,并对非临界相位匹配理论做了介绍。
     2.以Nd:YAG晶体作为激光介质,KTA晶体作为非线性晶体,采用声光调Q,研究了LD端面泵浦主动调Q内腔式中红外KTA光参量振荡器的输出特性。主要包括光谱特性、功率特性、脉冲特性以及光束质量等。用1064 nm的激光泵浦11类非临界相位匹配(NCPM)的KTA晶体时,获得的信号光波长为1535 nm,获得的中红外闲频光波长为3469 nm。实验测量了不同重复频率下,中红外闲频光的平均输出功率、脉冲宽度随泵浦功率的变化关系。当LD泵浦功率为14.93 W,脉冲重复频率为40 kHz时,实验得到的中红外闲频光的最高平均输出功率为0.46 W,最高总输出功率为1.83 W,相应的由LD到参量光的光-光转换效率为12.3%。测得此时的闲频光脉宽为4 ns,获得的峰值功率为2.9 kW。此时闲频光的光束质量为12左右。
     3.对LD端泵、声光调Q的Nd:YAG/KTA内腔式OPO进行了理论分析,将初始反转粒子数密度和腔内光子数密度在腔内分布看作是高斯分布,而非平面波近似分布,建立了速率方程理论模型;并在求解过程中考虑了晶体的热透镜效应问题,计算了Nd:YAG晶体的热透镜焦距随泵浦功率的变化趋势,最终对速率方程进行了数值求解,并与实验结果相比较,发现理论值与实验结果较为吻合,这也证明了我们这个速率方程理论模型的正确性。
     4.实现了在双棒串接的LD侧面泵浦的条件下,以Nd:YAG晶体作为激光介质,以X切KTA晶体作为非线性晶体,采用声光调Q的内腔式KTA光参量振荡器的高效运转,获得的闲频光波长为3469 nm。采用串接两个相同的LD侧向泵浦Nd:YAG棒作为泵浦源,中间放入90°石英旋光片以补偿热致双折射,采用平凸腔的设计以增加稳区范围并减轻腔内高泵浦功率下热效应的影响。实验测量了不同重复频率下,中红外闲频光以及信号光的平均输出功率、脉冲宽度随泵浦功率的变化关系。当LD泵浦功率为208 W,脉冲重复频率为12.5 kHz时,实验得到的中红外闲频光的最高平均输出功率为3.4 W,此时测得的脉宽为19 ns,获得的峰值功率为14 kW。当LD泵浦功率为208 W,脉冲重复频率为7.5 kHz时,实验得到的信号光功率为12.7 W,闲频光功率为3.1 W,相应的由LD到总的参量光的光-光转换效率为7.6%,这是目前LD侧面泵浦声光调Q KTA内腔式光参量振荡的最高转换效率。
     5.首次实现了一种基于BaWO4晶体332cm-1频移的1103 nm的内腔拉曼激光器。以LD端而泵浦Nd:YAG晶体产生1064 nm激光作为泵浦光,选用拉曼频移为332 cm-1的46 mm长的BaWO4晶体作为拉曼介质,采用声光调Q,产生了波长为1103 nm的激光。在LD泵浦功率为7.55 W,脉冲重复率为17 kHz的条件下,获得最高的拉曼光功率为1.23 W,相应的由LD到拉曼光的转换效率为16.3%,此时拉曼光在水平和竖直方向的光束质量因子分别为2.0±0.2和1.8±0.2。同时,关于BaWO4晶体的热透镜效应问题也在给出了相应的分析。
     6.首次实现了氙灯泵浦的自由运转的1073.8 mm激光输出。采用平凹腔结构,用氙闪光灯泵浦尺寸为06mm×110mm的Nd:YAG晶体,产生了1073.8nm的激光输出。当输入泵浦能量为69.6 J,脉冲重复率为1 Hz时,获得的最高脉冲能量为487 mJ。
     本论文主要创新点如下:
     1.设计优化了LD端面泵浦声光调Q的中红外KTA内腔光参量振荡器,当泵浦功率为14.93 W时,获得了1.83 W的总输出功率,包括1.37 W的信号光(1.54μm)功率和0.46 W的中红外闲频光(3.47μm)功率,相应的总光-光转换效率为12.3%,这也是目前所报道的LD端泵声光调Q的中红外KTA-IOPO的最高转换效率。
     2.首次实现了双侧泵Nd:YAG声光调Q的KTA内腔光参量振荡器。两个完全相同的LD侧向泵浦Nd:YAG棒模块串接放置,且在两模块中放入90°石英旋光片以补偿热致双折射,这些作为泵浦源。优化了泵浦光,为下面的实验打好基础。
     3.实现LD双侧泵、声光调Q、Nd:YAG/KTA内腔式中红外OPO。在LD泵浦功率为208 W,脉冲重复频率为7.5 kHz时,获得的总输出功率为15.8 W,其中信号光功率为12.7 W,闲频光功率为3.1 W,相应的由LD到总的参量光的光-光转换效率为7.6%,这是目前LD侧面泵浦声光调Q KTA内腔式光参量振荡的最高转换效率。
     4.首次实现了一种基于BaWO4晶体332cm-1频移的1103 nm内腔拉曼激光器。采用LD端面泵浦Nd:YAG晶体,以按X(ZZ)X配置的BaWO4晶体作为拉曼介质,实现了332 cm-1频移的受激拉曼散射。在激光二极管泵浦功率为7.55W,声光Q开关工作频率为17 kHz的条件下,获得最高平均功率为1.23 W的拉曼光输出,光光转换效率达到16.3%,并估算了此时BaWO4晶体的热透镜焦距值。首次观察到了LD侧面泵浦的基于BaWO4晶体332cm-1频移的1103nm的拉曼激光输出。
     5.首次实现了氙灯泵浦Nd:YAG自由运转的1073.8 nm激光输出。当输入泵浦能量为69.6J,脉冲重复率为1 Hz时,获得的最高脉冲能量为487 mJ,并测量了脉冲特性和光束质量特性。
Optical Parametric Oscillation (OPO) is an attractive method of frequency conversion. It uses the mixing characteristics of the nonlinear crystal and phase matching method to obtain broadband tunable output laser. OPOs usually focus on the following aspects:(1) The matured 1.06μm laser is used as the pump source to realize the eye-safe wavelength region. (2) The matured 1.06μm laser is used as the pump source to pump ZnGeP2 crystal and realize the 2μm region laser. Because this region has high ability to go through the atmosphere and smoke, so it has many important applications in laser radar, laser ranging, remote sensing and optical communications, etc. (3) By nonlinear frequency conversion technology, the mid-infrared 3-5μm region laser is realized. Because 3-5μm is an important atmospheric window, the laser under this region has very strong transmittance, which makes it feasible for wide applications in such field as radar system, spectral measurement, laser ranging, infrared remote sensing and other aspects. Mid-infrared OPO has been the hot research at home and abroad. It takes advantages of wide tunable region, high efficiency, compactness and high stability. And with the development of new high-quality mid-infrared nonlinear crystals, the mid-infrared OPO shows the much wider applications.
