鹅GH、PRL基因序列及其多态性与早期生长发育及屠宰性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验对我国大、中、小三个地方鹅种狮头鹅、皖西白鹅和籽鹅的早期生长发育规律进行分析,同时以籽鹅、皖西白鹅、狮头鹅、四季鹅和浙东白鹅为研究对象,对GH基因外显子和内含子、PRL基因编码区全序列以及5’端序列进行PCR-SSCP检测和克隆测序,分别计算5个鹅品种(种群)突变位点的基因型频率和基因频率,比较不同鹅种间的基因型分布规律,并对GH基因和PRL基因多态性与鹅早期增重和屠宰性状进行关联分析。试验结果如下:
     1.利用Logistic,Gompertz,Bertalanfy和Cubic 4种非线性动物生长模型拟合大、中和小型三个地方鹅种:狮头鹅、皖西白鹅和籽鹅1-11周龄的平均体重,进行早期生长发育规律及遗传参数分析。结果表明:4个方程均能很好地拟合三个鹅种的生长过程,拟合度都在0.99以上,但Gompertz模型更符合实际品种特性,为首选模型,由此模型估计狮头鹅、皖西白鹅和籽鹅生长的拐点时间分别为5.98周龄、5.11周龄和6.16周龄,相应的拐点体重分别为2115.77g、1499.08g和1049.62g。
     2.对鹅GH基因外显子和内含子进行克隆测序,得到鹅GH基因编码区全序列,长度为651bp。与鸡GH基因cds的同源性为91.4%,与鸭的同源性高达98.5%,演绎成氨基酸后两者同源性分别为97.6%和99.9%;与人、鼠GH基因cds序列同源性分别为63.81%和74.31%,演绎成氨基酸后同源性分别为52.51%和72.81%。并获得了鹅GH基因4个内含子的序列,序列长度分别为1504bp、664bp、362bp和1144bp。
     3.在鹅GH基因编码区上共检测到4个SNP位点,分别为外显子2的C39T、C74T突变和外显子4的T291C、G297C,仅外显子2的C74T突变导致导致编码的氨基酸由丙氨酸变为缬氨酸,其余位点均为“沉默”突变。外显子2多态性分析结果显示,籽鹅和皖西白鹅具有10种基因型,狮头鹅和四季鹅具有7种基因型,浙东白鹅具有8种基因型,在籽鹅、皖西白鹅和四季鹅中等位基因A为优势等位基因,狮头鹅和浙东白鹅中等位基因D为优势等位基因;外显子4多态性分析结果显示,所有5个鹅品种(种群)均具有3种基因型,除籽鹅外,其它4个品种(种群)中等位基因A均为优势等位基因。外显子多态位点上,所有鹅品种(种群)均处于Hardy– Weinberg平衡状态。
     4. 4个内含子的7对引物扩增结果具有多态性,测序结果表明,内含子1的P6引物的SNP位点分别为A1066G和C1157T;内含子2的P10引物的SNP位点分别为C548T和T551C,P11引物的SNP位点分别为C548T和T551C;内含子3的P13引物多态性是由该段序列中的5个核苷酸的点突变和缺失造成,分别为A160G和C167G和T264C突变以及176bp处和231bp处分别存在两个碱基的重复和缺失。内含子4的P15的SNP位点为T130C;P18引物的SNP位点分别是G821A和C949T;P19引物的SNP位点为T1137C。
     在内含子1中只有P6对引物存在多态性,多态性分析结果显示,籽鹅和皖西白鹅具有4种基因型,狮头鹅、浙东白鹅和四季鹅具有3种基因型,在5个鹅品种(种群)中等位基因A均为优势等位基因;内含子2的P10和P11对引物存在多态性且基因型完全对应;所有5个鹅品种(种群)均具有3种基因型,除籽鹅外,等位基因A均为优势等位基因;内含子3的P13对引物存在多态性,狮头鹅、籽鹅和皖西白鹅具有3种基因型,浙东白鹅和四季鹅具有2种基因型,在5个鹅品种(种群)中等位基因B均为优势等位基因;内含子4的P15、P18和P19检测到多态性;引物对P15除四季鹅外,其它4个品种具有3种基因型,在5个鹅品种(种群)中等位基因A均为优势等位基因;内含子4引物对P18皖西白鹅、浙东白鹅和四季鹅具有5种基因型,狮头鹅具有4种基因型,而籽鹅只具有3种基因型,在5个鹅品种(种群)中,狮头鹅等位基因E均为优势等位基因,而籽鹅不具有E等位基因,浙东白鹅E等位基因的频率也相对较高;引物对P19皖西白鹅、浙东白鹅、籽鹅和四季鹅具有3种基因型,而狮头鹅只具有2种基因型,在5个鹅品种(种群)中,籽鹅和四季鹅M为优势等位基因,而皖西白鹅、浙东白鹅和狮头鹅N为优势等位基因。在内含子4引物对P19的多态位点中,只有籽鹅和四季鹅处于Hardy– Weinberg平衡状态(P>0.05);其它内含子多态位点中,所有鹅品种(种群)均处于Hardy– Weinberg平衡状态(P>0.05)。
     5.对鹅GH基因所有检测到的SNPs的多态性与早期体重和屠宰性状进行关联分析,结果表明鹅GH基因外显子2、内含子3和内含子4的多态位点上对早期增重和屠宰性状存在显著的基因型效应,对于鹅早期增重和屠宰性状,外显子2的多态位点CD和DD基因型是有利基因型,在狮头鹅和浙东白鹅中的优势等位基因D可能是有利基因。内含子3的多态位点上最有利基因型是BB基因型。内含子4上NN基因型对鹅生长具有一定的促进作用,N基因可能是鹅早期增重和屠宰性状的有利基因。
     6.利用多对引物扩增的方式,本试验克隆测序了鹅PRL基因编码区以及5’端调控区的全序列,cds序列全长为690bp,5’端序列全长为836bp。将所获得序列与鸡和鸭的PRL基因cds序列比较,发现与鸡PRL基因cds序列的同源性为92.8%,与鸭的同源性高达98.7%,演绎成氨基酸后两者同源性分别为93.3%和98.3%。
     7.在鹅PRL基因的5’端调控区检测到C135G、C201T、C278Abp和T827G突变,在内含子2的32bp和33bp处检测到2个核苷酸GA的缺失/插入,但是在编码区没有发现突变位点。多态性分析结果5′端调控区引物对P3中,籽鹅、皖西白鹅和狮头鹅具有3种基因型,四季鹅和浙东白鹅只具有2种基因型,在5个鹅品种(种群)中等位基因A均为优势等位基因;内含子2多态位点所有5个鹅品种(种群)除浙东白鹅外均具有3种基因型,在5个鹅品种(种群)中等位基因B均为优势等位基因;所有多态位点中,所有鹅品种(种群)均处于Hardy– Weinberg平衡状态(P>0.05).
