腐殖酸的分离及其组分对水中2,4-D光降解作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖酸(humic acids,HA)是天然水体中溶解性有机质(dissolved organic matter,DOM)的主要组成部分,也是最重要的天然吸光物质之一,腐殖酸吸收太阳光后能够对水体中持久性有毒物质(persistent toxic substances,PTS)的迁移转化起到重要作用。铁是地球中最丰富的过渡金属元素,其离子形态广泛存在于天然水体中。当腐殖酸和铁离子共存时,通过配位键作用结合成稳定的络合物,对共存体系中PTS的光解过程产生重要影响,而腐殖酸组成非常复杂,其中具有特殊活性的物质其结构与光化学作用之间的关系并不清楚,因此建立新颖有效的腐殖酸分离方法,将腐殖酸按结构和官能团进行分离尤为关键。本论文研究了腐殖酸的分离及其组分对水体中微量PTS的光解作用,选择了全世界范围内广泛使用的氯代苯氧羧酸类除草剂2,4-二氯苯氧乙酸(2,4-dichlorolphenoxyacetic acid,2,4-D)作为目标污染物,获得了如下主要研究结果:
     (1)利用红外光谱、紫外/可见吸收光谱和荧光光谱等分析结果表明腐殖酸和Fe(Ⅲ)共存时形成稳定的络合物;电子顺磁共振图谱表明,水溶液中HA、Fe(Ⅲ)以及HA-Fe(Ⅲ)络合物在λ=355 nm光照下均能产生·OH。在模拟太阳光照射下(500 W氙灯,λ>290nm)考察了腐殖酸和Fe(Ⅲ)的存在对2,4-D光解速率的作用,反应动力学分析表明2,4-D的光降解遵循准一级动力学过程,单纯2,4-D(2 mg/L)溶液的光解速率常数为0.007 h~(-1),而含有HA(5 mg/L)、Fe(Ⅲ)(0.2 mmol/L)或二者络合物的2,4-D溶液的光解速率常数分别是0.004、0.034和0.046 h~(-1),结果显示HA-Fe(Ⅲ)络合物显著提高2,4-D的光解速率,具有较强的光催化活性。
     (2)采用硅胶层析的方法,以不同比例的乙醇和水混合溶剂作为流动相对腐殖酸进行淋洗,按极性从弱到强将其分成F_A、F_B、F_C和F_D不同级分。元素分析、紫外/可见吸收光谱和红外光谱分析表明,强极性级分F_C和F_D含有较多的芳香成分,在500 W氙灯的照射下,腐殖酸及其四个级分均减慢了2,4-D的光解速率,且强极性级分F_C和F_D对2,4-D的光解抑制作用比弱极性级分F_A和F_B更明显,说明腐殖酸的光化学活性与其结构和官能团有关。
     (3)采用分子印迹的方法,利用酞菁铜分子印迹聚合物有效地分离了腐殖酸中类酞菁结构的物质,电子顺磁共振图谱表明,在λ=355 nm脉冲激光的照射下,腐殖酸溶液中含有类酞菁结构的级分(F_(mip-b))产生较多的·OH,且在模拟太阳光照射下(氙灯耐气候试验箱,λ>290 nm),F_(mip-b)具有较好的光化学活性,促进了2,4-D的光降解,2,4-D的准一级降解动力学常数是在流出液级分(F_(eff))存在时的2.5倍。
     (4)利用叶绿素、卟啉铁和内消旋-四苯基卟啉分子印迹聚合物选择性地分离了腐殖酸中与各自结构类似的光敏性物质;同时,利用叶绿素、卟啉铁和内消旋-四苯基卟啉三种分子印迹聚合物的混合物将腐殖酸中具有外伸π-共轭大环结构的类卟啉物质分离出来,在模拟太阳光照射下(氙灯耐气候试验箱,λ>290 nm),腐殖酸中类卟啉的级分(F_(mip-b))比流出液级分(F_(eff))具有更好的光化学活性。
     上述研究结果表明,采用硅胶层析方法和分子印迹方法能够有效地分离腐殖酸中具有光化学活性的组分,腐殖酸中各种不同组分的确对污染物的地球化学过程产生重要影响,这个结果对认识自然界中腐殖酸对微量有机污染物的光解历程具有重要价值。
Humic acids(HA),the major components of dissolved organic matter(DOM),are widely distributed in aquatic environment,and play an important role in photochemistry because they are one of the most important natural sunlight-absorbing components.HA can affect the transfer and transformation of persistent toxic substances(PTS) in natural water under sunlight irradiation.Iron,a ubiquitous element in natural water,can complex with HA to form HA-Fe(Ⅲ) complex which could affect the photodegradation of PTS.However,the relationship between photochemical activity and HA's structure hasn't been well established due to HA's complexity.Therefore,it is important to separate HA according to structure and functional group using novel and effective methods,and to study photolysis pathway of PTS in solutions containing HA fractions and Fe(Ⅲ).In this dissertation,the separation of HA and the effects of their fractions on the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated sunlight were investigated,and the main results are as following:
     (1) The interactions of HA with Fe(Ⅲ) were characterized by Fourier transform infrared spectroscopy(FTIR) spectra,ultraviolet-visible(UV-vis) absorption spectra and fluorescence spectra,indicating the formation of HA-Fe(Ⅲ) complex.Electron paramagnetic resonance (EPR) spectra show·OH radicals are generated with pulsed laser illumination atλ=355 nm in solutions containing HA,Fe(Ⅲ) and HA-Fe(Ⅲ) complex.Under the simulated sunlight irradiation(500 W Xe lamp,λ>290 nm),the photodegradation of 2,4-D followed the pseudo-first-order reaction kinetics.The pseudo-first-order rate constant of 2,4-D photodegradation with the presence of only 2,4-D(2 mg/L) was 0.007 h~(-1).In the presence of HA(5 mg/L),Fe(Ⅲ)(0.2 mmol/L) and HA-Fe(Ⅲ) complex,the rate constants of 2,4-D degradation were 0.004,0.034,and 0.046 h~(-1),respectively.The results indicated that in the coexistence of HA and Fe(Ⅲ),the formed HA-Fe(Ⅲ) complex showed better increased effect on the photodegradation of 2,4-D and had better photo-catalytic activity.
     (2) Based on the different polarity,HA was separated into four fractions(F_A,F_B,F_C,and F_D) from weak to strong by silica gel chromatogram using different volume proportions of ethanol and water as the mobile phase.Elemental analysis,UV-vis absorption spectra and FTIR spectra showed that the fractions F_C and F_D possessed more aromatic C=C content.The influences of HA and its fractions on the photolysis were investigated by the photodegradation of 2,4-D solutions under 500 W Xe lamp irradiation.All the bulk HA and its fractions decreased the degradation rates of 2,4-D.The fractions of strong polarity F_C and F_D retarded the degradation rate more than the fractions of weak polarity F_A and F_B,indicating the photochemical activity of HA depended on its structure and functional group.