     Stimulated Raman scattering (SRS) is an attractive method of frequency conversion based on the third-order nonlinear optical effect. The wavelength of the scattered light is determined by the wavelength of the pumped light and the Raman shift of the Raman-active media. By selecting different pumping sources and Raman-active media, the laser spectrum reachable with SRS can extend from the ultraviolet to the near infrared. Compared with the conventional gases and liquids media, the solid-state Raman-active media offer high molecule density, high gain, favorable thermal and mechanical properties, and compatibility with the compact all solid-state laser technology. Hence they can find important applications in many fields such as national defence, medicine, traffic, information, industry and agriculture. So far, the researchers from USA, Russia, Australia and Taiwan are taking part actively in the field of the all-solid-state Raman lasers. Especially the scientists of Russia act as the leading role in the regime of Raman crystal growth and research on the solid state Raman lasers. China is renowned for the advanced crystal growth technology, and this provides favorable conditions to the study of all-solid-state
     Raman lasers in China.
     There are two parts in this dissertation. One is the theoretical and experimental studies on KTA intracavity optical parametric oscillator pumped by Nd:YAG laser. The other is the research on two kinds of new wavelength lasers. The main content of this dissertation is as follows:
     1. We analysis the three-wave interaction theory in optical parametric oscillation. We calculate the angle of phase-matching and the effective nonlinear coefficient of KTA crystal, and introduce the noncritical phase matching.
     2. By using Nd:YAG crystal as the laser gain medium (1064.2 nm), KTA as the nonlinear crystal, the diode-end-pumped acousto-optically (AO) Q-switched intracavity OPO (IOPO) is studied. The various characteristics are studied, e.g. spectrum, output power, conversion efficiency and beam quality. The signal wavelength and the idler wavelength in this case are determined to be 1535 nm and 3469 nm. The output powers and pulse widths are measured with different pump powers and different pulse repetition rates (PRRs). When the diode power is 14.93 W and the PRR is 40 kHz, an output mid-infrared idler power of 0.46 W is obtained, the total output power of 1.83 W, corresponding to an optical-to-optical (diode power to total power) conversion efficiency of 12.3%. Under the same condition, the pulse duration of idler wave is 4 ns, corresponding to the peak power of 2.9 kW. The beam quality factors (M2) of idler wave is about 12.
     3. Theoretical analyses are performed to study the output characteristics of the diode-end-pumped AO Q-switched Nd:YAG/KTA IOPO. By regarding the initial population inversion density (IPID) and the intracavity photon densities as Gaussian distributions, the rate-equation model is deduced. Thermal lens effect in the Nd:YAG crystal is also considered. The thermal focal lens of Nd:YAG crystal is calculated with different pump powers. The theoretical results are in good agreement with the experimental data, which confirms the applicability of the theoretical model.
     4. A high efficiency KTiOAsO4 (KTA) intracavity optical parametric oscillator (IOPO) pumped by a diode-side-pumped acousto-optically (AO) Q-switched two-rod Nd:YAG laser is demonstrated. The pump source is a diode-side-pumped two-rod Nd:YAG laser. A 90°quartz rotator is inserted between the two Nd:YAG modules to compensate the birefringence. The output powers including signal power and idler power, and pulse widths are measured with different pump powers and different pulse repetition rates (PRRs). When the diode power is 208 W and the PRR is 12.5 kHz, the highest output mid-infrared idler power of 3.4 W is obtained. When the diode power is 208 W and the PRR is 7.5 kHz, the highest output total power of 15.8 W is obtained, corresponding to an optical-to-optical conversion efficiency of 7.6%, which is the highest conversion efficiency in diode-side-pumped KTA IOPOs to our knowledge.
     5. A compact efficient Raman laser at 1103.2 nm is realized within a diode-end-pumped acousto-optically Q-switched 1064.2 nm Nd:YAG laser. A 46-mm-long BaWO4 crystal is used as the active medium and its 332 cm-1 Raman mode is employed to finish the conversion from 1064.2 nm fundamental laser to 1103.2 nm Raman laser. At an incident pump power of 7.55 W, the first-Stokes power of 1.23 W at 1103.2 nm is obtained at a repetition rate of 17 kHz, corresponding to a diode-to-Stokes conversion efficiency of 16.3%. The Raman beam quality factors (M2) in the two orthogonal directions are 2.0±0.2 and 1.8±0.2, respectively. The thermal focal length of the BaWO4 crystal is estimated.
     6. A flash-lamp pumped Nd:YAG laser emitting 1073.8 nm is demonstrated. A concave-plane cavity is employed, and Nd:YAG rod with a size of (?)6 mm×110 mm. With incident pump energy of 69.6 J and pulse repetition rate of 1 Hz, output pulse energy of up to 487 mJ is obtained. The main innovations of this dissertation are as follows:
     1. Diode-end-pumped AO Q-switched intracavity Nd:YAG/KTA mid-infrared OPO is optimal designed. When the diode power is 14.93 W and the PRR is 40 kHz, an output mid-infrared idler power of 0.46 W is obtained, the total output power of 1.83 W, corresponding to an optical-to-optical conversion efficiency of 12.3%. This is the highest efficiency reported for the diode-end-pumped AO Q-switched intracavity mid-infrared KTA OPOs.
     2. Diode-side-pumped acousto-optically (AO) Q-switched two-rod Nd:YAG mid-infrared KTA-IOPO is reported for the first time. The pump source is a diode-side-pumped two-rod Nd:YAG laser and a 90°quartz rotator is inserted between the two Nd:YAG modules to compensate the birefringence. All this design optimize the pump source.
     3. A high efficiency KTiOAsO4 (KTA) intracavity optical parametric oscillator (IOPO) pumped by a diode-side-pumped acousto-optically (AO) Q-switched two-rod Nd:YAG laser is demonstrated. The highest average output power of 12.7 W at 1.54μm and 3.1 W at 3.47μm are obtained at the pulse repetition rate (PRR) of 7.5 kHz under the diode power of 208 W, corresponding to an optical-to-optical conversion efficiency of up to 7.6%. This is the highest conversion efficiency in diode-side-pumped KTA IOPOs to our knowledge.
     4. Diode -end-pumped compact efficient Nd:YAG/BaWO4 Raman laser at 1103.2 nm based on the Raman shift of 332 cm-1 is reported for the first time. At an incident pump power of 7.55 W, the first-Stokes power of 1.23 W at 1103.2 nm is obtained at a repetition rate of 17 kHz, corresponding to a diode-to-Stokes conversion efficiency of 16.3%. The thermal focal length of the BaWO4 crystal is estimated. Diode -side-pumped Nd:YAG/BaWO4 Raman laser at 1103.2 nm is reported for the first time.
     5. A flash-lamp pumped Nd:YAG laser emitting 1073.8 nm is demonstrated for the first time. With incident pump energy of 69.6 J and pulse repetition rate of 1 Hz, output pulse energy of up to 487 mJ is obtained.
引文
[1]T. H. Maiman, "Stimulated optical radiation in ruby," Nature, vol.187, pp.493-494,1960.
    [2]W.克希耐尔著,孙文,江泽文,程国祥译,《固体激光工程》第五版,科学出版社,2002.
    [3]姚宝权,王月珠,王骐,“中红外光参量振荡器发展状况分析,”激光技术,vol.26,pp.217-220,2002.
    [4]P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinrich, "Generation of optical harmonics," Phys. Rev. Lett., vol.7, pp.118-119,1961.
    [5]R. H. Kingston, "Parametric amplification and oscillation of optical frequencies," Proc. IRE., vol.50, pp.472-474,1962.
    [6]N. M. Kroll, "Parametric amplification in spatially extended media and amplification to the design of tuneable oscillators at optical frequencies," Phys. Rev., vol.127, pp.1207-1211, 1962.
    [7]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev.,vol.127, pp.1918-1939,1962.
    [8]S. A. Akhmanov and R. V. Khokhlov, "Concerning one possibility of amplification of light waves," Sov. Phys. JETP., vol.16, pp.252-257,1963.
