生姜不同前处理联合热风间歇微波耦合干燥的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以生姜为原料,采取间歇式以及变功率实现微波均匀化目的,筛选出时间短、能耗小、产品品质高的热风间歇微波耦合干燥(AD&IM),并结合多种前处理(渗透脱水、超高压、二氧化碳浸渍)与AD&IM进行联合干燥,进一步提高干燥产品品质、减小能耗,从而探索出一种高效、节能、保质的新工艺。论文主要结论如下:
     (1)选取热风干燥、红外干燥、冷冻干燥、微波干燥以及AD&IM进行干燥时间、能耗和品质的对比。结果表明,相比其他几种干燥方式,AD&IM的干燥时间短,能耗小,对6-姜酚、8-姜酚、10-姜酚具有较好的保留作用,其提取物清除DPPH-和ABTS·力最强。因此,选择AD&IM作为最佳干燥方式进行后续研究。
     (2)采用常压渗透、超声渗透以及真空渗透等前处理方式与AD&IM进行联合干燥。结果表明:相比直接AD&IM干燥,渗透处理使生姜干燥速率降低,而使干燥产品品质提高。常压渗透和脉冲真空渗透提高了干燥样品的复水性。渗透处理后干燥样品的姜酚、姜烯酚含量显著高于直接干燥样品,其中脉冲真空渗透的样品中各姜酚、姜烯酚含量最高。脉冲真空渗透处理对干燥生姜的挥发性成分具有保护作用。
     (3)采用超高压、冷冻结合超高压、热烫、冷冻等物理方式与AD&IM进行联合干燥。结果表明:高压500MPa处理后干燥样品的DPPH-清除能力、Fe3+还原能力以及ABTS-清除能力最强,显著高于未经高压处理的样品。高压处理后生姜干燥速率显著提高,其中,冷冻结合100MPa、500MPa、热烫处理以及冷处理后样品的干燥时间分别缩短了30%、20%、25%和10%。冷冻结合250MPa和冷冻结合100MPa处理后干燥样品的挥发性成分与鲜姜的最相似。
     (4)采用一种新型绿色环保的前处理方式——二氧化碳浸渍(Carbonica Maceration,CM)与AD&IM进行联合干燥。CM可以改变细胞的通透性,引发厌氧呼吸,对生姜干燥品质和干燥时间具有积极的影响。结果表明:CM处理后生姜干燥时间显著缩短,其中CM2(0.2MPa、40℃、10h)处理后样品干燥时间可缩短35%。CM处理后干燥样品中各姜酚含量显著升高。其中,CM4(0.2MPa、30℃、10h)处理后6-姜酚、8-姜酚、10-姜酚、6-姜烯酚含量分别是直接干燥样品的2.49倍、1.45倍、1.45倍、1.36倍。综合干燥速率以及姜酚含量、颜色、复水性等品质指标,认为CM2处理联合AD&IM为最优的生姜干燥工艺。
     (5)本文基于Lambert微波能量吸收定律以及Fick传质第二定律首次建立了一维平板数学模型来预测AD&IM干燥过程中水分和温度的变化规律,模型的相对偏差在10%以内,说明模型可以较好地模拟实际干燥过程,为AD&IM干燥过程的优化和自动控制提供了有效手段。
Hot air coupling microwave (AD&IM) drying was adopted for ginger drying, in the meanwhile intermittent and varied power microwave was used to make microwave more homogeneous. Different pre-treatments (osmotic dehydration, high pressure, carbon dioxide maceration) was combined with AD&IM in order to find out the most suitable, efficient, energy saving and best quality preserved approach for ginger drying. The main results and conclusions are as follows:
     (1) Hot air drying, infrared drying, freezing drying, microwave drying and AD&IM drying were selected to conduct the comparison of drying energy consumption, drying time and quality preserved of dried ginger slices. The results showed that AD&IM drying played an excellent role in retaining6-gingerol,8-gingerol and10-gingerol content as well as its merits of shorter drying time and lower energy consumption. The extract of ginger dried by AD&IM yields the best scavenging ability of DPPH· and ABTS·.
     (2) The osmosis effectively inhibited enzymatic browning reactions, and had a good protection for color and phenolic compounds of ginger. Dried samples after constant pressure osmosis and pulsed vacuum osmosis had a better rehydration ratio than samples directly dried by AD&IM. Gingerol, shogaol and zingiberone of dried samples pretreated by pulsed vacuum osmosis were significantly higher than those of ginger directly dried by AD&IM. Volatiles of fresh ginger were more similar to those of dried samples with pulsed vacuum osmosis, which suggested that volatile components of dried gingers could be preserved the when pulsed vacuum osmosis was applied.