     (3) Copper phthalocyanine(CuPc) imprinted polymers(MIP) were synthesized successfully and employed to separate phthalocyanine-like(Pc-like) substances from HA using MIP technique effectively.EPR spectra indicated that more·OH radicals were generated in solution of the Pc-like fraction(F_(mip-b)) under light irradiation(λ=355 nm).F_(mip-b) presented better photochemical activity for degradation of 2,4-D when irradiated by simulated sunlight(Xe lamp phytotron,λ>290 nm).The pseudo-first-order rate constant of 2,4-D photodegradation in the presence of F_(mip-b) was 2.5 times as high as that the presence of effluent fraction(F_(eff)).
     (4) Chlorophyll-MIP,hemin-MIP,and meso-tetraphenylporphine-MIP(TPP-MIP) were employed to separate structure-like substances from HA,respectively.Furthermore,the integration of chlorophyll-MIP,hemin-MIP,and TPP-MIP was used to separate extendedπ-conjugated porphyrin-like substances from HA.Under the simulated sunlight irradiation (Xe lamp phytotron,λ>290 nm),the porphyrin-like fraction(F_(mip-b)) in HA presented better photochemical activity for degradation of 2,4-D than effluent fraction(F_(eff)).
     According to these results,separating HA using silica gel chromatogram or MIP technique was feasibile,and the fractions with better photochemical activity were separated from HA effectively.Our results also indicated the different fractions of HA affected geochemistry process of other coexisting organic compounds evidently.These works are helpful for understanding the mechanism of PTS photodegradation in the presence of HA in nature.
引文
[1]Fu H B,Quan X,Liu Z Y,et al.Photoinduced transformation of γ-HCH in the presence of dissolved organic matter and enhanced photoreactive activity of humate-coated α-Fe_2O_3[J].Langmuir,2004,20(12):4867-4873.
    [2]Ou X X,Quan X,Chen S,et al.Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron:Photoformation of iron(Ⅱ) and hydrogen peroxide[J].Journal of Agricultural and Food Chemistry,2007,55(21):8650-8656.
    [3]Aguer J-P,Richard C,Andreux F.Comparison of the photoinductive properties of commercial,synthetic and soil-extracted humic substances[J].Journal of Photochemistry and Photobiology A:Chemistry,1997,103(1-2):163-165.
    [4]Richard C,Vialaton D,Aguer J-P,et ai.Transformation of monuron photosensitized by soil extracted humic substances:energy or hydrogen transfer mechanism?[J].Journal of Photochemistry and Photobiology A:Chemistry,1997,111(1-3):265-271.
    [5]Bachman J,Patterson H H.Photodecomposition of the carbamate pesticide carbofuran:kinetics and the influence of dissolved organic matter[J].Environmental Science and Technology,1999,33(6):874-881.
    [6]王德高.多环芳烃和多溴代联苯醚的光化学行为研究[D]:(博士学位论文).大连:大连理工大学,2007.
    [7]谭平,张敬东,郭生练.太阳光对湖泊中有机污染物降解的研究进展[J].环境污染治理技术与设备,2003,4(8):13-18.
    [8]Crosby D G,Wong A S.Photodecomposition of 2,4,5-trichlorophenoxyacetic acid(2,4,5-T) in water[J].Journal of Agricultural and Food Chemistry,1973,21(6):1052-1054.
    [9]Zepp R G,Wolfe N L,Gordon J A,et al.Dynamics of 2,4-D esters in surface waters:hydrolysis,photolysis,and vaporization[J].Environmental Science and Technology,1975,9(13):1144-1150.
    [10]Zafiriou O C,Joussot-Dubien J,Zepp R G.Photochemistry of natural waters[J].Environmental Science and Technology,1984,18(12):358A-371A.
    [11]牛军峰.部分典型有机污染物在环境界面的光化学行为[D]:(博士学位论文).大连:大连理工大学,2002.
    [12]Zepp R G,Wolfe N L,Baughman G L,et al.Singlet oxygen in natural waters[J].Nature,1977,267(5610):421-423.
    [13]Burrows H D,Canle M,Santaballa J A,et al.Reaction pathways and mechanisms of photodegradation of pesticides[J].Journal of Photochemistry and Photobiology B:Biology,2002,67(2):71-108.
    [14]Penuela G A,Barcelo D.Photosensitized degradation of organic pollutants in water:processes and analytical applications[J].Trends in Analytical Chemistry,1995,17(10):605-612.
    [15]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [16]Zafiriou O C,Bonneau R.Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water[J].Photochemistry and Photobiology,1987,45(6):723-727.
    [17]Zafiriou O C,True M B.Nitrite photolysis in seawater by sunlight[J].Marine Chemistry,1979,8(1):9-32.
    [18]Zepp R G,Hoigne J,Bader H.Nitrate-induced photooxidation of trace organic chemicals in water[J].Environmental Science and Technology,1987,21(5):443-450.
    [19]Zellner R,Exner M,Herrmann H.Absolute OH quantum yields in the laser photolysis of nitrate,nitrite and dissolved H_2O_2 at 308 and 351 nm in the temperature range 278-353 K[J].Journal of Atmospheric Chemistry,1990,10(4):411-425.
    [20]Zepp R G,Faust B C,Hoigne J.Hydroxyl radical formation in aqueous reactions(pH 3-8) of iron(Ⅱ) with hydrogen peroxide:the photo-Fenton reaction[J].Environmental Science and Technology,1992,26(2):313-319.
    [21]Helz G R,Zepp R G,Crosby D G.Aquatic and surface photochemistry[M].Boca Raton:Lewis Publishers,1994.
    [22]Mopper K,Zhou X L.Hydroxyl radical photoproduction in the sea and its potential impact on marine processes[J].Science,1990,250(4981):661-664.
    [23]Zhou X L,Mopper K.Determination of photochemically produced hydroxyl radicals in seawater and freshwater[J].Marine Chemistry,1990,30(1):71-88.
    [24]Vaughan P P,Blough N V.Photochemical formation of hydroxyl radical by constituents of natural waters[J].Environmental Science and Technology,1998,32(19):2947-2953.
    [25]Kochany J,Maguire R J.Photodegradation of quinoline in water[J].Chemosphere,1994,28(6):1097-1110.
    [26]Chin Y-P,Miller P L,Zeng L K,et al.Photosensitized degradation of bisphenol A by dissolved organic matter[J].Environmental Science and Technology,2004,38(22):5888-5894.
    [27]White E M,Vaughan P P,Zepp R G.Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States[J].Aquatic Sciences,2003,65(4):402-414.
    [28]展漫军,杨曦,鲜放鸣,等.双酚A在硝酸根溶液中的光解研究[J].中国环境科学,2005,25(4):487-490.