    [9]C. C. Wang and G. W. Racette, "Measurement of parametric gain accompanying optical difference frequency generation,"Appl. Phys. Lett., vol.6, pp.169-171,1965.
    [10]J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett., vol.14, pp.973-976,1965.
    [11]R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, "Continuous Optical Parametric Oscillation in Ba2NaNb5O15,"Appl. Phys. Lett., vol.12, pp. 308-310,1968.
    [12]S. E. Harris, "Tunable optical parametric oscillators," IEEE, Proc., vol.57, pp.2096-2113, 1969.
    [13]R. G. Smith, "Optical parametric oscillators," In:Lasers. vol.4, pp.189-307,1976.
    [14]C. L. Tang, W. R. Bosenberg, T. Ukachi, R. J. Lane, and L. K. Cheng, "Advanced materials aid parametric oscillator development," Laser focus world, vol.26, pp.107-116,1990.
    [15]S. J. Brosnan and R.L. Byer, "Optical parametric oscillator threshold and linewidth studies," IEEE J. Quantum Elect., vol.15, pp.415-431,1979.
    [16]J. Q. Yao and T. S. Fahlen, "Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4," J. Appl. Phys., vol.55, pp.65-68,1984.
    [17]J. Q. Yao, W. D. Sheng, and W. Q. Shi, "Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals," J. Opt. Soc. Am. B, vol.9, pp.891-902,1992.
    [18]石顺祥,陈国夫,赵卫,刘继芳,《非线性光学》,西安电子科技大学出版社,2003.
    [19]赵圣之,《非线性光学》,山东大学出版社,2007.
    [20]李港,《激光频率的变换与扩展-实用非线性光学技术》,科学出版社,2005.
    [21]沈元壤著,顾世杰译,《非线性光学原理(上册)》,科学出版社,1987.
    [22]M. Ebrahimzadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn, "Intracavity continuous-wave singly resonant optical parametric oscillators," J. Opt. Soc. Am. B, vol.16, pp.1499-1511,1999.
    [23]D. Lee and N. C. Wong, "Stabilization and tuning of a doubly resonant optical parametric oscillator," J. Opt. Soc. Am. B, vol.10, pp.1659-1667,1993.
    [24]G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Efficient conversion from 1 to 2 μm by a KTP-based ring optical parametric oscillator," Opt. Lett., vol.27,1336-1338,2002.
    [25]H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren and H. Linnartz, "Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator," Chem. Phys. Lett., vol.442, pp.145-149,2007.
    [26]J. Jiang and T. Hasama, "Synchronously pumped femtosecond optical parametric oscillator based on an improved pumping concept," Opt. Commun., vol.220, pp.193-202,2003.
    [27]M. S. Webb, P. F. Moulton, J. J. Kasinski, R. L. Burnham, G. Loiacono, and R. Stolzenberger, "High-average-power KTiOAsO4 optical parametric oscillator," Opt. Lett., vol.23, pp. 1161-1163,1998.
    [28]A. Banerjee, D. Das, U. D. Rapol, and V. Natarajan, "Frequency Locking of Tunable Diode Lasers to a Rubidium-Stabilized Ring-Cavity Resonator," Appl. Opt., vol.43, pp.2528-2531, 2004.
    [29]M. K. Oshman, and S. E. Harris, "Theory of optical parametric oscillation internal to the laser cavity," IEEE J. Quantum Electron., vol.4, pp.491-502,1968.
    [30]G. M. Loiacono, D. N. Loiacono, J. J. Zola, R. A. Stolzenberger, T. M. Gee, and R. G. Norwood, "Optical properties and ionic conductivity of KTiOAsO4 crystals," Appl. Phys. Lett., vol.61, pp.895-897,1992.
    [31]T. Debuisschert, J. Raffy, J. P. Pocholle, and M. Papuchon, "Intracavity optical parametric oscillator:Study of the dynamics in pulsed regime," J. Opt. Soc. Am. B, vol.13, pp. 1569-1587,1996.
    [32]P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, "Coupled tandem optical parametric oscillator (OPO):an OPO within an OPO," Opt. Lett., vol.23, pp.1262-1264,1998.
    [33]A. Dubois, S. Victori, T. Lepine, P. Georges, and A. Brun, "High-repetition-rate eye-safe intracavity optical parametric oscillator,"Appl. Phys. B, vol.67, pp.181-183,1998.
    [34]G. H. Xiao, M. Bass, and M. Acharekar, "Passively Q-switched solid-state lasers with intracavity optical parametric oscillators," IEEE J. Quantum Electron., vol.34, pp. 2241-2245,1998.
    [35]Y. Yashkir and H. M. van Driel, "Passively Q-switched 1.57 μm intracavity optical parametric oscillator,"Appl. Opt., vol.38, pp.2554-2559,1999.
    [36]P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B, vol.17, pp.723-728,2000.
    [37]R. F. Wu, P. B. Phua, K. S. Lai, Y. L. Lim, E. Lau, A. Chng, C. Bonnin, and D. Lupinski, "Compact 2I-W 2-μm intracavity optical parametric oscillator," Opt. Lett., vol.25, pp. 1460-1462,2000.
    [38]P. B. Phua, K. S. Lai, and R. F. Wu, "Multiwatt High-Repetition-Rate 2-μm Output from an Intracavity KTiOPO4 Optical Parametric Oscillator," Appl. Opt., vol.39, pp.1435-1439, 2000.
    [39]R. F. Wu, K. S. Lai, H. F. Wong, W. J. Xie, Y. L. Lim, and E. Lau, "Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO," Opt. Express, vol.8, pp.694-698, 2001.
    [40]R. Dabu, C. Fenic, and A. Stratan, "Intracavity pumped nanosecond optical parametric oscillator emitting in the eye-safe range," Appl. Opt., vol.40, pp.4334-4340,2001.
    [41]Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, "High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser," Appl. Phys. B, vol.76, pp.263-266,2003.
    [42]Y. F. Chen, S. W. Chen, Y. C. Chen, Y. P. Lan, and S. W. Tsai, "Compact efficient intracavity optical parametric oscillator with a passively Q-switched Nd:YVO4/Cr4+:YAG laser in a hemispherical cavity," Appl. Phys. B, vol.77, pp.493-495,2003.
    [43]W. Zendzian, J. K. Jabczynsk, and J. Kwiatkowski, "Intracavity optical parametric oscillator at 1572-nm wavelength pumped by passively Q-switched diode-pumped Nd:YAG laser," Appl. Phys. B, vol.76, pp.355-358,2003.
    [44]Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, "High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser," Opt. Commun., vol.234, pp.337-342,2004.
    [45]W. Zendzian, J. K. Jabczynski, P. Wachulak, and J. Kwiatkowski, "High-repetition-rate, intracavity-pumped KTP OPO at 1572 nm," Appl. Phys. B, vol.80, pp.329-332,2005.
    [46]包照日格图,姜东升,周寿桓,“高亮度人眼安全KTP OPO激光器,”强激光与粒子束,vol.17, pp.198-200,2005.
    [47]Y. Wan, D. Y. Zhu, Q. Y. Zeng, Z. Y. Zhang, J. Zhang, and K. Han, "Brewster-oriented passive Q-switch intracavity optical parametric oscillator," Chinese Phys., vol.14, pp. 714-719,2005.
    [48]J. G. Miao, H. M. Tan, H. K. Bian, B. S. Wang, and J. Y. Peng, "Low threshold narrow pulse width eye-safe intracavity optical parametric oscillator at 1573 nm," Opt. Commun., vol.265, pp.349-353,2006.