     (3) Dried gingers after500MPa high-pressure pretreatment yielded the best scavenging capability of DPPH-and ABTS-as well as Fe3+reducing ability, significantly higher than samples without high pressure processing. Dried ginger with blanching pretreatment ran the second place while dried samples with freeze combing high pressure treatment turned out to be much weaker in terms of above abilities. The drying rate of ginger after high pressure pretreatment was significantly increased, the drying time of dried samples with freeze combing100MPa,500MPa, blanching and freeze pretreatments were shorten by30%、20%、25%and10%, respectively, compared with dried samples without pretreatments. The fresh samples had more similar volatile components with dried samples pretreated by freeze combining with250MPa and100MPa.
     (4) A new environmental friendly pretreatment was studied, namely Carbonica Maceration (CM). Carbon dioxide can change the permeability of the cell and trigger the anaerobic respiration, which had positive effect on dynamics of AD&IM drying and quality of dried gingers.CM pretreatments can significantly reduced the drying time.The drying time of ginger pretreated by CM2(0.2MPa,40℃,10h) was reduced by35%.In the meanwhile, CM pretreatment significantly improved the content of gingerol and shogaol of dried ginger.The highest gingerol content was found in CM4(0.2MPa,30℃,10h) pretreated samples and its6-gingerol,8-gingerol,10-gingerol and6-shogaol content were2.49,1.45,1.45and1.36times, respectively, of AD&IM dried samples. Dried gingers with CM pretreatment had much smaller colour change with fresh samples, so CM had very good protection for the color of dried samples.
     (5) Based on the Lambert law of microwave energy absorption and the second Fick law of mass transfer, one-dimensional planar mathematical models were established to predict the moisture and temperature distribution of ginger during hot air coupling with microwave drying.The relative deviations of models were within10%, suggesting models can well simulate the actual AD&IM drying process of ginger. The models can provide effective means for process optimization and automatic control for AD&IM in production application.
引文
[1]Azian, M.N., Kamal, A.M., Azlina, M.N. Changes of cell structure in ginger during processing. Journal of Food Engineering,2004,62 (4):359-364.
    [2]An, K.J., Ding S.H., Tao H.Y., et al. Response surface optimisation of osmotic dehydration of Chinese ginger (Zingiber officinale Roscoe) slices. International Journal of Food Science and Technology,2013,48(1):28-34.
    [3]An, K.J, Li, H., Zhao, D.D., et al. Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Drying Technology,2013, 31(6):698-706.
    [4]Azoubel, P.M., Murr, F.E.X. Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering,2004,61 (3):291-295.
    [5]Alnia, R., Zabihi, S., Esmaeilzadeh, F., et al. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering,2010,107 (1):61-66.
    [6]Arballo, J.R., Campanone, L.A. Modeling of microwave drying of fruits. Drying Technology, 2010,28(10):1178-1184.
    [7]Atkinson, A.C., Donev, A.N. Optimum experimental designs. Oxford, UK:Oxford University Press.1992,132-189.
    [8]Al Khuseibi, M. K., Sablani, S. S., Perera, C. O. Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Drying Technology, 2005,23 (12):2449-2461.
    [9]Andres, A., Bilbao, C., Fito, P. Drying kinetics of apple cylinders under combined hot air-microwave dehydration. Journal of Food Engineering,2004,63 (1):71-78.
    [10]Brahim, B., Souhail, B., Romdhane, K., et al. Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food Bioprocess Technology,2012,5 (5):1840-1852.
    [11]Berovic, M., Mavri, J., Wondra, M., et al. Influence of temperature and carbon dioxide on fermentation of cabernet sauvignon must. Food Technology and Biotechnology,2003,41 (4): 353-359.
    [12]Bartley, J.P., Jacobs, A.L. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture,2000,80 (2): 209-215.
    [13]Bouraoui, M., Richard, P., Durance, T. Microwave and convective drying of potato slices. Food Process Engineering,1994,17 (3):353-363.
    [14]Balladin, D.A., Headley, O., Chang-yen, I., Duncan, E.J., McGaw, D.R. Comparison of the histology of (Ⅰ)flesh, (Ⅱ)solar dried and (Ⅲ)solar dried/steam distilled ginger (Zingiber officinale Roscoe) rhizome tissue prior to the extraction of its pungent principles. Journal of Renewable Energy,1999,17 (2):207-211.