    [29]Miller P L,Chin Y-P.Photoinduced degradation of carbaryl in a wetland surface water[J].Journal of Agricultural and Food Chemistry,2002,50(23):6758-6765.
    [30]Stangroom S J,Macleod C L,Lester J N.Photosensitized transformation of the herbicide 4-chloro-2-methylphenoxy acetic acid(MCPA) in water[J].Water Research,1998,32(3):623-632.
    [31]Haag W R,Hoigne J.Photosensitized oxidation in natural waters via·OH radicals[J].Chemosphere,1985,14(11-12):1659-1671.
    [32]Warneck P,Wurzing C.Product quantum yield for the 305 nm photodecomposition of NO_3~- in aqueous solution[J].The Journal of Physical Chemistry,1988,92(1):6278-6283.
    [33]Brezonik P L,Fulkerson-Brekken J.Nitrate-induced photolysis in natural waters:Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents[J].Environmental Science and Technology,1998,32(19):3004-3010.
    [34]Allen J M,Lucas S,Allen S K.Formation of hydroxyl radical(·OH) in illuminated surface waters contaminated with acidic mine drainage[J].Environmental Toxicology and Chemistry,1996,15(2):107-113.
    [35]Vione D,Falletti G,Maurino V,et al.Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J].Environmental Science and Technology,2006,40(12):3775-3781.
    [36]展漫军,杨曦,杨洪生,等.天然水体腐殖质对双酚A光降解影响的研究[J].环境科学学报,2005,25(6):816-820.
    [37]Canonica S,Kohn T,Mac M,et al.Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds[J].Environmental Science and Technology,2005,39(23):9182-9188.
    [38]Mill T,Hendry D G,Richardson H.Free-radical oxidants in natural waters[J].Science,1980,207(4433):886-887.
    [39]Zepp R G,Braun A M,Hoigne J,et al.Photoproduction of hydrated electrons from natural organic solutes in aquatic environments[J].Environmental Science and Technology,1987,21(5):485-490.
    [40]Kumamoto Y,Wang J,Fujiwara K.Photoproduction and quenching of hydrated electrons from dissolved organic matter in natural waters[J].Bulletin of the Chemical Society of Japan,1994,67(3):720-727.
    [41]Zika R G,Cooper W J.Photochemistry of environmental aquatic systems[M].Washington,DC:American Chemical Society,1987.
    [42]Breugem P,Van Noort P,Velberg S,et al.Steady state concentrations of the phototransient hydrated electron in natural waters[J].Chemosphere,1986,15(6):717-724.
    [43]Faust B C,Hoigne J.Sensitized photooxidation of phenols by fulvic acid and in natural waters [J].Environmental Science and Technology,1987,21(10):957-964.
    [44]Cooper W J,Zika R G,Petasne R G,et al.Photochemical formation of H_2O_2 in natural waters exposed to sunlight[J].Environmental Science and Technology,1988,22(10):1156-1160.
    [45]Schnitzer M,Khan S U.Humic substances in the environment[M].New York:Marcel Dekker,1972.
    [46]熊田恭一著,李庆荣等译.土壤有机质的化学[M].北京:科学出版社,1984.
    [47]于天仁.土壤化学原理[M].北京:科学出版社,1987.
    [48]李光林.腐殖酸与几种重金属离子的相互作用及影响因素研究[D]:(博士学位论文).重庆:西南农业大学,2002.
    [49]Sakkas V A,Lambropoulou D A,Albanis T A.Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances[J].Chemosphere,2002,48(9):939-945.
    [50]Sakkas V A,Lambropoulou D A,Albanis T A.Photochemical degradation study of irgarol 1051in natural waters:influence of humic and fulvic substances on the reaction[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,147(2):135-141.
    [51]Zhan M J,Yang X,Xian Q M,et al.Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances[J].Chemosphere,2006,63(3):378-386.
    [52]Zheng H,Ye C.Photodegradation of acetochlor and butachlor in waters containing humic acid and inorganic ion[J].Bulletin of Environmental Contamination and Toxicology,2001,67(4):601-608.
    [53]Zeng K,Hwang H,Zhang Y,et al.Identification of 6-aminochrysene photoproducts and study of the effect of a humic acid and riboflavin on its photolysis[J].Journal of Photochemistry and Photobiology B:Biolgy,2003,72(1-3):95-100.
    [54]Ghabbour E A,Davies G.Understanding humic substances.Advanced methods,properties and applications[M].Cambridge:The Royal Society of Chemistry,1999.
    [55]Ghabbour E A,Davies G.Humic substances:structures,models and functions[M].Cambridge:The Royal Society of Chemistry,2001.
    [56]Francioso O,Sanchez-cortes S,Tugnoli V,et al.Characterization of peat fulvic acid fractions by means of FTIR,SERS,and H~1,~(13)C NMR spectroscopy[J].Society for Applied Spectroscopy,1998,52(2):270-277.
    [57]彭安,王文华.水体腐殖酸及其络合物Ⅰ蓟运河腐殖酸的提取和表征[J].环境科学学报,1981,1(2):126-139.
    [58]Wershaw R L,Pinckney D J,Liaguno E C,et al.NMR characterization of humic acid fractions from different Philippine soils and sediments[J].Analytica Chimica Acta,1990,232(1):31-42.
    [59]Krosshavn M,Southon T E,Steinnes E.The influence of vegetational origin and degree of humification of organic soils on their chemical composition,determined by solid-state ~(13)C NMR [J].European Journal of Soil Science,1992,43(3):485-493.
    [60]Chin Y-P,Aiken G,O'Loughlin E.Molecular weight,polydispersity,and spectroscopic properties of aquatic humic substances[J].Environmental Science and Technology,1994,28(11):1853-1858.
    [61]贺婧,颜丽,杨凯.不同来源腐殖酸的组成和性质的研究[J].土壤通报,2003,34(4):343-345.
    [62]Rosario-Ortiz F L,Snyder S,Suffet I H.Characterization of the polarity of natural organic matter under ambient conditions by the polarity rapid assessment method(PRAM)[J].Environmental Science and Technology,2007,41(14):4895-4900.
    [63]Bauer M,Heitmann T,Macalady D L.Electron transfer capacities and reaction kinetics of peat dissolved organic matter[J].Environmental Science and Technology,2007,41(1):139-145.
    [64]Biers E J,Zepp R G,Moran M A.The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation[J].Marine Chemistry,2007,103(1-2):46-60.
    [65]李学垣.土壤化学[M].北京:高等教育出版社,2001.
    [66]吴景贵,席时权,姜岩.土壤腐殖质的分析化学研究进展[J].分析化学,1997,25(10):1221-1227.
    [67]欧晓霞.腐殖酸及其不同级分和铁的络合物对阿特拉津光降解的影响[D]:(博士学位论文).大连:大连理工大学,2008.