     8.对于鹅早期增重和屠宰性状,PRL基因仅仅在5’端调控区的多态位点上存在显著的基因型效应,AA和AB基因型的个体6~10周龄体重显著高于BB基因型个体,AA和AB基因型的个体间6~10周龄体重差异不显著;对于屠宰性状而言,AA和AB基因型的个体活重、屠体重、半净膛重、全净膛重和内脏重也显著高于BB基因型个体,AA和AB基因型的个体间屠宰性状差异不显著。因此,对于鹅早期增重和屠宰性状, AA和AB基因型为有利基因型。
The growth and development parameters about early bodyweight of three local goose breeds of large, medium and small type including Shitou goose, Wanxi White goose and Zi goose were analyzed, and the exons and introns of growth hormone(GH) gene and the 5’-regulatory region and exons of prolactin (PRL) gene were cloned and sequenced. Based on the sequence obtained, the single nucleotide polymorphism (SNP) of all these sequence was investigated in Zi goose, Wanxi White goose, Shitou goose, Siji goose and Zhedong White goose with PCR-SSCP method. After Calculated the frequency of genotypes and genes and compared the distribution of genotype frequencies among different goose breeds, the polymorphism of GH and PRL Gene and its relationship with body weight and carcass traits were analyzed. The results were as followed.
     1. Growth and development regularity and genetic parameters of average week bodyweight of local goose breeds of large, medium and small type from 1 week-old to 11 week-old were fitted with four non-lineared growth models, namely, Logistic model, Gompertz model, Bertalanfy model and Cubics model. The results showed that growth process of three geese could be demonstrated very well by four models, and all indexes of fitness were very high (more than 0.99). But Gompertz model was the best model because of its less bias of feed practice. The inflection age of growth were 5.98 weeks, 5.11 weeks and 6.16 weeks in Shitou goose, Wanxi White goose and Zi goose, respectively, and bodyweight at inflection age were 2115.77g, 1499.08g and 1409.62g, respectively.
     2. The exons and introns of GH gene were cloned and sequenced, and obtained the coding sequence(cds) of goose, whose length was 651bp. Homologous comparison showed that the identity of cds of GH gene was 91.4% between goose and chicken, the identity of cds of GH gene was 98.5% between goose and duck, and that was 97.6% and 99.9% in amino acid sequences, respectively. Further analysis showed that the identities of cds of goose GH gene with human and mouse were 63.81% and 74.31% and that was 52.51% and 72.81% in amino acid level, respectively. Meanwile, the sequence of four introns were obtained and their length were 1504bp, 664 bp, 362bp and 1144bp, respectively.
     3. Four SNPs were found in the coding region of GH gene, which are C39T and C74T mutation whith exon 2, and T291C and G297C mutation within exon 4. However, except from the C74T mutation in exon 2, where coding amino acid was changed from alanine to valine, other mutations were slient mutation. The result of polymorphism analysis on exon 2 showed that all kinds of ten genotypes appeared in the populations of Zi goose and Wanxi White goose, seven kinds of genotypes appeared in the populations of Shitou goose and siji goose and eight kinds of genotypes appeared in the population of Zhedong White goose. The allele A was dominant allele in the populations of Zi goose, Siji goose and Wanxi White goose, while allele D was dominant allele in the populations of Shitou goose and Zhedong White goose. The result of polymorphism analysis on exon
     4 showed that all five populations appeared three kinds of genotypes. The allele A was dominant allele in all populations except for Zi goose. Within all populations the frequencies of alleles in exons fited with Hardy-Weinbery equilibrium (P>0.05). 4. Seven pairs of primers of introns existed polymorphisms. Sequencing results revealed 13 SNPs, which were as follows: A1066G and C1157T amplied by P6 primers, and C548T and T551C amplied by P10 primers from intron 1; five point mutations and deletions caused polymorphism in intron 3 amplied by P13 primers, they were A160G, C167G, T264C and two bases insertion/deletion mutations after position 176 and 231 bp; T130C amplied by P15 primers, G821A and C949T amplied by P18 primers, and T1137C amplied by P15 primers from intron 4.
     Only fragment amplied by P6 primers of intron 1 existed polymorphism, and the result of polymorphism analysis showed that all kinds of four genotypes appeared in the populations of Zi goose and Wanxi White goose, while three kinds of genotypes appeared in the populations of Shitou goose, siji goose and Zhedong White goose, and the allele A was the dominant allele in all the goose populations. P10 and P11 primers of intron 2 existed polymorphisms and had complete corresponding genotypes, and all the goose populations had all the three genotypes, in which the allele A was the dominant allele except in Zi goose. P13 primers of intron 3 also existed polymorphism, all the three genotypes appeared in the populations of Shitou goose, Zi goose and Wanxi White goose, while two kinds of genotypes appeared in the populations of Siji goose and Zhedong White goose, and the allele B was the dominant allele in all the goose populations. Polymorphisms were detected from fragments amplied by P15, P18 and P19 primers of intron 4. Except Siji goose, the other four populations had all the three genotypes, and the allele A was the dominant allele in all populations; The result of polymorphism analysis on P18 showed that all kinds of five genotypes appeared in the populations of Wanxi White goose, Zhedong White goose and siji goose, four kinds of genotypes appeared in the populations of Shitou goose, and three kinds of genotypes appeared in the population of Zi goose. In the all five populations, the allele E was the dominant allele in Shitou goose, the frequency of E allele in Zhedong White goose also showed relative high, while there was no E allele existing in Zi goose. Wanxi White goose, Zhedong White goose, Zi goose and siji goose had all the four genotypes and Shitou goose only had two genotypes in P19, M was the dominant allele in Zi goose and siji goose, while N was the dominant allele in Wanxi White goose, Zhedong White goose and Shitou goose. In P19 polymorphic loci, only Zi goose and siji goose were in Hardy-Weinberg equilibrium (P>0.05); But in the other polymorphic loci in introns, all the goose populations were in Hardy-Weinberg equilibrium (P>0.05).