    [15]Botha, G.E., Oliveira, J.C., Ahrne, L. Microwave assisted air-drying of osmotically treated pineapple with variable power programmes. Journal of Food Engineering,2012,108 (2): 304-311.
    [16]Conway, J., Castaigne, F., Picard, G., et al. Masstransfer considerations in the osmotic dehydration of apples. Canadian Institute of Food Science and Technology Journal.1983,16 (1):25-29.
    [17]Chirife, J., Fontan, C. F., Benmergui, E. A. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. Ⅳ. A prediction in aqueous non electrolyte solutions. Journal of Food Technology,1980,15(1):59-70.
    [18]Choi, S., Ahn, J., Kim, H., Im, N., Kozukue, N., Levin, C. E., & Friedman, M. Changes in free amino acid, protein, and flavonoid content in jujube (Ziziphus jujube) fruit during eight stages of growth and antioxidative and cancer cell inhibitory effects by extracts. Journal of Agricultural and Food Chemistry,2012,60(41):10245-10255.
    [19]Connell, D.W., McLachlan, R. Natural pungent compounds. IV. Examination of the gingerols, shogaols, paradols and related compounds by thin layer and gas chromatography. The Journal of Chromatography,1972,67 (1):29-35.
    [20]Collignan, A., Raoult-Wack, A.L. Dewatering and salting of cod by immersion in concentrated sugar/salt solutions. LWT-Food Science and Technology,1994,27(3):259-264.
    [21]Corre'a, J.L.G., Pereira, L.M., Vieira, G.S., et al. Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering,2010,96(4):498-504.
    [22]Chiralt, A., Talens, P. Physical and chemical induced by osmotic dehydration in plant tissues. Journal of Food Engineering,2005,67 (1-2):166-177.
    [23]Chen, C.C., Ho, C.T. Gas chromatographic analysis of thermal degradation products of gingerol compounds in steam-distilled oil from ginger (Zingiber officinale Roscoe). Journal of Chromatography A,1987,38 (7):499-504.
    [24]Connell, D.W. Sutherland, M.D. A re-examination of gingerol, shogaol, and zingerone, the pungent principles of ginger (Zingiber officinale Roscoe). Australian Journal of Chemistry, 22(5):1033-1043.
    [25]Cheng, X.L., Liu, Q., Peng, Y. B., et al. Steamed ginger (Zingiber officinale):Changed chemical profile and increased anticancer potential. Food Chemistry,2011,129 (4), 1785-1792.
    [26]Clark, D.E., Sutton, W.H. Microwave processing of materials. Annual Review of Materials Science,1996,26,299-331.
    [27]Chua, K. J., Chou S. K. A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science and Technology,2005,40 (1): 23-39.
    [28]Dandamrongrak, R., Mason, R., Young, G. The effect of pretreatments on the drying rate and quality of dried bananas. International Journal of Food Science and Technology,2003,38 (8):877-882
    [29]Dermesonlouoglou, E.K., Giannakourou, M.C., Taoukis, P. Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. Journal of Food Engineering,2007,78 (1):272-280.
    [30]Deng, Y., Zhao Y.Y. Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT-Food Science and Technology,2008,41(9):1575-1585.
    [31]Ding, S.H., An, K.J., Zhao, C.P., et al. Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe). Food and bioproducts processing,2012,90(3):515-524.
    [32]Doymaz, I. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of Apricots. Biosystems Engineering,2004,89(3):281-287.
    [33]Dugasani, S., Pichika, M.R., Nadarajah, V.D., et al. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology,2010,127 (2):515-520.
    [34]Eshtiaghi, M.N., Stute, R., Knorr, D. High pressure and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes. Journal of Food Science,1994,59 (6):1168-1170.
    [35]Esturk O. Intermittent and continuous microwave-convective air-drying characteristics of Sage (Salvia officinalis) leaves. Food Bioprocess Technology,2012,5(5):1664-1673.
    [36]Eren, I., Kaymak-Ertekin, F. Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering.2007,79 (1):344-352.
    [37]Fabiano, A.N., Fernandes, M.I.G., Rodrigues, S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure:Melon dehydration. LWT-Food Science and Technology,2008,41(4):604-610.
    [38]Faulhaber, S., Shirey, R. Solid-phase microextraction for the sampling in aromatic analysis. Labor Praxis,1998,22 (5):55-58.