    [68]冯瑞华.电喷雾质谱和钌离子催化氧化法研究腐殖酸分子结构特征[D]:(硕士学位论文).广州:中国科学院广州地球化学研究所.2005.
    [69]Schulten H-R.The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry[J].Fresenius' Journal of Analytical Chemistry,1995,351(1):62-73.
    [70]薛志欣,杨桂朋,夏延致.水环境腐殖质的光化学研究进展[J].海洋科学,2008,32(11):74-79.
    [71]Gjessing E T,Gjerdahl T.Influence of ultraviolet radiation on aquatic humus[J].Vatten,1970,26(1):144-145.
    [72]李君文,子祚斌,高明,等.紫外线分解腐植酸的研究[J].环境保护,1995,(4):45-47.
    [73]王春霞,彭安.不同来源腐殖酸的光解及过氧化氢对其影响[J].环境科学学报,1996,16(3):270-275.
    [74]Corin N,Backlund P,Kulovaara M.Degradation products formed during UV-irradiation of humic waters[J].Chemosphere,1996,33(2):245-255.
    [75]Schmitt-kopplin P,Hertkorn N,Schulten H -R.Structural changes in a dissolved soil humic acid during photochemical degradation processes under O_2 and N_2 atmosphere[J].Environmental Science and Technology,1998,32(17):2531-2541.
    [76]Goldstone J V,Voelker B M.Chemistry of superoxide radical in seawater:CDOM associated sink of superoxide in coastal waters[J].Environmental Science and Technology,2000,34(6):1043-1048.
    [77]Thomas-smith T E,Blough N V.Photoproduction of hydrated electron from constituents of natural waters[J].Environmental Science and Technology,2001,35(13):2721-2726.
    [78]Goldstone J V,Pullin M J,Bertilsson S,et al.Reactions of hydroxyl radical with humic substances:Bleaching,mineralization,and production of bioavailable carbon substrates[J].Environmental Science and Technology,2002,36(3):364-372.
    [79]Chiang Y-P,Liang Y-Y,Chang C-N,et al.Differentiating ozone direct and indirect reactions on decomposition of humic substances[J].Chemosphere,2006,65(11):2395-2400.
    [80]Sarathy S R,Mohseni M.The impact of UV/H_2O_2 advanced oxidation on molecular size distribution of chromophoric natural organic matter[J].Environmental Science and Technology,2007,41(24):8315-8320.
    [81]Aguer J-P,Richard C.Transformation of fenuron induced by photochemical excitation of humic acids[J].Pesticide Science,1996,46(2):151-155.
    [82]Kamiya M,Kameyama K.Photochemical effects of humic substances on the degradation of organophosphorus pesticides[J].Chemosphere,1998,36(10):2337-2344.
    [83]Sojitra I,Valsaraj K T,Reible D D,et al.Transport of hydrophobic organics by colloids through porous media 2.Commercial humic acid macromolecules and polyaromatic hydrocarbons[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1966,110(2):141-157.
    [84]Van Stempvoort D R,Lesage S,Novakowski K S,et al.Humic acid enhanced remediation of an emplaced diesel source in groundwater:Ⅰ.Laboratory-based pilot scale test[J].Journal of Contaminant Hydrology,2002,54(3-4):249-276.
    [85]Schramm K-W,Behechti A,Beck B,et al.Influence of an aquatic humic acid on the bioconcentration of selected compounds in Daphnia magna[J].Ecotoxicology and Environmental Safety,1998,41(1):73-76.
    [86]Senesi N.Binding mechanisms of pesticides to soil humic substances[J].Science of The Total Environment,1992,123-124(1):63-76.
    [87]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报,2004,15(2):326-330.
    [88]徐建,杨欣,戴树桂,等.涕灭威在水体悬浮颗粒物上的吸附行为[J].环境科学,2003,24(2):87-91.
    [89]Prosen H,Zupancic-Kralj L.The interaction of triazine herbicides with humic acids[J].Chromatographia Supplement,2000,51(1):155-164.
    [90]Klaus U,Mohamed S,Volk M,et al.Interaction of aquatic humic substances with anilazine and its derivatives:The nature of the bound residues[J].Chemosphere,1998,37(2):341-361.
    [91]Lee D-Y,Farmer W J.Dissolved organic matter interaction with napropamide and four other nonionic pesticides[J].Journal of Environmental Quality,1989,18(1):468-474.
    [92]Senesi N,Testini C,Miano T M.Interaction mechanisms between humic acids of different origin and nature and electron donor herbicides:A comparative IR and ESR study[J].Organic Geochemistry,1987,11(1):25-30.
    [93]Mott H V.Association of hydrophobic organic contaminants with soluble organic matter:evaluation of the database of K_(doc) values[J].Advances in Environmental Research,2002,6(4):577-593.
    [94]Sposito G,Martin-Neto L,Yang A.Atrazine complexation by soil humic acids[J].Journal of Environmental Quality,1996,25(6):1203-1209.
    [95]Khan S U.Adsorption of bipyridylium herbicides by humic acid[J].Journal of Environmental Quality,1974,3(1):202-206.
    [96]Chiou C T,Peters L J,Freed V H.A physical concept of soil-water equilibria for nonionic organic compounds[J].Science,1979,206(4420):831-832.
    [97]Chiou C T,Porter P E,Schmedding D W.Partition equilibriums of nonionic organic compounds between soil organic matter and water[J].Environmental Science and Technology,1983,17(4):227-231.
    [98]Maxin C R,K(o|¨)gel-Knabner I.Partitioning of polycyclic aromatic hydrocarbons(PAH) to water-soluble soil organic matter[J].European Journal of Soil Science,1995,46(2):193-204.
    [99]Wen B,Zhang J J,Zhang S Z,et al.Phenanthrene sorption to soil humic acid and different humin fractions[J].Environmental Science and Technology,2007,41(9):3165-3171.
    [100]Chiou C T,Malcolm R L,Brinton T I,et al.Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids[J].Environmental Science and Technology,1986,20(5):502-508.
    [101]Barriuso E,Baer U,Calvet R.Dissolved organic matter and adsorption-desorption of dimefuron,atrazine and carbetamide by soils[J].Journal of Environmental Quality,1992,21(3):359-367.
    [102]Thorn K A,Arterburn J B,Mikita M A.~(15)N and ~(13)c NMR investigation of hydroxylamine-derivatized humic substances[J].Environmental Science and Technology,1992,26(1):107-116.
    [103]李克斌,王琪全,刘维屏.除草剂苯达松与腐植酸作用机理的研究[J].上海环境科学,1998,17(5):18-20.
    [104]Guthrie E A,Bortiatynski J M,Van Heemst J D H,et al.Determination of[~(13)C]pyrene sequestration in sediment microcosms using flash pyrolysis-GC-MS and ~(13)C NMR[J].Environmental Science and Technology,1999,33(1):119-125.