    [49]W. Zendzian, J. K. Jabczynski, and J. Kwiatkowski, "High-peak-power intracavity OPO transmitter at 1572 nm," Proc. SPIE., vol.6216, pp.62160T-1-62160T-6,2006.
    [50]J. Miao, B. Wang, J. Peng, H. Tan, and H. Bian, "Highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-pumped passively Q-switched laser," Appl. Phys. B, vol.88, pp.193-196,2007.
    [51]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, H. Wang, J. Chang, S. Z. Fan, F. S. Ma, and G. F. Jin, "Intracavity optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser," Appl. Phys. B, vol.90, pp.439-443,2008.
    [52]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, "Efficient acousto-optically Q-switched intracavity Nd YAG KTiOAsO4 optical parametric oscillator," Appl. Phys. B, vol.92, pp.37-41,2008.
    [53]Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. Z. Fan, S. T. Li, S. S. Huang, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, "2.54 W 1535 nm KTiOAsO4 optical parametric oscillator within a diode-side-pumped acousto-optically Q-switched Nd:YAG laser,"J. Phys. D:Appl. Phys., vol.41, pp.135112,2008.
    [54]H. T. Huang, J. L. He, X. L. Dong, C. H. Zuo, B. Y. Zhang, G. Qiu, and Z. K. Liu, "High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser,"Appl. Phys. B, vol.90, pp.43-45,2008.
    [55]J. G. Miao, J. Y. Peng, B. S. Wang, and H. M. Tan, "Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-switched Nd:GdVO4 laser," Appl. Opt., vol.47, pp.4287-4291,2008.
    [56]H. Y. Zhu, G. Zhang, H. B. Chen, C. B. Huang, Y. Wei, Y. M. Duan, Y. D. Huang, H. Y. Wang, and G. Qiu, "High-efficiency intracavity Nd:YVO4\KTA optical parametric oscillator with 3.6 W output power at 1.53 μm," Opt. Express, vol.17, pp.20669-20674,2009.
    [57]H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, "Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4," Opt. Commun., vol.282, pp.601-604,2009.
    [58]Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, "High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,"Appl. Phys. B, vol.97, pp. 439-443,2009.
    [59]W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator," Opt. Express, vol.18, pp.8969-8975,2010.
    [60]K. Zhong, J. Q. Yao, D. G. Xu, J.L.Wang, J.S.Li, and P.Wang, "High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator," Appl. Phys. B, vol.100, pp.749-753,2010.
    [61]H. T. Huang, J. L. He, J. F. Yang, B. T. Zhang, J. L. Xu, and S. D. Liu, "Efficient GTR-KTP IOPO driven by a diode-pumped Nd:YAG/Cr4+:YAG laser with the shared cavity configuration,"Appl. Phys. B, vol.100, pp.471-476,2010.
    [62]Y. F. Chen, and L. Y. Tsai, "Comparison between shared and coupled resonators for passively Q-switched Nd:GdVO4 intracavity optical parametric oscillators," Appl. Phys. B, vol.82, pp. 403-406,2006.
    [63]Y. F. Chen, K. W. Su, Y. T. Chang, and W. C. Yen, "Compact efficient eye-safe intracavity optical parametric oscillator with a shared cavity configuration," Appl. Opt., vol.46, pp. 3597-3601,2007.
    [64]H. T. Huang, J. L. He, H. W. Yang, S. D. Liu, F. Q. Liu, X. Q. Yang, J. L. Xu, J. F. Yang and B. T. Zhang, "An investigation on the improved performance of shared cavity optical parametric oscillators," Opt. Commun., vol.284, pp.616-618,2010.
    [65]J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, "Linear and nonlinear optical properties of flux-grown KTiOAsO4,"Appl. Phys. Lett., vol.54, pp.783-785,1989.
    [66]L. K. Cheng, L.-T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, "Properties of doped and undoped crystals of single domain KTiOAsO4," Appl. Phys. Lett., vol.62, pp. 346-348,1993.
    [67]G. M. Loiacono, D. N. Loiacono, J. J. Zola, R. A. Stolzenberger, T. McGee, and R. G. Norwood, "Optical properties and ionic conductivity of KTiOAsO4 crystals," Appl. Phys. Lett., vol.61, pp.895-897,1992.
    [68]D. B. John, V. Herman, "Linear and nonlinear optical properties of flux-grown KTiOAsO4," Appl. Phys. Lett., vol.54, pp.783-785,1989.
    [69]P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, "Optical parametric oscillation with KTiOAsO4," Opt. Lett., vol.18, pp.1171-1173,1993.
    [70]W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, "Optical parametric frequency conversion properties of KTiOAsO4,"Appl. Phys. Lett., vol.65, pp.2765-2767,1994.
    [71]魏景谦,王继杨,刘耀岗,施路平,王民,邵宗书,“KTi0As04晶体的生长和性质研究,”人工晶体学报,vol.23, pp.95-101,1994.
    [72]D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W, Sibbett, "Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 μm," IEEE J. Quantum Electron., vol.33, pp.1-9,1997.
    [73]K. Kato, N. Umemura, and E. Tanaka, "90° Phase-Matched Mid-Infrared Parametric Oscillation in Undoped KTiOAsO4," Jpn. J. Appl. Phys., vol.36, pp.403-405,1997.
    [74]C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, "Femitosecond pulses tunable beyond 44 μm from a KTA-based optical parametric oscillator," Opt. Commun., vol.134, pp. 186-190.1997.
    [75]S. French, A. Miller, and M. Ebrahimzadeh, "Picosecond near- to mid-infrared optical parametric oscillator using KTiOAsO4," Opt. Quantum Electron., vol.29, pp.999-1021, 1997.
    [76]B. Ruffing, A. Nebel and R. Wallenstein, "All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator," Appl. Phys. B, vol.67, pp.537-544,1998.
    [77]S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, "KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers:analysis and comparison,"Appl. Phys. B, vol.70, pp.247-252,2000.
    [78]王克强,裴博,“3.76μm中红外激光参量振荡器,”中国激光,vol.27, pp.691-693,2000.
    [79]E. V. Degtiarev, R. A. Geiger, and D. R. Richard, "Compact dual wavelength 3.30 to 3.47-μm DIAL lidar," SPIE., vol.4036, pp.229-235,2000.
    [80]R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, "Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO," Opt. Express, vol.8, pp.694-698,2001.
    [81]X. Y. Peng, L. Xu, and A. Asundi, "Highly efficient high-repetition-rate tunable all-solid-state optical parametric oscillator," IEEE J. Quantum Electron., vol.41, pp.53-61,2005.
    [82]K. Zhong, J. Q. Yao, D. G. Xu, J. L. Wang, J. S. Li, and P. Wang, "High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator," Appl. Phys. B, vol.100, pp.749-753,2010.
    [83]Datasheet of ZGP by Inrad Inc U.S.A., available on http://www.inrad.com/page/crystals.html.
    [84]杨春晖,张建,“新型中、远红外波段非线性光学晶体磷化锗锌,”人工晶体学报,vol. 33, pp.1441-1443,2004.
    [85]H. G. Gallagher, K. M. Ward, R. W. Dawson, and A. W. Vere, "Progress in the Growth and Characterization of Zinc Germanium Phosphide Crystals," IEEE Proceedings, vol.2, pp. 510-511,2002.
    [86]P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, "Coupled tandem optical parametric oscillator (OPO):an OPO within an OPO," Opt. Lett., vol.23, pp.1262-1264,1998.