     5. Association analysis on polymorphism of GH gene and body weight and carcass traits showed that the polymorphic loci of exon 2,intron 3 and intron 4 of GH gene had significant genotype effect on body weight (the age of 1-10 weeks) and carcass traits. For body weight and carcass traits of goose, the CD and DD genotypes in exon 2 were favorable genotypes, while the allele A which is dominant allele in populations of Shitou goose and Zhedong White goose maybe was the favorable gene.BB genotype was the most favorable genotype for body weight and carcass traits of goose among all genotypes of intron 3, NN genotype was also favorable genotype for growth of goose and allele N maybe was the favorable gene for body weight and carcass traits of goose.
     6. The the 5’-regulatory region and exons of PRL gene were amplified by some premiers, cloned and sequenced, and then obtained the coding sequence of goose were obtained, the length of which was 690bp. Homologous comparision show that the identity of cds of PRL gene was 92.8% between goose and chicken, the identity of cds of PRL gene was 98.7% between goose and duck, and that was 93.3% and 98.3% in amino acid sequences, respectively. Meanwile, the sequence of 5’-regulatory region was obtained and its length was 836bp.
     7. Six SNPs were found in the PRL gene, which are C135G, C201T, C278Abp and T827G mutation whith the 5’-regulatory region, and GA InDel in the site of 32bp and 33bp within intron 2, while no polymorphism was detected in the exons of PRL. The result of polymorphism analysis on 5’-regulatory region showed that all kinds of three genotypes appeared in the populations of Zi goose and Wanxi White goose and Shitou goose, two kinds of genotypes appeared in the populations of siji goose and Zhedong White goose, allele A was dominant allele in all five populations. The result of polymorphism analysis on intron 2 showed that all kinds of three genotypes appeared in all populations except for Zhedong White goose and allele B was dominant allele in all five populations. Within all populations the frequencies of 5’-regulatory region and intron 2 fited with Hardy-Weinbery equilibrium (P>0.05).
     8. Association analysis on polymorphism of PRL gene and body weight and carcass traits showed that the only polymorphic loci of 5’-regulatory region of PRL gene had significant genotype effect on body weight and carcass traits. 6-10 week bodyweight of individuals with AA and AB genotype were significant higher(P<0.05) than the of individuals with BB genotype, but were insignificant difference(P>0.05) in 6-10 week bodyweight between geese with AA and BB genotype. The carcass traits such as live weight, eviscerated weight and semi-eviscerated weight of individuals with AA and AB genotype were also significant higher (P<0.05) than the of individuals with BB genotype, and insignificant difference (P>0.05)in carcass traits between geese with AA and AB genotype. The results indicated that AA and AB was favorable genotype for body weight and carcass traits of goose.
引文
[1]陈国宏,王克华,王金玉,等.中国禽类遗传资源[M]:上海科学技术出版社, 2004.
    [2] Olson S L. The fossil records of birds[M]. Avian Biology ed. Farner, D S , King, J R, Parkes and K C. New York: Academic Press, 1985.
    [3] Olson S L, Feduccia A. Presbyornis and the origin of the Anseriformes (Aves: Charadri-omorphae)[J]. Smithson Contrib Zool, 1980, 323: 1~24.
    [4] Delacour J, Mayr E. The family Anatidae[J]. Wilson Bull, 1945, 57: 3~55.
    [5] Livezey B C. A phylogenetic analysis of recent anseriform genera using morphological characters[J]. Auk, 1986, 105: 681~698.
    [6]邱祥聘,陈锷,陈育新.中国家禽品种志[M]:上海科技出版社, 1988.
    [7]陈育新,曾凡同.中国水禽[M]:北京农业出版社, 1990.
    [8] Woolfenden G E. Postcranial osteology of the waterfowl[J]. Florida State Mus Bull, 1961, 6: 1~129.
    [9] Yamashina Y. Classification of the Anatidae based on cytogenetics[J]. Pap Coord Comm Res Gen, 1952, 3: 1~24.
    [10] Sibley C G, Ahlquist J E. A comparative study of the egg-white proteins of non-passerine birds[J]. Bull Peabody Mus Nat Hist, 1972, 39: 1~276.
    [11] Cooper A, Rhymer J, James H F. Ancient DNA and island endemics[J]. 1996: 381~ 484.
    [12] Carole Donne-Goussé, Vincent Laudet, Catherine H?nni. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis[J]. Molecular Phylogenetics and Evolution, 2002, 23: 339~435.
    [13] Shields G F, A C Wilson. Calibration of mitochondrial DNA evolution in geese[J]. Mol Evol, 1987, 24: 212~217.
    [14] Tuohy J M, K P Mchugh, S R De Kloet. Systematic relationships among some Anatini as derived from restriction-endonuclease analysis of a repeated DNA component[J]. Auk, 1992, 109(3): 465~473.
    [15] Sibley C G, Ahlquist J E. Phylogeny and Classification of Birds: A Study in Molecular Evolution[M]: Yale University Press,NewHaven, 1990.
    [16]郑作新,童第周,陈世骧,等.中国动物志[M]:科学出版社, 1979.
    [17]薄吾成.中国家鹅的起源[M].中国家禽起源论文集:天则出版社, 1993, 67-74.
    [18]史宪伟,曾凡同,邱祥聘,等.中国主要鹅品种的线粒体DNA多态性与起源分化研究[J].遗传学报, 1998, 25(6): 499~507.