    [105]梁重山,党志.核磁共振波谱法在腐殖质研究中的应用[J].农业环境保护,2001,20(4):277-279.
    [106]Zepp R G,Schlotzhaner P F,Sink R M.Photosensitized transformations involving electronic energy transfer in natural waters:role of humic substances[J].Environmental Science and Technology,1985,19(1):74-81.
    [107]王一茹,刘长武,牛成玉,等.丁草胺在水体中的光解和稻田中归趋的研究[J].环境科学学报,1996,16(4):475-481.
    [108]Vialaton D,Richard C,Baglio D,et al.Phototransformation of 4-chloro-2-methylphenol in water:influence of hnmic substances on the reaction[J].Journal of Photochemistry and Photobiology A:Chemistry,1998,119(1):39-45.
    [109]杨曦,王晓书,朱春媚,等.磺酰脲类除草剂在环境中的光降解研究-水溶液中的光解动力学[J].环境科学,1998,19(6):29-32.
    [110]花日茂,李湘琼,李学德,等.丁草胺在不同类型水中的光化学降解[J].应用生态学报,1999,10(1):57-59.
    [111]Aguer J-P,Richard C.Influence of the excitation wavelength on the photoinductive properties of humic substances[J].Chemosphere,1999,38(10):2293-2301.
    [112]Vialaton D,Richard C.Phototransformation of aromatic pollutants in solar light:photolysis versus photosensitized reactions under natural water conditions[J].Aquatic Sciences,2002,64(2):207-215.
    [113]Kohn T,Nelson K L.Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters[J].Environmental Science and Technology,2007,41(1):192-197.
    [114]Kohn T,Grandbois M,McNeill K,et al.Association with natural organic matter enhances the sunlight-mediated inactivation of MS2 coliphage by singlet oxygen[J].Environmental Science and Technology,2007,41(13):4626-4632.
    [115]Kochany J,Maguire R J.Sunlight photodegradation of metolachlor in water[J].Journal of Agricultural and Food Chemistry,1994,42(2):406-412.
    [116]花日茂,岳永德,潘学冬,等.腐殖质对丁草胺在水中的光解效应研究[J].安徽农业大学学报,1999,26(1):63-67.
    [117]花日茂,岳永德,邢建国,等.腐殖质对乙草胺的光猝灭降解作用的效应[J].安徽农业大学学报,2000,27(2):108-111.
    [118]郑和辉,叶常明,刘国辉.乙草胺在水中的光化学降解动态研究fJ].农药科学与管理,2001,22(6):12-13.
    [119]Villaverde J,Maqueda C,Undabeytia T,et al.Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components[J].Chemosphere,2007,69(4):575-584.
    [120]Lin C,Lin K-S.Photocatalytic oxidation of toxic organohalides with TiO_2/UV:The effects of humic substances and organic mixtures[J].Chemosphere,2007,66(10):1872-1877.
    [121]Peuravuori J,Pihlaja K.Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly[J].Environmental Science and Technology,2004,38(22):5958-5967.
    [122]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报,2002,22(2):259-269.
    [123]Thurman E M,Malcolm R L.Preparative isolation of aquatic humic substances[J].Environmental Science and Technology,1981,15(4):463-466.
    [124]Gledhill M,van den Berg C M G.Determination of complexation of iron(Ⅲ) with natural organic complexing ligands in seawater using cathodic stripping voltammetry[J].Marine Chemistry,1994,47(1):41-54.
    [125]Mantoura R F C,Dickson A,Riley J P.The complexation of metals with humic materials in natural waters[J].Estuarine and Coastal Marine Science,1978,6(4):387-408.
    [126]陈静生.水环境化学[M].北京:高等教育出版社,1987.
    [127]Fukushima M,Tanaka S,Nakamura H,et al.Copper(Ⅱ) binding abilities of molecular weight fractionated humic acids and their mixtures[J].Analytica Chimica Acta,1996,322(3):173-185.
    [128]Evanko C R,Dzombak D A.Influence of structural features on sorption of NOM-analogue organic acids to goethite[J].Environmental Science and Technology,1998,32(19):2846-2855.
    [129]蒋疆,王果,陈芳育,等.草炭溶解态有机物质与Cu~(2+)、Cd~(2+)络合稳定性的研究[J].土壤与环境,2002,11(2):116-120.
    [130]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金,2003,24(1):47-49.
    [131]Jackson B P,Ranville J F,Bertsch P M,et al.Characterization of colloidal and humic-bound Ni and U in the "dissolved" fraction of contaminated sediment extracts[J].Environmental Science and Technology,2005,39(8):2478-2485.
    [132]Stevenson F J.Humus chemistry:genesis,composition,reactions[M].New York:John Wiley and Sons,1994.
    [133]Posner A M.Importance of electrolyte in the determination of molecular weights by 'Sephadex'gel filtration,with especial reference to humic acid[J].Nature,1963,198(1038):1161-1163.
    [134]Gjessing E T.Use of "Sephadex" gel for the estimation of molecular weight of humic substances in natural water[J].Nature,1965,208(1038):1091-1092.
    [135]韩冬,叶美玲,施良和.水溶性凝胶色谱中的非体积排除效应[J].色谱,1995,13(6):432-436.
    [136]Barth H G.A practical approach to steric exclusion chromatography of water-soluble polymers [J].Journal of Chromatographic Science,1980,18(9):409-429.
    [137] Li L, Zhao Z Y, Huang W L, et al. Characterization of humic acids fractionated by ultrafiltration [J]. Organic Geochemistry, 2004,35(9): 1025-1037.
    [138] 曲风臣.土壤腐殖酸分极、表征及其光化学作用研究[D]:(硕士学位论文).大连:大连理工大学 , 2006.
    [139] Evans M G, Uri N. Photochemical polymerization in aqueous solution [J]. Nature, 1949, 164(4166): 404-405.
    [140] Bates H G C, Uri N. Oxidation of aromatic compounds in aqueous solution by free radicals produced by photo-excited electron transfer in iron complexes [J]. Journal of the American Chemical Society, 1953, 75(11): 2754-2759.
    [141] Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chemical Reviews, 1993, 93(1): 341-357.
    [142] Kawaguchi H, Inagaki A. Kinetics of ferric ion promoted photodecomposition of 2-chlorophenol [J]. Chemosphere, 1994,28(1): 57-62.
    [143] Wu F, Deng N S. Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview [J]. Chemosphere, 2000,41(8): 1137-1147.
    [144] Larson R A, Schlauch M B, Marley K A. Ferric ion promoted photodecomposition of triazines [J]. Journal of Agricultural and Food Chemistry, 1991,39(11): 2057-2062.
    [145] Sedlak D L, Hoigné J. The role of copper and oxalate in the redox cycling of iron in atmospheric waters [J]. Atmospheric Environment, 1993,27A(14): 2173-2185.