    [39]Gunes, G., Blum, L. K., Hotchkiss, J. H. Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system. Journal of the Science of Food and Agriculture,2005,85 (14):2362-2368.
    [40]Gowena, A., Abu-Ghannama, N., Friasa, J., et al. Optimisation of dehydration and rehydration properties of cooked chickpeas(Cicer arietinum L.) undergoing microwave-hot air combination drying. Trends in Food Science and Technology,2006,17 (4):177-183.
    [41]Hoque, M. A., Bala, B. K., Hossain, M. A. et al. Drying kinetics of ginger Rhizome (Zingiber officinale). Bangladesh Journal Agriculture Research,2013,38(2):301-319.
    [42]Hung, J. Y., Hsu, Y. L., Li, C. T., et al.6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. Journal of Agricultural and Food Chemistry,2009,57(22):10645-10650.
    [43]Ismail, R. K., Jagan M. R. L. Microwave drying of ginger(Zingiber officinale Roscoe) and its effects on polyphenolic content and antioxidant activity. International Journal of Food Science and Technology,2012,47(11):2311-2317.
    [44]Jolad, S. D., Lantz, R. C., Solyom, A.M. Fresh organically grown ginger(Zingiber officinale) composition and effects on LPS-induced PGE2 production. Phytochemistry,2004,65 (13): 193-195.
    [45]Krokida, M.K., Maroulis, Z.B., Saravacos, G.D. The effect of the method of drying on the colour of dehydrated products. International Journal of Food Science and Technology,2001, 36(1):53-59.
    [46]Khin, M. M., Zhou, W., Perera, C. O. Impact of process conditions and coatings on the dehydration efficiency and cellular structure of apple tissue during osmotic dehydration. Journal of Food Engineering,2007,79(3):817-827.
    [47]Karathanos, V. T., Kostrapoulos, A.E., Saravacos, G. D. Airdrying of osmotically dehydrated fruits. Drying Technology,1995,13(5):1503-1521.
    [48]Krokida, M. K., Oreopoulou, V., Maroulis, Z. B., et al. Effect of osmotic dehydration pre-treatment on quality of French fries. Journal of Food Engineering,2001,49(3): 339-345.
    [49]Khraisheh, M.A. M., Mcminn, W. A. M., Magee, T. R. A. Amultiple regression approach to the combined microwave and air drying process. Food Engineering,2000,43(4):243-250.
    [50]Lim, Y.Y., Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Science and Technology,2007,40 (9):1664-1669.
    [51]Li, H., Zhao, C.P., Guo, Y.H, et al. Mass transfer evaluation of ultrasonic osmotic dehydration of cherry tomatoes in sucrose and salt solutions. International Journal of Food Science and Technology,2012,47 (5):954-960.
    [52]Lewicki, P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties:A review. International Journal of Food Properties,1998,1(1):1-22.
    [53]Moreno, J., Simpson, A.R. Sayas, M. et al. Influence of ohmic heating and vacuum impregnation on the osmotic dehydration kinetics and microstructure of pears (cv. Packham's Triumph). Journal of Food Engineering,2011,104(4):621-627.
    [54]Monzo-Cabrera, J., Catala-Civera, J.M., Diaz-Morcillo, A., et al. A three-stage microwave-assisted drying model based on the dielectric properties of laminar materials: Theoretical development and validation. Microwave and Optical Technology Letters,2002, 32(6):465-469.
    [55]Mundada, M., Singh, B., Maske, S. Optimisation of processing variables affecting the osmotic dehydration of pomegranate arils. International Journal of Food Science and Technology,2010,45(8):1732-1738.
    [56]Mohanta, B., Dash, S. K., Panda, M. K., et al. Standardization of process parameters for microwave assisted convective dehydration of ginger. Journal of Food Science Technology, 2014,51 (4):673-681.
    [57]Macleod, A.J., Pieris, N.M. Volatile aroma constituents of SriLankan ginger. Phytochemistry, 1984,23 (2):353-359.
    [58]Mujumdar, A. S. Hand Book of Industrial drying. Second Edition Revised and Expanded, 1995,417-424.
    [59]Nijhuis, H.H. Trends in microwave-related drying of fruits.1998.
    [60]Noor Azian, M., Mustafa Kamal, A.A., Nurul Azlina, M. Changes of cell structure in ginger during processing. Journal of Food Engineering,2004,62(4):359-364.