    [19] Burt D W, Bumstead N, Bitgood J J, et al. Chicken genome mapping: a new era in avian genetics[J]. Trends Genet, 1995, 11(5): 190~194.
    [20] Smith J, Burt D W. Parameter of the chicken genome (Gallus gallus)[J]. Animal genetics, 1998, 29: 290~294.
    [21] Levin I, Crittenden L B, Dodgson J B. Genetic map of the chicken Z chromosomeusing random amplified polymorphic DNA(RAPD) markers[J]. Genomics, 1993, 16(1): 224~230.
    [22] Bumstead N, Palyga J. A preliminary linkage map of the chicken genome[J]. Genomics, 1992, 13(3): 690~697.
    [23] Morrisson M, Pitel F, Fillon V, et al. Integration of chicken cytogenetic and genetic maps: 18 new polymorphic markers isolated from BAC and PAC clones[J]. Anim Genet, 1998, 29(5): 348~355.
    [24]黄银花.鸭遗传图谱的构建及重要经济形状基因座的初步定位: [学位论文][D].中国农业大学, 2004.
    [25] Hammer B. The karyotypes of nine birds[J]. Heterdidas, 1966, 55: 367~385.
    [26]Itoh M T, Ikenchi H. A comparative study in fourteen species of birds[J]. Jpn J Genet, 1969, 44: 163~170.
    [27] Becak M L, Becak W, Chen T R, et al. Chromosome atlas: Fish, amphilians, reptiles and birds[M]. Vol. 3. New York: Springer-Verlag, 1975.
    [28]刘有清,何海晏,张承延,等.五龙鹅的核型分析[J].遗传, 1984, 6(5): 27-29.
    [29]严允逸,马振晏.浙东白鹅种质特性的初步研究[J].上海畜牧兽医通讯, 1988, 4: 16-18.
    [30]郭利敏,田有庆,周沛,等.四川白鹅染色体组型分析[J].四川畜牧兽医, 1992, 1: 1-3.
    [31]王欢莉.扬州鹅染色体核型、带型分析及其生产性能相关性研究: [学位论文][D].扬州大学, 2002.
    [32] Bhatnagar M K. Mitotic chromosomes of white Chinese geese[J]. Hered, 1968, 59: 191~195.
    [33] Hidas A. Cytogenetic studies on an interspecific hybrid goose breed. Materials of the 8th North A merican Colloquium on Domestic Animal Cytogenetics and Gene Mapping[J]. Guelph, 1993: 154~156.
    [34]王元林,袁锦和,杨震,等.江苏太湖鹅产蛋期若干生理生化指标的测定(初报)[J].南京农业大学学报, 1983, 3.
    [35]张淑君.鹅血浆蛋白酶多态性的研究[J].山东家禽, 1992, 5(1): 3-5.
    [36]吴译夫,王恬.太湖鹅血清转铁蛋白类型的测定[J].中国畜牧杂志, 1989, 25(1): 26-27.
    [37]金润谦,陈明朗,杨茂成.鹅血清蛋白多态型及其遗传规律的研究[J].畜牧科技进展, 1994: 49-60.
    [38]肖千钧,吴晓林,项可宁,等.家禽(鹅、鸭、鸡)血清酯酶多态性比较血型初步研究[J].遗传, 1997, 19(2): 20-22.
    [39]杨凤萍,王金玉,陈义权,等.鸡、鹦鹉和鹅的血浆酯酶电泳特点比较[J].中国家禽, 2005, 27(19): 21-23.
    [40] Zardoya R, Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates[J]. Mol Biol Evol, 1996, 13(7): 933~942.
    [41]韦月旺,冯树义,沈同,等.鸡肝线粒体DNA的限制图谱[J].遗传学报, 1985,12(1): 27-34.
    [42]史宪伟,曾凡同,邱祥聘,等.云南鹅线粒体DNA多态及酶切图谱分析[J].西南农业学报, 1996, 9(4): 58-63.
    [43]史宪伟,李清,曾凡同,等.云南鹅不同地理群体线粒体DNA多态性研究[J].云南农业大学学报, 1998, 13(3): 311-313.
    [44]史宪伟.中国主要家鹅品种遗传多样性及其起源分化研究: [学位论文][D].四川农业大学, 1997.
    [45]郝家胜,周开亚.狮头鹅、莱茵鹅和灰雁mtDNA RFLP分析[J].安徽师大学报, 1998, 6: 24-28.
    [46]郝家胜,周开亚.鹅的起源分化和相关雁类的分子系统发生研究[J].动物学报, 2000, 46(3): 357-359.
    [47] Barnes I, Young J P W, Dobney K M. The use of mitochondrial control region DNA sequence data in understanding the phylogeny and recent speciation of geese (Aves: Anserini)[J]. Molecular Phylogenetics and Evolution, 1998.
    [48] Quinn T W. The genetic legacy of Mother Goose-phylogeographic patterns of lesser snow goose Chen caerulescens maternal lineages[J]. Molecular Ecology, 1992, 1: 105~117.
    [49] Ruokonen M, L Kvist , J Lumme. Molecular phylogeny of Anser: mitochondrial control region and a nuclear copy[M]: Evol Biol, 2000.
    [50] Ian Barnes, J P W Young, K M Dobney. DNA-based Identification of Goose Species from Two Archaeological Sites in Lincolnshire[J]. Journal of Archaeological Science, 2000, 27: 91~100.
    [51] Paxinos E E, Helen F, James, et al. mtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (Branta canadensis )[J]. Proc Natl Acad Sci,USA, 2002, 99(3): 1399~1404.
    [52]刘安芳.家鹅mtDNA序列结构与遗传多样性: [学位论文][D].四川农业大学, 2003.
    [53]郝家胜,周开亚.皖西白鹅遗传多样性的RAPD分析[J].安徽师范大学学报, 1999, 22(1): 40-44.
    [54]潘庆杰.五龙鹅经济性状的标记及其分子系统发育关系的研究: [学位论文][D].东北农业大学, 2001.