    [146] Maruthamuthu P, Huie R E. Ferric ion assisted photooxidation of haloacetates [J]. Chemosphere, 1995, 30(11): 2199-2207.
    [147] Deng N S, Wu F, Tian S Z, et al. Photodegradation of dyes in aqueous solutions containing Fe(III)-hydroxy complex II. Solar photodegradation kinetics [J]. Chemosphere, 1997, 34(12): 2725-2735.
    [148] Voelker B M, Sulzberger B. Effects of fulvic acid on Fe( II) oxidation by hydrogen peroxide [J]. Environmental Science and Technology, 1996,30(4): 1106-1114.
    [149] Voelker B M, Morel F M M, Sulzberger B. Iron redox cycling in surface waters: Effects of humic substances and light [J]. Environmental Science and Technology, 1997, 31(4): 1004-1011.
    [150] Paciolla M D, Davies G, Jansen S A. Generation of hydroxyl radicals from metal-loaded humic acids [J]. Environmental Science and Technology, 1999,33(11): 1814-1818.
    [151] Fukushima M, Tatsumi K, Morimoto K. Influence of iron(III) and humic acid on the photodegradation of pentachlorophenol [J]. Environmental Toxicology and Chemistry, 2000, 19(7): 1711-1716.
    [152] Fukushima M, Tatsumi K, Nagao S. Degradation characteristics of humic acid during photo-Fenton processes [J]. Environmental Science and Technology, 2001, 35(18): 3683-3690.
    
    [153] Kieber R J, Hardison D R, Whitehead R F, et al. Photochemical production of Fe(II) in rainwater [J]. Environmental Science and Technology, 2003, 37(20): 4610-4616.
    [154] Kieber R J, Skrabal S A, Smith B J, et al. Organic complexation of Fe( II) and its impact on the redox cycling of iron in rain [J]. Environmental Science and Technology, 2005, 39(6): 1576-1583.
    [155]Sibrian-Vazquez M,Spivak D A.Molecular Imprinting Made Easy[J].Journal of the American Chemical Society,2004,126(25):7827-7833.
    [156]Yilmaz E,Haupt K,Mosbach K.The use of immobilized templates-A new approach in molecular imprinting[J].Angewandte Chemic International Edition,2000,39(12):2115-2118.
    [157]Whitcombe M J,Vulfson E N.Imprinted polymers[J].Advanced Materials,2001,13(7):467-478.
    [158]Andersson L,Sellergren B,Mosbach K.Imprinting of amino acid derivatives in macroporous polymers[J].Tetrahedron Letters,1984,25(45):5211-5214.
    [159]Lindsey J S.Self-assembly in synthetic routes to molecular devices.Biological principles and chemical perspectives:a review[J].New Journal of Chemistry,1991,15(2-3):153-180.
    [160]Graham A L,Carlson C A,Edmiston P L.Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT[J].Analytical Chemistry,2002,74(2):458-467.
    [161]胡小刚,汤又文,黄招发.阿司匹林分子印迹聚合物的制备及分子识别性能研究[J].精细化工,2005,22(1):1-4.
    [162]Shen X T,Zhu L H,Li J,et al.Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity[J].Chemical Communications,2007,(11):1163-1165.
    [163]Sellergren B,Lepistoe M,Mosbach K.Highly enantioselective and substrate- selective polymers obtained by molecular imprinting utilizing noncovalent interactions.NMR and chromatographic studies on the nature of recognition[J].Journal of the American Chemical Society,1988,110(17):5853-5860.
    [164]Matsui J,Doblhoff-Dier O,Takeuchi T.2-(Trifluoromethyl)acrylic acid:a novel functional monomer in non-covalent molecular imprinting[J].Analytica Chimica Acta,1997,343(1-2):1-4.
    [165]张静,贺浪冲,傅强.士的宁分子印迹整体柱的制备[J].分析化学,2005,33(1):113-116.
    [166]Mayes A G,Mosbach K.Molecularly imprinted polymer beads:suspension polymerization using a liquid perfluorocarbon as the dispersing phase[J].Analytical Chemistry,1996,68(21):3769-3774.
    [167]张立永,成国祥,陆书来,等.悬浮聚合法制备西咪替丁印迹聚合物微球的分子选择性能[J].分析化学,2003,31(6):655-658.
    [168]Matsui J,Fujiwara K,Ugata S,et al.Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent[J].Journal of Chromatography A,2000,889(1-2):25-31.
    [169]曹丙庆,潘勇,赵建军,等.分子印迹聚合物的合成进展[J].现代科学仪器,2006,(6):29-33.
    [170]曹同玉,戴兵,戴俊燕,等.分散聚合稳定机理及动力学研究[J].高分子材料科学与工程,1998,14(1):31-34.
    [171]Kido H,Miyajima T,Tsukagoshi K,et al.Metal-ion complexation behavior of resins prepared by a novel template polymerization technique[J].Analytical Sciences,1992,8(6):749-753.
    [172]Uezu K,Nakamura H,Goto M,et al.Novel metal ion-imprinted resins prepared by surface template polymerization with W/O emulsion[J].Journal of Chemical Engineering of Japan,1994,27(3):436-438.
    [173]Sulitzky C,R(u|¨)ckert B,Hall A J,et al.Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators[J].Maeromoleeules,2002,35(1):79-91.
    [174]张宇辉.新型分子印迹聚合物制备方法的研究及其分子识别作用[D]:(硕士学位论文).北京:清华大学,2003.
    [175]Norrl(o|¨)w O,Glad M,Mosbach K.Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates[J].Journal of Chromatography A,1984,299(1):29-41.
    [176]陈长宝,周杰,吴春辉.分子印迹技术研究进展[J].化学研究与应用,2006,18(8):896-902.
    [177]Wulff G,Vesper W.Preparation of chromatographic sorbents with chiral cavities for racemic resolution[J].Journal of Chromatography A,1978,167(1):171-186.
    [178]Allender C J,Heard C M,Brain K R.Mobile phase effects on enantiomer resolution using molecularly imprinted polymers[J].Chirality,1997,9(3):238-242.
    [179]Nicholls I A,Ramstr(o|¨)m O,Mosbaeh K.Insights into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics[J].Journal of Chromatography A,1995,691(1-2):349-353.
    [180]Andersson L I,M(u|¨)ller R,Mosbach K.Molecular imprinting of the endogenous neuropeptide Leu~5-enkephalin and some derivatives thereof[J].Macromolecular Rapid Communications,1996,17(1):65-71.
    [181]刘志航,浣石,蒋国平,等.分子印迹聚合物应用研究进展[J].科学导报,2006,24(1):51-54.
    [182]雷建都,贺湘凌,谭天伟.分子印迹技术及应用[J].现代化工,2001,21(4):17-20.
    [183]Sellergren B.Direct drug determination by selective sample enrichment on an imprinted polymer[J].Analytical Chemistry,1994,66(9):1578-1582.