    [87]K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, "ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability," Opt. Lett., vol.25, pp. 841-843,2000.
    [88]K. L. Vodopyanov and P. G. Schunemann, "Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold," Opt. Lett., vol.28, pp. 441-443,2003.
    [89]S. Haidar, K. Miyamoto, H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun., vol.241, pp.173-178,2004.
    [90]王月珠,姚宝权,鞠有伦,贺万骏,“1.2 W中红外ZnGeP2光参量振荡器,”强激光与粒子束。vol.17, pp.163-168,2005.
    [91]B. Q. Yao, W. J. He, Y. F. Li, X. B. Zhang, Y. L. Ju, and Y. Z. Wang, "Technical Study of ZnGeP2 Optical Parametric Oscillator Pumped by a 2 μm Tm,Ho:YLF Laser," Chinese Journal of Lasers, vol.32, pp.39-42,2005.
    [92]K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, "Increasing the laser-induced damage threshold of single-crystal ZnGeP2," J. Opt. Soc. Am. B, vol.23, pp. 2310-2316,2006.
    [93]A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system," Opt. Express, vol.15, pp.14404-14413,2007.
    [94]P. B. Phua, K. S. Lai, and R. F. Wu, "Multiwatt High-Repetition-Rate 2-μm Output from an Intracavity KTiOPO4 Optical Parametric Oscillator," Appl. Opt., vol.39, pp.1435-1439, 2000.
    [95]R. I. Beach, S. B. Sutton, E. C. Honea, J. A. Skidmore, and M. A. Emanuel, "High-power 2-um diode-pumped Tm:YAG laser," SPIE., vol.2698, pp.168-175,1996.
    [96]K. S. Lai, W. J. Xie, R. F. Wu, Y. L. Lim, E. Lau, L. Chia, and P. B. Phua, " A 150W 2-micron diode-pumped Tm:YAG laser," OSA Trends in Optics and Photonics Series in Advanced Solid-State Lasers, vol.68, paper WE6,2002.
    [97]吴春婷,李玉峰,王振国,鞠有伦,王月珠,“室温下二极管泵浦的复合Tm:YAG激光器,”中国光学快报,vol.6, pp.594-596,2008.
    [98]R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, and L. Esterowitz, "Broadly tunable infrared parametric oscillator using AgGaSe2," Appl. Phys. Lett., vol.49, pp. 608-610,1986.
    [99]E. Niwa and K. Masumoto, "Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method," J. Cryst. Growth, vol.192, pp.354-360,1987.
    [100]T. J. Wang, Z. H. Kang, H. Z. Zhang, Q. Y. He, Y. Qu, Z. S. Feng, Y. Jiang, J. Y. Gao, Y. M. Andreev, and G. V. Lanskii, "Wide-tunable, high-energy AgGaS2 optical parametric oscillator," Opt. Express, vol.14, pp.13001-13006,2006.
    [101]W. R. Bosenberg, A.r Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "93% pump depletion,3.5-W continuous-wave, singly resonant optical parametric oscillator," Opt. Lett., vol.21, pp.1336-1338,1996.
    [102]L. E. Myers and W. R. Bosenberg, "Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators," IEEE J. Quantum Electron., vol.33, pp. 1663-1672,1997.
    [103]K. J. McEwan and J. A. C. Terry, "A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO)," Opt. Commun., vol.182, pp.423-432,2000.
    [104]H. Ishizuki, I. Shoji, and T. Taira, "High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device," Opt. Lett., vol.29, pp. 2527-2529,2004.
    [105]J. Yu, Y. Baib, N. P. Barnesa, H. R. Leec, M. Petrosd, S. Chenb, and B. C. Trieua, Intra-Cavity Pumped Periodically Poled LiNbO3 Optical Parametric Oscillator with Double Ring Configuration," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics, vol.94, pp.390-393,2004.
    [106]G. M. H. Knippels, A. F. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thenot, and J. J. Zondy, "Mid-infrared (2.75-6.0-μm) second-harmonic generation in LilnS2," Opt. Lett., vol.26, pp.617-619,2001.
    [107]董春明, 王善朋,陶绪堂,“中红外非线性光学晶体的研究进展,”人工晶体学报,vol.20, pp.139-150,2001.
    [108]W. Shi, Y. J. Ding, X. D. Mu, and N. Fernelius, "Tunable and coherent nanosecond radiation in the range of 2.7-28.7μm based on difference-frequency generation in gallium selenide," Appl. Phys. Lett., vol.80, pp.3889-3891,2002.
    [109]P. G. Schunemann, K. T. Zawilski, T. M. Pollak, D. E. Zelmon, N. C. Fernilius, and F. K. Hopkins, "New Mid-IR Nonlinear Optical Crystal:CdSiP2," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), paper CFX7,2008.
    [110]V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, "Subnanosecond,1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm," Opt. Lett., vol.35, pp.1230-1232, 2010.
    [111]A. G. S. Smekal, "The quantum theory of dispersion," Naturwiss, vol.11, pp.873-875, 1923.
    [112]C. V. Raman, and K. S. Krishnan, "A new type of secondary radiation," Nature, vol.121, pp. 501-502,1928.
    [113]G. S. Landsberg and L. I. Mandelshtam, "A novel effect of light scattering in crystals," Naturwiss, vol.16, pp.557-558,1928.
    [114]E. J. Woodbury and W. K. Ng, "Ruby laser operation in the near IR," Proc. IRE., vol.50, pp. 2367-2368,1962.
    [115]N. Bloembergen, and Y. R. Shen, "Multimode effects in stimulated Raman emission," Phys. Rev. Lett., vol.13, pp.720-724,1964.
    [116]W. H. Culver, J. T. A. Vanderslice, and V. W. T. Townsend, "Controlled generation of intense light pulses in reverse-pumped Raman lasers,"Appl. Phys. Lett., vol.12, pp.189-190,1968.
    [117]J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, "Raman pulse compression of excimer lasers for application to laser fusion,"IEEE J. Quantum Electron., vol.15, pp.342-368, 1979.
    [118]J. Goldhar, and J. R. Murray, "Intensity averaging and four-wave mixing in Raman amplifiers," IEEE J. Quantum Electron., vol.18, pp.399-409,1982.
    [119]R. Frey, A. D. Martino, and F. Pradere, "High-efficiency pulse compression with intracavity Raman oscillators," Opt. Lett., vol.8, pp.437-439,1983.
    [120]R. S. F. Chang, and N. Djeu, "Amplification of a diffraction-limited Stokes beam by a severely distorted pump," Opt. Lett., vol.8, pp.139-141,1983.
    [121]A. Flusbery, and D. Korff, "Wave-front replication versus beam cleanup by Stimulated Raman Scattering,"J. Opt. Soc. Am. B, vol.4, pp.687-690,1987.
    [122]J. R. Ackerhalt, Y. B. Band, J. S. Krasinski, and D. F. Heller, "Short-pulse intracavity Raman laser," Opt. Lett., vol.13, pp.646-648,1988.
    [123]J. C. V. Heuvel, F. J. M. van Putten, and R. J. L. Lerou, "Quality of the Stokes beam in stimulated Raman scattering," IEEE J. Quantum Electron., vol.30, pp.2211-2219,1994.
    [124]J. C. V. Heuvel, "Numerical study of beam cleanup by stimulated Raman scattering," J. Opt. Soc. Am. B, vol.12, pp.650-657,1995.
    [125]L. L. Losev, and V. I. Soskov, "High-contrast ratio subpicosecond Nd:glass laser with Raman master oscillator," Opt. Commun., vol.135, pp.71-76,1997.