    [55]何峰.吉林农大白鹅肉用品系选育及品系纯度DNA指纹分析研究: [学位论文][D].吉林农业大学, 2003.
    [56] J. C. Cathey, J A DeWoody, L M Smith. Microsatellite markers in Canada geese(Branta Canadensis)[J]. The Journal of Heredity, 1998, 89(2).
    [57]陈兴勇,耿照玉.皖西白鹅微卫星DNA遗传多样性分析[J].中国畜牧兽医, 2005, 32(8): 28-29.
    [58]杜文兴,虞德兵,刘红林,等.双重抑制PCR技术分离鹅微卫星标记[J].南京农业大学学报, 2005, 28(3): 63-67.
    [59]虞德兵,汪峰,洪坤月,等.鹅微卫星(TG)n基序的克隆及序列比较分析[J].畜牧与兽医, 2005, 37(12): 1-3.
    [60]屠云洁,陈宽维,章双杰,等.用磁珠富集法从AFLP片段中分离鹅微卫星DNA标记[J].畜牧兽医学报, 2005, 36(10): 1001-1005.
    [61]顾志良.家禽Myostatin和OBR基因与骨骼肌和脂肪生长发育性状关系的遗传学研究: [学位论文][D].东北农业大学, 2002.
    [62]马现永,施振旦,曹永长,等.鸡、鹅肌肉生成抑制因子基因的克隆及序列分析(自然科学版)[J].华南农业大学学报, 2004, 25(2): 85-88.
    [63]周建军.鸭、鹅、鸸鹋生长素前体cDNA克隆、定位、组织表达及分子进化研究: [学位论文][D].中国农业大学, 2004.
    [64]陈秀萍,姜勋平,丁家桐.鹅bcl-2基因部分cDNA的克隆与序列分析[J].畜牧兽医学报, 2005, 36(11): 1228-1231.
    [65]吕文发,赵静,单雪松,等.溆浦鹅卵泡抑制素α亚基编码区cDNA克隆及其原核表达[J].畜牧兽医学报, 2005, 36(6): 536-539.
    [66] Miguel A Rodríguez, Teresa García, Isabel González, et al. Development of a polymerase chain reaction assay for species identification of goose and mule duck in foie gras products[J]. Meat Science, 2003, 65: 1257~1263.
    [67]张录强,杨振才,孙儒泳.红腹锦鸡(Chrysolophus pictus)生长曲线分析[J].北京师范大学学报(自然科学版), 2002, 38: 549-553.
    [68]葛剑,谷子林.河北柴鸡1-16周龄生长曲线分析与拟合的比较研究[J].中国饲料, 2005, 4: 22-26.
    [69] Marks H L. Growth curve changes associated with long-term selection for body weight in Japanese quails[J]. Growth, 1978, 42: 129.
    [70] Grossman M, Bohren J Hered. Logistic growth curve of chickens:heritability of parameters[J]. Heredity, 1985, 76: 459~462.
    [71] Arai K. Growth curves of spotbill ducks, anas poecilorncha zonorhyncha swinhoe, in caplivity[J]. Japanese Poultry Science, 1983, 25(4): 253~258.
    [72]杨宁.不同品系鹌鹑的生长曲线分析[J].中国家禽, 1990, 1: 23-26.
    [73]杨运清.动物生长曲线拟合方法的探讨[J].畜牧兽医学报, 1992, 23(3): 219-224.
    [74]陈景仁.雷州山羊体重生长曲线方程的建立及校正方法的探讨[J].广东畜牧兽医科技, 1994, 19(4): 10-11.
    [75]李秀元.用复合函数测定牛累积生长曲线的探讨[J].中国畜牧杂志, 1997, 33(1): 44-45.
    [76]于辉.肉兔生长曲线分析[J].草食家畜, 2000(4): 18-20.
    [77]刘旭光.淮南麻鸡生长曲线分析与拟合的研究[J].安徽农业大学学报, 1997, 24(4): 362-365.
    [78]项云.不同育雏方式下雏鸽的生长曲线[J].浙江农业学报, 2000, 12(4): 213-216.
    [79]吕敏之.北京鸭、樱桃谷鸭与仙湖鸭的生长曲线分析[J].中国家禽, 2000, 22(2): 13-14.
    [80]洪渊.应用回归分析制定罗曼褐蛋鸡的标准生长曲线[J].中国畜牧杂志, 1995, 31(2): 28-30.
    [81]张文举.徽成盆地黄牛生长曲线方程的研究[J].甘肃畜牧兽医, 1998, 28(1): 3-6.
    [82]叶昌辉,钟日聪.狮头鹅生长发育模型的研究[J].石河子大学学报(自然科学版),2005, 23(6): 694-697.
    [83]陈清,赵文明,吴信生等.不同生长模型估计籽鹅早期体重发育规律及遗传参数[J].中国家禽, 2006, 24(28): 146-147.
    [84]孙国荣,朱祖明,何大乾,等.莱川杂交肉鹅早期体重发育规律及生长曲线拟合[J].中国畜牧杂志, 2006, 2(45): 10-12.
    [85]杜文兴,杨茂成,张增源,等.不同类型仔鹅的生长曲线分析[J].江苏农业学报, 1996, 12(2): 49-53.
    [86]张连连,王平政,张瑞林,等.四季鹅与本地鹅杂交试验[J].畜牧与兽医, 1992, 24(5): 210.
    [87]陈兵.四川省白鹅、皖西白鹅与太湖鹅杂交效果试验[J].四川畜牧兽医, 1995(3): 17- 18.
    [88]骆国胜,林宗保,吴立胜,等.鹅的饲喂及杂交优势利用试验[J].养禽与禽病防治, 1998, 4( 7- 8).
    [89]杨茂成,吴索琴.中国白鹅主要品种间配合力测定[J].畜牧兽医学报, 1993, 24(5): 423- 429.
    [90]司徒玉,何连琦,顾万茂,等.朗德鹅与太湖鹅杂交一代生产性能观察[J].中国畜牧杂志, 1992, 28(2): 32-33.