    [184]Zhu Q Z,Degelmann P,Niessner R,et al.Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer [J].Environmental Science and Technology,2002,36(24):5411-5420.
    [185]Caro E,Marce R M,Cormack P A G,et al.On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water[J].Journal of Chromatography A,2003,995(1-2):233-238.
    [186]Chapuis F,Pichon V,Lanza F,et al.Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers:Application to the extraction of triazines from complex matrices[J].Journal of Chromatography B,2004,804(1):93-101.
    [187]Tabushi I,Kurihara K,Naka K,et al.Supramolecular sensor based on SnO_2 electrode modified with octadecylsilyl monolayer having molecular binding sites[J].Tetrahedron Letters,1987,28(37):4299-4302.
    [188]Hedborg E,Winquist F,Lundstr(o|¨)m I,et al.Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices[J].Sensors and Actuators A:Physical,1993,37-38:796-799.
    [189]Sergeyeva T A,Piletsky S A,Brovko A A,et al.Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes[J].The Analyst,1999,124(3):331-334.
    [190]Chianella I,Piletsky S A,Tothill I E,et al.MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR[J].Biosensors and Bioelectronics,2003,18(2-3):119-127.
    [191]Zayats M,Lahav M,Kharitonov A B,et al.Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors [J].Tetrahedron,2002,58(4):815-824.
    [192]Panasyuk T L,Mirsky V M,Piletsky S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors[J].Analytical Chemistry,1999,71(20):4609-4613.
    [193]Malitesta C,Losito I,Zambonin P G,et al.Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors[J].Analytical Chemistry,1999,71(7):1366-1370.
    [194]Marx S,Zaltsman A,Turyan I,et al.Parathion sensor based on molecularly imprinted sol-gel films[J].Analytical Chemistry,2004,76(1):120-126.
    [195]聂利华,姚守拙.关于分子印迹技术的研究[J].大学化学,2002,17(1):21-26.
    [196]沈先涛,朱丽华,王楠,等.人工抗体型光催化剂选择性降解酚类污染物.持久性有机污染物论坛2007暨第二届持久性有机污染物全国学术研讨会论文集[C].大连:2007.
    [197]Shen X T,Zhu L H,Liu G X,et al.Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania[J].Environmental Science and Technology,2008,42(5):1687-1692.
    [198]Daidai M,Kobayashi F,Mtui G,et al.Degradation of 2,4-dichlorophenoxyacetic acid(2,4-D)by ozonation and TiO_2/UV treatment[J].Journal of Chemical Engineering of Japan,2007,40(4):378-384.
    [199]De Amarante O P,Brito N M,dos Santos T C R,et al.Determination of 2,4-dichlorophenoxyacetic acid and its major transformation product in soil samples by liquid chromatographic analysis[J].Talanta,2003,60(1):115-121.
    [200]Anastassiades M,Schwack W.Analysis of carbendazim,benomyl,thiophanate methyl and 2,4-dichlorophenoxyacetic acid in fruits and vegetables after supercriticai fluid extraction[J].Journal of Chromatography A,1998,825(1):45-54.
    [201]Rochette E A,Harsh J B,Jr Hill H H.Supercritical fluid extraction of 2,4-D from soils using derivatization and ionic modifiers[J].Talanta,1993,40(2):147-155.
    [202]Bucheli T D,Gr(u|¨)ebler F C,M(u|¨)ller S R,et al.Simultaneous determination of neutral and acidic pesticides in natural waters at the low nanogram per liter level[J].Analytical Chemistry,1997,69(8):1569-1576.
    [203]陈岚,史惠祥,汪大翚.不同水质特性对2,4-D臭氧化过程的影响[J].浙江大学学报(工学版),2006,40(3):528-532.
    [204]De Moliner K L,De Duffard A M E,Soto E,et al.Induction of apoptosis in cerebollar granule cells by 2,4-dichlorophenoxyacetic acid[J].Neurochemical Research,2002,27(11):1439-1446.
    [205]Purcell M,Neault J F,Malonga H,et al.Interactions of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis,and FTIR spectroscopy[J].Biochimica et Biophysica Acta,2001,1548(1):129-138.
    [206]王毓秀,张利民,邹敏.化学农药与环境激素[J].农村生态环境,1999,15(4):37-41.
    [207]余若祯,施汉昌,何苗,等.2,4-二氯苯氧乙酸完全抗原和抗体的制备[J].中国环境科学,2005,25(3):288-292.
    [208]Audus L J E.Herbicides[M].New York:Academic Press,1976.
    [209]Benli A C K,Sarikaya R,Sepici-Dincel A,et al.Investigation of acute toxicity of (2,4-dichlorophenoxy)acetic acid(2,4-D) herbicide on crayfish(Astacus leptodactylus Esch.1823)[J].Pesticide Biochemistry and Physiology,2007,88(3):296-299.
    [210]National Primary Drinking Water Regulations[S].EPA,1997.
    [211]生活饮用水卫生规范[S].中华人民共和国卫生部,2001.
    [212]Guidelines for drinking-water quality.Addendum to Vol.1.Recommendations[S].WHO,2003,20-21.
    [213]Chu W,Chan K H,Kwan C Y,et al.The system design of UV-assisted catalytic oxidation process-degradation of 2,4-D[J].Chemosphere,2004,57(3):171-178.
    [214]Kwan C Y,Chu W.Effect of ferrioxalate-exchanged resin on the removal of 2,4-D by a photocatalytic process[J].Journal of Molecular Catalysis A:Chemical,2006,255(1-2):236-242.
    [215]Kwan C Y,Chu W,Lam W S.The role of oxalate in the kinetics of 2,4-D oxidation over ferrous ion-supported catalysts[J].Journal of Molecular Catalysis A:Chemical,2007,274(1-2):50-57.
    [216]Alfano O M,Brandi R J,Cassano A E,et al.Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation[J].Chemical Engineering Journal,2001,82(1-3):209-218.
    [217]Brillas E,Calpe J C,Cabot P-L.Degradation of the herbicide 2,4-dichlorophenoxyacetic acid by ozonation catalyzed with Fe~(2+) and UVA light[J].Applied Catalysis B:Environmental,2003,46(2):381-391.
    [218]Kundu S,Pal A,Dikshit A K.UV induced degradation of herbicide 2,4-D:kinetics,mechanism and effect of various conditions on the degradation[J].Separation and Purification Technology,2005,44(2):121-129.
    [219]Xing S T,Hu C,Qu J H,et al.Characterization and reactivity of MnO_x supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone[J].Environmental Science and Technology,2008,42(9):3363-3368.
    [220]Murthy N B K,Moza P N,Hustert K,et al.Photolysis of thiabendazole in aqueous solution and in the presence of fulvic and humic acids[J].Chemosphere,1996,33(10):1915-1920.