    [61]Niwa, Y., Kanoh, T., Kasama, T., et al. Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system. Drugs under Experimental and Clinical Research,1988,14(5):361-372.
    [62]Nowak, D., Lewicki, P.P. Infrared drying of apple slices. Innovative Food Science & Emerging Technologies,2004,5 (3):353-360.
    [63]Omowaye, A., Rastogi, B.I.O., Angersbach, N.K., et al. Effects of high hydrostatic pressure or high intensity electrical field pulse pre-treatment on dehydration characteristics of red paprika. Innovative Food Science and Emerging Technologies,2001,2(1):1-7.
    [64]Pereira, N.R., Marsaioli, A.J., Ahrne, L.M. Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. Journal of Food Engineering,2007,81(1):79-87.
    [65]Pellerin, P. Supercritical fluid extraction of natural raw materials for the flavor and perfume Industry. Perfum & Flavor,1991,16 (4):37-39.
    [66]Rahman, S., Lamb, J. Air drying behavior of fresh and osmotically dehydrated pineapple. Journal of Food Process Engineering,1991,14(3):163-171.
    [67]Rattanadecho, P. Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness). International.Journal of Heat Mass Transfer,2004,47(5):937-945.
    [68]Rodrigues, S., Oliveira, F.I.P., Gallao, M.I., et al. Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Drying Technology:An International Journal,2009,27(2):220-225.
    [69]Rhafiq, A.M., Amarjit, S., Sawhney, B.K. Response surface optimization of osmotic dehydration process for aonla slices. Journal of Food Science and Technology,2010,47(1): 47-54.
    [70]Rodrigues, S., Gomes, M., Gallao, M., Fernandes, F. Effect of ultrasound-assisted osmotic dehydration on cell structure of sapotas. Journal of the Science of Food and Agriculture, 2009,89(4):665-670.
    [71]Simal, S., Deya, E., Frau, M., Rossello, C. Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apple cubes. Journal of Food Engineering,1997,33 (1-2): 139-150.
    [72]Simal, S., Benedito, J., Sanchez, E.S., Rossello, C. Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering,1998,36(3): 323-336.
    [73]Schwertner, H.A., Rios, D.C. High-performance liquid chromatographic analysis of 6-gingerol,8-gingerol,10-gingerol, and 6-shogaol in ginger-containing dietary supplements, spices, teas, and beverages. Journal of Chromatography B,2007,856 (1-2):41-47.
    [74]Shukla, Y., Singh, M.Cancer preventive properties of ginger:A brief review. Food and Chemical Toxicology,2007,45(5):683-690.
    [75]Taiwo, K.A., Angersbach, A., Ade-Omowaye, B.I.O., Knorr, D. Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. Journal of Agricultural and Food Chemistry,2001,49(6):2804-2811.
    [76]Taiwo, K.A., Eshtiaghi, M.N., Ade-Omowaye, B.I.O., et al. Osmotic dehydration of strawberry halves:influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. International Journal of Food Science and Technology,2003, 38(6):693-707.
    [77]Vega-Galvez, A., Mrianda, M., Aranda, M., et al. Effect of high hydrostatic pressure on functional properties and quality characteristics of Aloe vera gel (Aloe barbadensis Miller). Food Chemistry,2011,129(3):1060-1065.
    [78]Young, H.Y., Chiang, C.T., Huang, Y.L., et al. Analytical and Stability Studies of Ginger Preparations. Journal of Food and Drug Analysis,2002,10 (3):149-153.
    [79]Yonel, Y., Ohinata, H., Yoshida, R., Shimizu, Y., Yokoyama, C. Extraction of ginger flavor with liquid or supercritical carbon dioxide. The Journal of Supercritical Fluids,1995,8(3): 156-161.
    [80]Yucel, U., Alpas, H., Bayindirli, A. Evaluation of high pressure pretreatment for enhancing the drying rates of carrot, apple, and green bean. Journal of Food Engineering,2010,98 (2): 266-272.
    [81]Zhang, H., Jiang, L., Ye, S., Ye, Y. B., & Ren, F. Z.Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food and Chemical Toxicology,2010,48(6):1461-1465.
    [82]Zhao D.D, Zhao C.P., Tao H.Y., et al. The effect of osmosis pretreatment on hot-air drying and microwave drying characteristics of chili (Capsicum annuum L.) flesh. International Journal of Food Science & Technology,2013,48 (8):1589-1595.