    [91]耿拓宇,赵万里.隆昌鹅和以其为母本的杂交后代的产肉及产肝性能[J].中国家禽, 1994(5): 21-23.
    [92]段宝法,温广宝,丁涛,等.隆昌鹅引进开发利用研究[J].中国畜牧杂志, 1994, 30(6): 32-34.
    [93]周孝峰,樊永青,王来友,等.提高豁鹅综合效益配套生产技术的研究--Ⅱ杂交鹅肥育性能的研究[J].辽宁畜牧兽医, 1996, 2: 6.
    [94]谢庄,杨茂成,陈韬,等.杂交鹅经济效益的综合分析[J].畜牧兽医学报, 1993(6): 266-267.
    [95]高雪,许尚忠,张英汉,等.生长激素作用机理的研究进展[J].黄牛杂志, 2003(1): 50-53.
    [96]乌尼尔夫,芒来.动物生长激素的研究现状[J].畜牧与饲料科学, 2005(5): 37-39.
    [97]孙逊,朱尚权.生长激素结构与功能[J].国外医学--内分泌学分册, 1999, 19(1): 6-9.
    [98] Wallis M, Cruz D L. Regulation of growth hormone and somatic growth [J]. Elsever Science Publisher, 1992: 1~8.
    [99] Vize P D, Wells R E. Isolation and characterization of the porcine hormone gene[J]. Gene, 1987, 55: 339~344.
    [100] Yerle M, Lahbib-Mansais Y, Thomsen P D, et al. Location of the porcine growth hormone gene to chromosome 12p1.2~p1.5[J]. Animal Genetics, 1993, 24(2): 129~131.
    [101] Woychick RP, Camper SA, Lyons RH, et al. Cloning and nucleotide sequencing of the bovine growth hormones gene[J]. Nucleic Acids Res, 1982, 10: 7197~7210.
    [102] Tanaka M, Hosokawa Y, Watahiki M, et al. Structure of the chicken growth hormone encoding gene and its promoter region[J]. Gene, 1992, 112(2): 235~239.
    [103] Barsh CS. The human growth hormone gene family: atructure and evolution of the chromosomal locus[J]. Nucleic Acids Res, 1983, 11: 3939~3958.
    [104] Dana S X. Induction of human growth hormone promoter activity by the adenosine 3',5'- monophoaphate pathway involves a noval responsive element[J]. Mol Endocrinol, 1989, 3: 815~821.
    [105] Foster D N, Kim S U, Enyeart J J, et al. Nucleotide sequence of the complementary DNA for turkey growth hormone[J]. Biochem Biophys Res Commun, 1990, 173: 967~975.
    [106]聂庆华,张细权,杨关福,等.鸡生长轴相关基因的研究进展[J].农业生物技术学报, 2003, 11(3): 305~312.
    [107]张碧丽.生长激素与肾脏[J].国外医学--内分泌学分册, 1997, 17(2): 94-96.
    [108]刘守仁.生长激素作用的分子机制[J].新疆农业科学, 2002: 51-53.
    [109]沈建忠.动物生长激素及其应用[J].中国兽药杂志, 2000, 34(5): 49-53.
    [110]秦巧梅,高雪,岳文斌,等.生长激素基因多态性与生产性能关系的最新研究[J].中国畜牧兽医, 2006, 33(6): 49-52.
    [111]徐日福,孙如宪.肉鸡血浆生长激素含量与屠体性状的相关[J].山东家禽, 1998, 2: 12-13.
    [112]敖金霞,李辉,王启贵,等.鹅生长激素基因内含子2单核苷酸多态性与体重性状的相关研究[J].中国畜牧杂志, 2006, 42(7): 9-11.
    [113] Lei M, Luo C, Peng X, et al. Polymorphism of growth-correlated genes associated with fatness and muscle fiber traits in chickens[J]. Poult Sci, 2007, 86(5): 35~42.
    [114] Zhang XL, Jiang X, Liu YP, et al. Identification of Avai polymorphisms in the third intron of GH gene and their associations with abdominal fat in chickens[J]. Poult Sci, 2007, 86(6): 79~83.
    [115] Baudet ML, Harvey S. Small chicken growth hormone (scGH) variant in the neural retina[J]. Mol Neurosci, 2007, 31(3): 61-71.
    [116]张会刚.藏鸡生长激素基因SNP多态检测及其与产蛋性状的关联分析[J].当代畜牧, 2006, 6: 24-26.
    [117] Strobl J S, Thomas M J. Human growth hormone[J]. Horm Rev, 1994, 46: 1~34.
    [118] Nyberg F, Burman P. Growth hormone and its receptors in the central nervous system-location and functional significance[J]. Horm Res, 1996, 45: 18~22.
    [119] Billestrup N, Allevato G, Norstedt G, et al. Identification of intracellular domains in the growth hormone receptor involved in signal transduction[J]. Proc Soc Exp Bio Med, 1994, 206: 205-209.
    [120]王有菊,史虹莉.生长激素改善衰老症状的研究现状[J].中国新药与临床杂志, 2006, 25(10): 787-791.
    [121]牟善初,余霞君,郑秋甫,等.生长激素对人体衰老影响的初步研究[J].中华老年医学杂志, 1997, 16(1): 27-29.
    [122]杨在清.生长激素促进畜禽生长的生理生化机制研究进展[J].畜牧兽医杂志, 1991(1): 33-36.
    [123]邵凯,汪琳仙.产蛋鸡与休产鸡肝脏、输卵管雌激素受体含量的比较[J].畜牧兽医学报, 1993(3): 219-223.
    [124]黎慧清,陈璐璐.成人生长激素缺乏致低血糖一例[J].临床内科杂志, 2008, 1(1): 67-68.
    [125]方富贵,章孝荣.生长激素与生殖[J].黑龙江动物繁殖, 2008, 16(1): 4-5.
    [126]陈宏权,蒋模,赵瑞莲等.皖南花公猪性腺生长发育的研究[J].安徽农业大学学报, 2001, 01: 54-57.
    [127]丁利军,程文佳,吴志南等.生长激素对卵巢功能的调节[J].动物医学进展, 2004(02): 43-45.