    [221]Hessler D P,Frimmel F H,Oliveros E,et al.Quenching of singlet oxygen(~1△_g) by humic substances[J].Journal of Photochemistry and Photobiology B:Biology,1996,36(1):55-60.
    [222]Fisher J M,Reese J G,Pellechia P J,et al.Role of Fe(Ⅲ),phosphate,dissolved organic matter,and nitrate during the photodegradation of domoic acid in the marine environment[J].Environmental Science and Technology,2006,40(7):2200-2205.
    [223]Selli E,Baglio D,Montanarella L,et al.Role of humic acids in the TiO_2-photocatalyzed degradation of tetrachloroethene in water[J].Water Research,1999,33(8):1827-1836.
    [224]李治国,周威明,董里,等.Fe~(2+)/H_2O_2催化氧化2,4-二氯苯氧乙酸的机理研究[J].环境化学,2004,23(5):540-543.
    [225]Leenheer J A,Brown G K,MacCarthy P,et al.Models of metal binding structures in fulvic acid from the Suwannee River,Georgia[J].Environmental Science and Technology,1998,32(16):2410-2416.
    [226]Gu B H,Schmitt J,Chen Z H,et al.Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models[J].Environmental Science and Technology,1994,28(1):38-46.
    [227]张华,彭勤纪,李亚明,等.现代有机波谱分析[M].北京:化学工业出版社,2005.
    [228]Lippold H,Evans N D M,Warwick P,et al.Competitive effect of iron(Ⅲ) on metal complexation by humic substances:Characterisation of ageing processes[J].Chemosphere,2007,67(5):1050-1056.
    [229]Fu H B,Quan X,Zhao H M.Photodegradation of γ-HCH by α-Fe_2O_3 and the influence of fulvic acid[J].Journal of Photochemistry and Photobiology A:Chemistry,2005,173(2):143-149.
    [230]Trubetskoj O A,Trubetskaya O E,Afanas'eva G V,et al.Polyacrylamide gel electrophoresis of soil humic acid fractionated by size-exclusion chromatography and ultrafiltration[J].Journal of Chromatography A,1997,767(1-2):285-292.
    [231]Cavani L,Ciavatta C,Trubetskaya O E,et al.Capillary zone electrophoresis of soil humic acid fractions obtained by coupling size-exclusion chromatography and polyacrylamide gel electrophoresis[J].Journal of Chromatography A,2003,983(1-2):263-270.
    [232]Wu F C,Evans R D,Dillon P J.High-performance liquid chromatographic fractionation and characterization of fulvic acid[J].Analytica Chimica Acta,2002,464(1):47-55.
    [233]Richard C,Trubetskaya O,Trubetskoj O,et al.Key role of the low molecular size fraction of soil humic acids for fluorescence and photoinductive activity[J].Environmental Science and Technology,2004,38(7):2052-2057.
    [234]Korshin G V,Li C W,Benjamin M M.Monitoring the properties of natural organic matter through UV spectroscopy:a consistent theory[J].Water Research,1997,31(7):1787-1795.
    [235]Fukushima M,Tanabe Y,Morimoto K,et al.Role of humic acid fraction with higher aromaticity in enhancing the activity of a biomimetic catalyst,tetra(p-sulfonatophenyl)porphineiron(Ⅲ)[J].Biomacromolecules,2007,8(2):386-391.
    [236]Almendros G,Kgathi D,Sekhwela M,et al.Biogeochemicai assessment of resilient humus formations from virgin and cultivated northern Botswana soils[J].Journal of Agricultural and Food Chemistry,2003,51(15):4321-4330.
    [237]Chen J,Gu B H,LeBoeuf E J,et al.Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J].Chemosphere,2002,48(1):59-68.
    [238]Enriquez R,Pichat P.Interactions of humic acid,quinoline,and TiO_2 in water in relation to quinoline photocatalytic removal[J].Langmuir,2001,17(20):6132-6137.
    [239]Hesketh N,Jones M N,Tipping E.The interaction of some pesticides and herbicides with humic substances[J].Analytica Chimica Acta,1996,327(3):191-201.
    [240]Zhu D Q,Hyun S,Pignatello J J,et al.Evidence for π-π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption[J].Environmental Science and Technology,2004,38(16):4361-4368.
    [241]Karan S,Mallik B.Templating effects and optical characterization of copper(Ⅱ) phthalocyanine nanocrystallites thin film:nanoparticles,nanoflowers,nanocabbages,and nanoribbons[J].The Journal of Physical Chemistry C,2007,111(20):7352-7365.
    [242]Liu Y H,Lei S B,Yin S X,et al.Molecular trapping phenomenon of the 2-D assemblies of octa-alkoxyl-substituted phthalocyanine studied by scanning tunneling microscopy[J].The Journal of Physical Chemistry B,2002,106(48):12569-12574.
    [243]Lawton E A.The thermal stability of copper phthalocyanine[J].The Journal of Physical Chemistry,1958,62(3):384-384.
    [244]吴谊群,左霞,欧阳瑞珍,等.金属萘酞菁配合物在光激发下产生单线态氧能力的研究[J].化学物理学报,1999,12(1):93-98.
    [245]Seelan S,Sinha A K,Srinivas D,et al.Spectroscopic investigation and catalytic activity of copper(Ⅱ) phthalocyanine encapsulated in zeolite Y[J].Journal of Molecular Catalysis A:Chemical,2000,157(1-2):163-171.
    [246]Chizhov I,Stoles G,Kahn A.The influence of steps on the orientation of copper phthalocyanine monolayers on Au(111)[J].Langmuir,2000,16(9):4358-4361.
    [247]Sellergren B,Dauwe C,Schneider T.Pressure-induced binding sites in molecularly imprinted network polymers[J].Macromolecules,1997,30(8):2454-2459.
    [248]Huang Y P,Ma W H,Li J,et al.A novel β-CD-hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation[J].The Journal of Physical Chemistry B,2003,107(35):9409-9414.
    [249]Yu J C,Ho W K,Yu J G,et al.Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J].Environmental Science and Technology,2005,39(4):1175-1179.
    [250]Wasielewski M R.Photoindueed electron transfer in supramolecular systems for artificial photosynthesis[J].Chemical Reviews,1992,92(3):435-461.
    [251]Gust D,Moore T A.Mimicking photosynthesis[J].Science,1989,244(4900):35-41.
    [252]Okura I,Thuam N K.Hydrogen generation by visible light with zinc(Ⅱ) tetraphyenylpopyrin in aqueous miceller solutions[J].Journal of Molecular Catalysis,1979,6(3):227-230.
    [253]Kalyanasundaram K,Gr(a|¨)tzel M.Light induced redox reactions of water soluble porphyrins,sensitization of hydrogen generation from water by zincporphyrin derivatives[J].Helvetica Chimica Acta,1980,63(2):478-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700