    [83]陈燕,倪元颖,蔡同一.生姜提取物--精油与油树脂的研究进展.食品科学,2000,121(8):6-8.
    [84]段振华,徐松,冯爱国,等.罗非鱼片渗透处理中的水分传递特性.食品科学,2008,29(3):136-139.
    [85]方舒正.大枣干燥特性和数学模型的研究:[硕士学位论文].北京:中国农业大学,2008.
    [86]关熔,廖兰,曾庆孝,等.热风微波干燥龙眼肉工艺的优化.食品科学,2008,29(8):203-206.
    [87]郭英华,张振贤,关秋竹.姜的研究进展.长江蔬菜,2005,(9):38-42.
    [88]何文珊,严玉霞.生姜的化学成分及生物活性研究概况.中药材,2001,24(5):376-379.
    [89]侯爽爽,罗磊.金银花热风干燥过程中颜色的劣变机理.农产品加工学刊,2010,10(4):64-65.
    [90]韩燕全,左冬,夏伦祝,等.不同干燥方法和温度对干姜中6、8、10-姜酚含量的影响.中华材,2011,34(10):1512-1514.
    [91]扈文盛.常用食品数据手册.北京:中国食品出版社,1989,155-158.
    [92]黄雪松.一些加工条件对姜酚稳定性的影响.食品工业科技,2006,27(2):92-94.
    [93]李计萍,王跃生,马华.干姜与生姜主要化学成分的比较研究.中国中药杂志,2001,11(26):748-751.
    [94]李兆龙.国外对生姜的药用研究.中国药学杂志,1990,25(4):231-232.
    [95]李慧.渗透预处理樱桃番茄干燥特性研究:[硕士学位论文].北京:中国农业大学,2011.
    [96]卢传坚,欧明,王宁生.姜的化学成分分析研究概述.中药新药与临床药理,2003,14(3):215-217.
    [97]刘沫茵.二氧化碳预处理的葡萄干制及其经济效益分析:[硕士学位论文].北京:中国农业大学,2012.
    [98]莫开菊,程超,黄鹏,等.生姜黄酮提取纯化及结构的初步鉴定.食品科学,2005,26(9):229-233.
    [99]潘永康.现代干燥技术.北京:化学工业出版社,1998,237-253.
    [100]孙帅.热风微波耦合干燥热质传递模型的研究:[硕士学位论文].无锡:江南大学,2011.
    [101](美)S.V帕坦卡著,张政译,传热与流体流动的数值计算.北京:科学出版社,1984,122-132.
    [102]陶红燕.不同预处理对红提干燥特性及产品品质的影响:[硕士学位论文].北京:中国农业大学,2013.
    [103]石蔼如,贾云发.微波固相反应的扩散增强机理.青岛大学学报,1998,11(1):64-67
    [104]吴晓慧,顾龚平,张卫明,等.姜综合利用及深加工技术研究进展.中国野生植物资源,2003,22(3):5-7.
    [105]晏春耕,曹瑞芳.生姜根茎的内部结构特征与生长发育规律.研究安徽农业科学,2009,37(17):7938-7939.
    [106]杨军,余德顺,代明权.超临界CO2萃取不同部位姜油的组成研究.食品科学,2003,24(1):79-81.
    [107]杨大伟.脱水黄花菜加工工艺的研究:[硕士学位论文].长沙:湖南农业大学,2003.
    [108]杨健,王兆进,李海伟,等.不同干燥方法对生姜6-姜酚含量的影响.中国食品添加剂, 2012,6(3):111-114.
    [109]杨洋.生姜黄酮的提取及其抗氧化活性的测定.中国调味品,2002,7(22):19-23.
    [110]战琨友.姜油的化学成分分析与姜辣素的分离纯化研究:[博士学位论文].山东:山东农业大学,2009.
    [111]张卫明,姜红芳,张玖.不同居群生姜呈香部位的气相色谱指纹图谱研究.中国野生植物资源,2003,22(5):53-55.
    [112]曾凡逵,黄雪松,李爱军.超临界二氧化碳萃取姜油树脂与溶剂浸提的比较.食品科学,2006,27(6):155-157.
    [113]赵翠萍.渗透预处理辣椒肉干燥特性的研究:[硕士学位论文].北京:中国农业大学,2012.
    [114]周韵.热风微波耦合干燥特性研究:[硕士学位论文].无锡:江南大学,2011.
    [115]朱文学.食品干燥原理与技术.中国北京:科学出版社,2009,384-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700