    [126]R. W. Minck, E. E.Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett., vol.17, pp.229-232,1966.
    [127]J. R. Murray, J. Goldhar, and A. Szoke, "Backward Raman gain measurements for KrF laser radiation scattered by CH4," Appl. Phys. Lett., vol.32, pp.551-553,1978.
    [128]G. Eckhardt, D. P. Bortfeld, and M.Geller, "Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and sulfur single crystals," Appl. Phys. Lett., vol.3, pp. 137-138,1963.
    [129]G. P. Dzhotyan, E. D. Yu, I. G. Zubarev, A. B. Mironov, and S. I. M ikhailov, "Theory of a singly resonant optical parametric oscillator," Sov. J. Quantum Electron., vol.7, pp.685-691, 1977.
    [130]E. O. Ammann, and C. D. Decker, "0.9 W Raman oscillator,"J. Appl. Phys., vol.48, pp. 1973-1975,1977.
    [131]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [132]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun., vol.209, pp.403-409,2002.
    [133]F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, and S. Z. Fan, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,"J.Phys. D., vol.39, pp.2090-2093,2006.
    [134]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Electron., vol.42, pp.927-933,2006.
    [135]T. T. Basiev, A. V. Gavrilov, V. V. Osiko, S. N. Smetanin, and A. V. Fedin, "High-average-power SRS conversion of radiation in a BaWO4 crystal," Quantum Electron., vol.34, pp.649-651,2004.
    [136]H. M. Pask and J. A. Piper, "Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Opt. Commun., vol.148, pp.285-288,1998.
    [137]J. Simons, H. Pask, P. Dekker, and J. Piper, "Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Opt. Commun., vol.229, pp.305-310,2004.
    [138]R. P. Mildren, M. Convery, H. M. Pask, and J. A. Piper, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express, vol.12, pp.785-790,2004.
    [139]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [140]S. T. Li, X. Y. Zhang, Q. P. Wang, Z. H. Cong, Z. J. Liu, S. Z. Fan, and X. L. Zhang, "Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled Nd:YAG/GdVO4 Raman laser," J. Phys. D., vol.41,055104,2008.
    [141]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, "Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett., vol.20, pp.1017-1019,1995.
    [142]A. Brenier, C. Tu, J. Li, Z. Zhu, and B. Wu, "Eye-safe laser radiation from stimulated Raman scattering frequency self-conversion in KGd(WO4)2:Nd3+," J. Phy. Con. Matt., vol. 13, pp.4097-4103,2001.
    [143]Y. F. Chen, "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Opt. Lett., vol.29, pp.2172-2174,2004.
    [144]A. Major, J. S. Aitchison, and P. W. E. Smith, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp.421-423,2005.
    [145]J. H. Huang, J. P. Lin, R. B. Su, J. H. Li, H. Zheng, G. H. Xu, F. Shi, Z. Z. Lin, J. Zhuang, W. R. Zeng, and W. X. Lin, "Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal," Opt. Lett., vol.32, pp.1096-1098,2007.
    [146]Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal," Appl. Phys. B, vol.93, pp.327-330,2008.
    [147]V. A. Lisinetskii, H. J. Eichler, H. Rhee, X. Wang, and V. A. Orlovich, "The generation of high pulse and average power radiation in eye-safe spectral region by the third stokes generation in barium nitrate Raman laser," Opt. Commun., vol.281, pp.2227-2232,2008.
    [148]Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen, "Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium," Opt. Express, vol.17, pp.4330-4335,2009.
    [149]N. Zong, Q. J. Cui, Q. L. Ma, X. F. Zhang, Y. F. Lu, C. M. Li, D. F. Cui, Z. Y. Xu, H. J. Zhang, and J. Y. Wang, "High average power 1.5 μm eye-safe Raman shifting in BaWO4 crystals," Appl. Opt., vol.48, pp.7-10,2009.
    [150]T. T. Basiev, M. N. Basieva, A. V. Gavrilov, M. N. Ershkov, L. I. Ivleva, V. V. Osiko, S. N. Smetanin, and A. V. Fedin, "Efficient conversion of Nd:YAG laser radiationto the eye-safe spectral region by stimulated Raman scatteringin BaW04 crystal," Quantum Electron., vol. 40, pp.710-715,2010.
    [151]A. A. Kaminskii, H. J. Eichler, K. I. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. G. Sole, J. Fernandez, and R. Balda, "Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals," Appl. Opt., vol.38, pp.4533-4547,1999.
    [152]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314,1999.
    [153]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient x(3)-materials for Raman lasers," Opt. Commun., vol.194, pp. 201-206,2001.
    [154]H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, "Raman crystal lasers in the visible and near-infrared," J. Zhejiang Univ. Sci., vol.4, pp.241-253,2003.
    [155]A. S. Eremenko, S. N. Karpukin, and A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals," Sov. J. Quantum Electron., vol.10, pp.113-114,1980.
    [156]S. N. Karpukhin, and A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quantum Electron., vol.16, pp.1027-1031,1986.
    [157]P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, "Stimulated Raman scattering of picosecond pulses in barium nitrate crystals," Opt. Commun., vol. 97, pp.59-64,1993.
    [158]P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal,' Opt. Mater., vol.11, pp.315-334,1999.
    [159]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystal," Opt. Commun., vol.177, pp.397-404,2000.
    [160]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet," IEEE J. Quantum Elect., vol.38, pp.1471-1478,2002.
    [161]王正平,张怀金,许心光,王继杨,邵宗书,蒋民华,"BaWO4晶体的受激拉曼散射,” 中国激光,vol.24, pp.1428-1428,2004.
    [162]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp. 3335-3337,2005.
    [163]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [164]C. Zhang, X. Y. Zhang, Q. P. Wang, S. Z. Fan, X. H. Chen, Z. H. Cong, Z. J. Liu, Z. Zhang, H. J. Zhang, and F. F. Su, "Efficient extracavity Nd:YAG/BaWO4 Raman laser," Laser Phys. Lett., vol.6, pp.505-508,2009.
    [165]B. Alain, G. H. Jia, and C. Y. Tu, "Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd3+ crystal," J. Phys. Condens. Matter., vol.16, pp.9103-9108, 2004.
    [166]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [167]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707,2008.
    [168]V. A. Berenberg, S. N. Karpukhin, and I. V. Mochalov, "Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal," Sov. J. Quantum Electron., vol.17, pp. 1178-1179,1987.
    [169]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, "Stimulated Raman scattering in Nd:KGW laser with diode pumping," J. Alloy. Compd., vol.300-301, pp.300-302,2000.
    [170]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5 μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp.421-423,2005.
    [171]A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun., vol.183, pp.277-287,2000.
    [172]V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser," Laser Phys. Lett., vol.3, pp.71-74,2006.
    [173]T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode pumped 500-picosecond Nd:GdVO4 Raman laser," Laser Phys. Lett., vol.1, pp.237-240,2004.
    [174]A. W. Tucher, M. Birnbaun, C. L. Fincher, and L. G. Deshazer, "Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 mm," J. Appl. Phys., vol.47, pp.232-234,1976.
    [175]T. Jensen, V. C. Ostroumov, J. P. Meyn, G. Huber, A. I. Zaqumennyi, and I. A. Shcherbkov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B, vol.58, pp.373-379,1994.
    [176]J. J. Zayhowski, and C. Dill Ⅲ, "Coupled-cavity electrooptically Q-switched Nd:YVO4 microchip lasers," Opt. Lett., vol.20, pp.716-718,1995.