    [128]吴志南,丁利军,程文佳等.生长激素在雌性动物生殖中的作用[J].黑龙江动物繁殖, 2004(02): 15-16.
    [129]吴家敏,俞建,杨毅等.促性腺激素释放激素拟似剂对青春期大鼠生长轴与性腺轴相关基因表达的影响[J].中西医结合学报, 2003(01): 35-38.
    [130] Tasoula Tsilchorozidou, Gerard S Conway. Uterus size and ovarian morphology in women with isolated growth hormone deficiency, hypogonadotrophic hypogonadism and hypopituitarism[J]. Clinical Endocrinology, 2004, 61(5): 567~572.
    [131] Esmond J Sanders, Steve Harvey. Growth hormone as an earlyembryonic growth and differentiation factor[J]. Anat Embryol, 2004, 209: 1~9.
    [132]章岩,李宁,张沅.禽类生长激素基因研究进展[J].中国畜牧杂志, 1997, 33(2): 53-54.
    [133] Mou L. Presence of an additional Pst I fragment in intron1 of the chicken growth hormone encoding gene[J]. Gene, 1995, 160(2): 313~314.
    [134] Tanaka M. The structure of intron1 in the chicken growth hormone encoding gene[J]. Gene, 1995, 160(2): 311~312.
    [135]章岩,李宁,张沅.鸡生长激素基因5'端部分调控区的克隆分析[J].遗传学报, 1998, 25(5): 427-432.
    [136] Foutouhi N, Karatzas C N, Kuhnlein U, et al. Identification of growth hormone DNA polymorphisms which respond to divergent selection for abdominal fat content on chickens[J]. Theor Appl Genet, 1993, 85: 931~936.
    [137]敖金霞,李辉,王启贵,等.鹅生长激素基因的克隆和组织表达[J].农业生物技术学报, 2004, 12(5): 552-555.
    [138] Kuhnlein U, Ni L, Weigend S, et al. DNA polymorphisms in the chicken growth hormone gene: response to selection for disease resistance and association with egg production[J]. Anim Genet, 1997, 28(2): 116~123.
    [139]聂庆华,张细权,杨关福,等.鸡生长激素基因内含子4新等位基因的序列分析[J].畜牧兽医学报, 2002, 33(5): 424-428.
    [140]颜炳学,邓学梅,费菁,等.鸡生长激素基因单核苷酸多态与生长及屠体性状的相关性[J].科学通报, 2003, 48(12): 1304-1307.
    [141]欧阳健华,柳小春,施启顺,等.鸡GH基因内含子1MspⅠ位点多态性及其与生长及繁殖性状的相关性[J].畜牧兽医学报, 2006, 37(2): 122-127.
    [142]许盛海,束婧婷,程金花,等.鸭生长激素基因5-’UTR和3-’UTR多态性分析[J].中国畜牧兽医, 2007, 34(2): 58-60.
    [143]李昆明,归绥琦.催乳素对生殖生理的调控作用[J].生殖与避孕, 2001, 21(1): 9-14.
    [144]李留安,王月影,王艳玲,等.催乳素的研究进展[J].黄牛杂志, 2003, 29(2): 45-48.
    [145] Vincent Goffin, Nadine Binart, Philippe Toulaine. Paul A Kelly Prolactin:The new Biology of an old hormone[J]. Annual Review of Physiology, 1998, 64: 47~63.
    [146]张耀,郭定宗.催乳素结构与功能研究进展[J].动物医学进展, 2007, 28(5): 49-52.
    [147]孙庆林,王各平,德伟.化学发光自显影免疫印迹法(Western Blotting)检测绒山羊皮肤组织中催乳素受体蛋白[J].农业科学, 2003, 3: 55-57.
    [148] David J Flint, Christopher H Knight. Interactions of prolactin and growth hormone(GH) in the regulation of mammary gland function and epithelial cell survival[J]. Journal ofmammary gland biology and neoplasia, 1997, 2: 41.
    [149] Isabel A Forsyth, Michael Wallis. Growth hormone and prolactin-molecular andfunctional evolution[J]. Journal of Mammary Gland Biology and Neoplasia, 2002, 7(1): 291~312.
    [150]李昂,王宏,朱明霞,等.番鸭就巢期周期生长激素水平的变化规律[J].畜牧兽医学报, 2004, 35(5): 522-525.
    [151]李莹辉,王琳仙,杨传任.催乳素对促性腺激素诱导的鸡卵泡膜细胞类固醇激素合成的抑制作用[J].中国兽医学报, 1996, 16(6): 597-601.
    [152]王小花.鸡催乳素基因多态性及其与产蛋性能的相关性研究: [学位论文][D].中国农业大学, 2006.
    [153] Macnamee M C, Sharp P J. Evidence that vasoacctive intestinal polypeptide is a physiolog-ical prolactin-releasing factor in the bantam hen[J]. General and Comparative Endocrinology, 1986, 62: 470~478.
    [154] Mauro L J, Elde R P, Youngren O M, et al. Alterations in hypothalamic vasoactive intestinal peptide-like immunoreactivity are associated with reproduction and prolactin release in the female turkey[J]. Endocrinology, 1989, 125: 1795.
    [155] Richard P, Moos F, Freund-Mercier M J. Central effects of oxytocin[J]. Physiol Rev, 1991, 71: 331.
    [156] Rozenboim I, Silsby J L, Tabibzadeh C. Hypothalamic and posterior pituitary content of vasoactive intestinal peptide and gonadotropin-releasing hormones I and II in the turkey hen[J]. Biol Reprod, 1993, 49: 622.
    [157] Youngren Q M, Yupaporn C, EI Halawani M E. Serotonergic stimulation of avain prolactin secretion requairs an intact dopaminergic system[J]. Gen Comp Endocrinol, 1998, 112: 63~68.
    [158] Peter J S, Alistair D, Robert W L. Control of luteinizing hormone and prolactin secretion in birds[J]. Comp Biochem Physiol C, 1998, 119: 275~282.
    [159]易正戟.禽类就巢发生和调控研究进展[J].北京农业科学, 2002, 3: 14-17.