    [177]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634, 2004.
    [1]P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,"J.Opt. Soc. Am. B, vol.17, pp.723-728,2000.
    [2]E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, "High Power Conversion to Mid-IR Using KTP and ZGP OPOs," in Advanced Solid State Lasers, OSA Trends in Optics and Photonics, vol.26,1999.
    [3]M. K. Oshman, and S. E. Harris, "Theory of optical parametric oscillation internal to the laser cavity," IEEE J. Quantum Electron., vol.4, pp.491-502,1968.
    [4]J. Falk, J. M. Yarborough, and E. O. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Electron., vol.7, pp.359-369,1971.
    [5]T. Debuisschert, J. Raffy, J. P. Pocholle, and M. Papuchon, "Intracavity optical parametric oscillator:Study of the dynamics in pulsed regime," J. Opt. Soc. Am. B, vol.13, pp. 1569-1587,1996.
    [6]A. Dubois, S. Victori, T. Lepine, P. Georges, and A. Brun, "High-repetition-rate eyesafe intracavity optical parametric oscillator," Appl. Phys. B, vol.67, pp.181-183,1998.
    [7]Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, "Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm," Appl. Phys. B, vol.77, pp.505-508,2003.
    [8]Y. F. Peng, W. M. Wang, X. B. Wei, and D. M, Li, "High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN," Opt. Lett.,vol.34, pp.2897-2899,2009.
    [9]A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, "3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system," Opt. Express, vol.15, pp.14404-14413,2007.
    [10]V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, "Subnanosecond,1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm," Opt. Lett., vol.35, pp.1230-1232, 2010.
    [11]R. I. Beach, S. B. Sutton, E. C. Honea, J. A. Skidmore, and M. A. Emanuel, "High-power 2-um diode-pumped Tm:YAG laser," SPIE., vol.2698, pp.168-175,1996.
    [12]B. Q. Yao, W. J. He, Y. F. Li, X. B. Zhang, Y. L. Ju, and Y. Z. Wang, "Technical Study of ZnGeP2 Optical Parametric Oscillator Pumped by a 2 μm Tm,Ho:YLF Laser," Chinese Journal of Lasers, vol.32, pp.39-42,2005.
    [13]G. M. Loiacono, D. N. Loiacono, J. J. Zola, R. A. Stolzenberger, T. M. Gee, and R. G. Norwood, "Optical properties and ionic conductivity of KTiOAsO4 crystals," Appl. Phys. Lett., vol.61, pp.895-897,1992.
    [14]R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, "Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO," Opt. Express, vol.8, pp.694-698,2001.
    [15]J. G. Miao, J. Y. Peng, B. S. Wang, and H. M. Tan, "Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-switched Nd:GdVO4 laser," Appl. Opt., vol.47, pp.4287-4291,2008.
    [16]K. Zhong, J. S. Li, H. X. Cui, D. G. Xu, Y. Y. Wang, R. Zhou, J. L. Wang, P.Wang, and J. Q. Yao, "Low Threshold and High Conversion Efficiency Nanosecond Mid-Infrared KTA OPO," Chinese Phys. Lett., vol.26, pp.124213.2009.
    [17]K. Zhong, J. Q. Yao, D. G. Xu, J.L.Wang, J.S.Li, and P.Wang, "High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator," Appl. Phys. B, vol.100,749-753,2010.
    [18]姚建铨,《非线性光学频率变换及激光调谐技术》,科学出版社,1995.
    [19]K. Kato, "Second-harmonic and sum-frequency generation in KTiOAsO4," IEEE J. Quantum Electron., vol.30, pp.881-883,1994.
    [20]L. K. Cheng, L.-T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, "Properties of doped and undoped crystals of single domain KTiOAsO4," Appl. Phys. Lett., vol.62, pp. 346-348,1993.
    [21]D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. McPherson, "Infrared corrected Sellmeier coeffcients for potassium titanyl arsenate," J. Opt. Soc. Am. B, vol.12, pp.794-796, 1995.
    [22]K. S. Lai, R.F. Wu and P.B. Phua, "Multiwatt high-repetition-rate 2 μm output from an intracavity KTiOPO4 optical parametric oscillator," Proc. SPIE, vol.3928, pp.43-51,2000.
    [23]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus, and H. Weber, "Modeling of diode-pumped actively Q-switched lasers," IEEE J. Quantum Electron., vol.35, pp.1912-1918,1999.
    [24]G. Li, S. Zhao, H, Zhao, K. Yang, and S.Ding, "Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial," Opt. Commun., vol.234, pp.321-328,2004.
    [25]K. Yang, S. Zhao, G. Li, and H. Zhao,"A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser," IEEE Journal of Quantum Electronics, vol. 40, pp.1252-1257,2004.
    [26]W. Koechner, "Thermal Lensing in a Nd:YAG Laser Rod,"Appl. Opt., vol.9, pp.2548-2553, 1970.
    [27]S. Z. Fan, X. Y. Zhang, Q. P. Wang, S. T. Li, S. H. Ding, and F. F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun., vol.266, pp.620-626,2006.
    [28]H. Glur, R. Lavi, and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron., vol.40, pp.499-504,2004.
    [1]T. T. Basiev, A. A. Sobol, Y. K. Voronko, and E. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp. 205-216,2000.
    [2]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko,and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314, 1999.
    [3]J. Findeisen, H. J. Eichler, P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Opt. Commun., vol.181, pp.129-133,2000.
    [4]T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, " Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Commun., vol.232, pp.327-331,2004.
    [5]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5 μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp.421-423,2005.
    [6]J. H. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, "Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion," Opt. Lett., vol.30, pp.427-2429,2005.
    [7]J. Liu, V. Petrov, U. Griebner, H. Zhang, and J. Wang, "High-Power Diode-Pumped Passively Q-Switched Yb3+:KLu(WO4)2Laser," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America), paper WE41,2008.
    [8]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt. Mater., vol.23, pp.439-442, 2003.
    [9]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, "Highly efficient Raman frequency converter with strontium tungstate crystal," IEEE J. Quantum Electron.,vol.42, pp.78-84,2006.
    [10]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser," Opt. Lett.vol.33, pp.705-707,2008.
    [11]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [12]A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun., vol.183, pp.277-287,2000.
    [13]G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, "Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser," Opt. Lett., vol.28, pp.426-428,2003.
    [14]V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser," Laser Phys Lett., vol.3, pp.71-74,2005.
    [15]J. T. Murray, W. L. Austin, and R. C. Ppwell, "Advanced solid states lasers," OSA Trends in Optics and Photonics on Advanced Solid State Lasers, Opt. S. A., Washington DC,1998.
    [16]C. H. Li and Y. C. Huang, "Pulsed intracavity frequency-doubled CaWO4 Raman laser for narrow-line sodium-yellow radiation," OSA in CLEO and QELS, San Jose, CA,2010.
    [17]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystal," Opt. Commun., vol.177, pp.397-404,2000.
    [18]P. Cerny and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp.360-362,2002.
    [19]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet," IEEE J. Quantum Elect., vol.38, pp.1471-1478,2002.
    [20]王正平,张怀金,许心光,王继杨,邵宗书,蒋民华,"BaWO4晶体的受激拉曼散射,”中国激光,vol.24, pp.1428-1428,2004.
    [21]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp. 3335-3337,2005.
    [22]W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, "The thermal and optical properties of BaWO4 single crystal," J. Cryst. Growth, vol.276, pp.208-214,2005.
    [23]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [24]C. Zhang, X. Y. Zhang, Q. P. Wang, S. Z. Fan, X. H. Chen, Z. H. Cong, Z. J. Liu, Z. Zhang, H. J. Zhang, and F. F. Su, "Efficient extracavity Nd:YAG/BaWO4 Raman laser," Laser Phys. Lett., vol.6, pp.505-508,2009.
    [25]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous wave, yellow emission," Opt. Express, vol.18, pp.5984-5992,2010.
    [26]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [27]刘凤芹,夏海瑞,冉栋刚,孙尚倩,凌宗成,葛文伟,张怀金,"BaWO4晶体的拉曼光谱分析,”光散射学报,vol.18, pp.248-253,2006.
    [28]T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp. 205-216,2000.
    [29]T. M. Blackmer, J. S. Schepers, and G. E. Varel, "Light reflectance compared with other nitrogen stress measurements in corn leaves," Agron. J., vol.86, pp.934-938 (1994).
    [30]Grzegorz Adamiec, "Properties of the 360 and 550 nm TL emissions of the '110℃ peak' in fired quartz," Radial. Meas., vol.39, pp.105-110 (2005).
    [31]J. T. Murray, R. C. Powell, and N. Peyghambarian, "Properties of stimulated Raman scattering in crystals,"J.Lumin., vol.89, pp.66-67,1996.
    [32]N. Reng, and B. Eppich, "Definition and measurements of high power laser beam parameters," Opt. Quantum Electron., vol.24, pp.973-992,1992.
    [33]王青圃,张行愚,刘泽金,李平,《激光原理》,山东大学出版社,2003.
    [34]S. Z. Fan, X. Y. Zhang, Q. P. Wang, S. T. Li, S. H. Ding, and F. F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun., vol.266, pp.620-626,2006.
    [35]H. Glur, R. Lavi, and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron., vol.40, pp.499-504,2004.
    [1]W.克希耐尔著,孙文,江泽文,程国祥译,《固体激光工程》第五版,科学出版社,2002.
    [2]王青圃,张行愚,赵圣之,《激光物理学》,山东大学出版社,1993.
    [3]杜秀兰,吴峰,“固体激光器的灯泵浦和二极管泵浦方式比较,”应用光学,vol.25,pp.37-40,2004.
    [4]王青圃,张行愚,刘泽金,李平,《激光原理》,山东大学出版社,2003.
    [5]A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, "Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine," Opt. Lett., vol.17, pp.1204-1206,1992.
    [6]B. K. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, "Efficient, frequency-stable laser-diode-pumped Nd:YAG laser," Opt. Lett., vol.10, pp.62-64,1985.
    [7]A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, and T. Yanagitani, "5.5 J pyrotechnically pumped Nd3+:Y3Al5O12 ceramic laser," Laser Phys. Lett., vol.3, pp.124-128, 2006.
    [8]H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, "An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%," Laser Phys. Lett., vol,5, pp.879-881,2008.
    [9]K. Otsuka, T. Ohtomo, "Polarization properties of laser-diode-pumped micro-grained Nd:YAG ceramic lasers," Laser Phys. Lett., vol.5, pp.659-663,2008.
    [10]J. L. Li, D. Lin, L. X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W. B. Chen, "Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output," Laser Phys. Lett., vol.6, pp.711-714,2009.
    [11]V. Kubeccaronek, W. Zendzian, J.K. Jabczynski, J. Kwiatkowski, H. Jelinkova, A. Stintz, and J. C. Diels, "Side pumped Nd:YAG slab laser mode-locked using multiple quantum well saturable absorbers," Laser Phys. Lett., vol.5,29-33,2008.
    [12]M. Gong, H. Zhang, H. Kang, D. Wang, L. Huang, P. Yan, and Q. Liu, "A chamfered-edge-pumped planar waveguide solid-state laser," Laser Phys. Lett., vol.5, pp. 518-521,2008.
    [13]K. Williams, L. Goldberg, R. Esman, M. Dagenais, and J. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319nm non-planar ring lasers," Electron. Lett., vol.25, pp. 1242-1243,1989.
    [14]H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, J. Chen, W. D. Chen, and Z. Q. Chen, "Diode-side-pumped 131 W,1319 nm single-wavelength CW Nd:YAG laser," Appl. Opt., vol. 46, pp.384-388,2007.
    [15]T. Fan, and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron,.vol.23, pp.605-611,1987.
    [16]T. Wang, J. Q. Yao, G. J. Yu, P. Wang, X. F. Li, and Y. Z. Yu, "Study on CW Nd:YAG infrared laser at 1319 nm," Chin. Opt. Lett., vol.1, pp.661-663,2003.
    [17]R. Zhou, E. B. Li, H. F. Li, P. Wang, and J. Q. Yao, "Continuous-wave,15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm," Opt. Lett., vol.31, pp.1869-1871, 2006.
    [18]C. Zhang, X. Y. Zhang, Q. P. Wang, Z. H. Cong, S. Z. Fan, X. H. Chen, Z. J. Liu, and Z. Zhang, "Diode-pumped Q-switched 946 nm Nd:YAG ceramic laser, " Laser Phys. Lett., vol. 6, pp.521-525,2009.
    [19]Y. F. Chen, Y. P. Lan, and S. W. Tsai, "High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm," Opt. Commun., vol.234, pp.309-313,2004.
    [20]S. S. Zhang, Q. P. Wang, X. Y. Zhang, Z. H. Cong, S. Z. Fan, Z. J. Liu, and W. J. Sun, "Continuous-wave ceramic Nd:YAG laser at 1123 nm," Laser Phys. Lett., vol.6, pp.864-867, 2009.
    [21]S. S. Zhang, Q. P. Wang, X. Y. Zhang, Z. J. Liu, W. J. Sun, and S. W. Wang, "High power and highly efficient Nd:YAG laser emitting at 1123 nm," Laser Phys. vol.19, pp.2159-2162, 2009.
    [22]J. H. Shorter, J. Wormhoudt, C. E. Kolb, J. J. Zayhowski, B. Johnson, and N. Newbury, "Diode-Pumped Solid State Laser Based Sensors for Cone Penetrometer Applications," U.S. ARMY RESEARCH OFFICE,1997.
    [23]J. Wormhoudt, J. H. Shorter, C. C. Cook, and J. J. Zayhowski, "Diode-pumped 214.8-nm Nd:YAG/Cr4+:YAG microchip laser system for the detection of NO," Appl. Opt., vol.39, pp.4418-4424,2000.
    [24]H. W. Zhang, Q. H. Yang, and J. Xu, "Spectroscopic characteristics of 10% Yb3+-doped Yttrium lanthanum oxide transparent laser ceramics,"J. Chin. Ceramic Soc., vol.34, pp. 675-678,2006.
    [25]A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser:femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys., vol.14, pp.1375-1381,2004.
    [26]N. S. Vorobev, L. B. Glebov, and V. I. Smimov, "Generation of Stark spectral components in Nd:YAP and Nd:YAG lasers by using volume Bragg gratings," Quantum Electron., vol.39, pp.43-45,2009.
    [27]A. A. Badalian, S. O. Sapondzhian, D. G. Sarkisian, and G. A. Torosian, "Mode-locked Nd:YAG laser with output at 1052,1061,1064, and 1074 nm," Sov. Tech. Phys. Lett., vol.11, pp.513-514,1985.
    [28]J. Marling, "1.05-1.44μm tunability and performance of the CW Nd3+:YAG laser," IEEE J. Quantum Elect., vol.14, pp.56-62,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700