    [160]陈伟华,李定健,陈杰. 5-羟色胺在四季鹅抱窝中的作用[J].南京农业大学学报, 1994, 17: 75-78.
    [161] Kelly P A, Bachelot A, Kedzia C, et al. The role of prolactin and growth hormone in mammary gland development[J]. Mol Cell Endocrinol, 2002, 197(1~2): 127~131.
    [162] Farmer C, Palin M F. Exogenous prolactin stimulates mammary development and alters expression of prolactin related genes in prepubertal gilts[J]. Anim Sci, 2005, 83(4): 825~832.
    [163] Vera Last ra O, J ara L J, Espinoza L R. Prolactin and autoimmunity[J]. Autoimmun Rev, 2002, 1(6): 360~364.
    [164] Mendez I, Carino C, Diaz L. Prolactin in the immunological system: synt hesis and biological effects[J]. Rev Invest Clin, 2005, 57(3): 447~456.
    [165] Kransnow JS. Regulation of aromatase mRNA and oestradiol biosynthesis in rat ovarian granulose and lutea cells by prolactin[J]. Mol Endo, 1990, 4: 13.
    [166] Raoms I, Cisint S, Medina M F, et al. Role of prolactin in nuclear maturation and ovulation in amphibian oocytes[J]. Zygote, 2005, 13(3): 265~268.
    [167] Ohkubo T, Tanaka M, Nakashima K. Molecular cloning of t he chicken prolactin gene and activation by Pit21 and cAMP-induced factor in GH3 cells[J]. Gene Comp Endocrinol, 2000, 119(2): 208~216.
    [168] Chang C L, Roh J, Park J I, et al. Intermedin functions as a pituitary paracrine factor regulating prolactin release[J]. Mol Endocrinol, 2005, 19(11): 2824~2838.
    [169] Dare J R, Anderson S M, Saviolakis G A. Chronic sustained stressincreases levels of anterior pituitary prolactin mRNA[J]. Pharmacol Biochem Behav, 2000, 67(3): 423~431.
    [170]彭先文,杜金平.禽类就巢性的研究进展[J].甘肃畜牧兽医, 2001: 35-36.
    [171] Riddleo, BatesR w, Lahr E L. Prolactin induces broodiness in fowl[J]. Am J Physiol, 1935, 111: 352~360.
    [172] Wong E A, Silsby T L, LshiiS, et al. Pituitary eic acid levels are Inversely related in laying and incubating turkeys hens[J]. Biology of Reproduction, 1992, 47: 598~602.
    [173] Sharp P J. Physiology of egg production[J]. In Recent Advance in Turkey science, Butterowrths, 1989: 31~54.
    [174]施振旦,陈峰,毕英佐.禽类就巢发生和调控研究进展[J].黑龙江动物繁殖, 2002, 8(3): 37-40.
    [175] Ope1 H, Proudman J A. Plasma proactin levels in incubating turkey hens during pipping of the eggs and after introduction of poussin to thenest[J]. Biology of Reproduction, 1989, 40: 981~987.
    [176]广东家畜家禽品种志编委会.广东家畜家禽品种志[M]:广东科技出品版社, 1987.
    [177]施振旦,朱基美.血管活性肠肤(VIP)与禽类就巢[J].养禽与禽病防治, 1997, 6: 43.
    [178] Robert W, McMurray, Estrogen. prolactin and autoimmunity: actions andInteractions[J]. International Immunopharmacology, 2001, 1: 995~1008.
    [179] Elena Peeva, Daniel Michael, James Cleary, et al. Prolactin modulates the naive B cell repertoire[J]. Journal of Clinical Investigation, 2003, 111: 275~283.
    [180]赵悦,杨焕民,孙永强.家禽催乳素结构及功能的研究进展[J].现代畜牧兽医, 2006, 9(49-51).
    [181]杜惜明,刘波,杨维太,等.鸡脑催乳素免疫反应神经元的分布[J].中国兽医学报, 1999, 19(1): 65-68.
    [182] Cooke N E, Coit D, Shine J, et al. Human Pro1actin cDNA structura1 analysis and evolutionary comparisons[J]. Journal of Biology Chemistry, 1981, 256(4007~4010).
    [183] Takahashi N, Hasunuma I, Iwata T, et al. Molecular cloning of new prolactin (PRL) Cdna: effect of temperature on PRL mRNA expression[J]. Gene Comp Endocrinol, 2001, 121(2): 188~195.
    [184]曹新,王强,颜景斌,等.牛催乳素基因组及其cDNA全长序列的分子克了隆和分析[J].遗传学报, 2002, 29(9): 768-773.
    [185] Harigaya T, Komori M, Watanabe H, et al. Prolactin gene expression in mouse pancreatic islets [J]. Endocrinol, 2002, 73(1): 29~34.
    [186] Kansaku N, Ohkubo T, Okabayashi H, et al. Cloning of duck PRL cDNA and genomic DNA[J]. Gene Comp Endocrinol, 2005, 141(1): 39~47.
    [187] Zhang Z H, Zheng X, Hu X L, et al. Molecular cloning of giant panda pituitary prolactin cDNA and it s expression in Escherichia coli[J]. Anim Biotechno, 2005, 16(2): 117~126.
    [188] Wiemers D O, Shao L J, Ain R, et al. The mouse prolactin gene family locus[J]. Endocrinology, 2003, 144(1): 313~325.
    [189] Horiguchi K, Yagi S, Ono K, et al. Prolactin gene expressioin in mouse spleen helper T cells[J]. Endocrinol, 2004, 183(3): 639~646.
    [190] Aranda J, Rivera J C, J eziorski M C, et al. Prolactin are naturalinhibitors of angiogenesis in the retina[J]. Invest Opht halmol VisSci, 2005, 46(8): 2947~2953.
    [191] Handwerger S, Brar A. Huamun teroplacental lactogens: physiology and molecular biology[M]. Norwell M A, ed. Hor seman ND: Kluwer Academic Publishers, 2001, 169~187.
    [192] Schradin C, Anzenberger G. Development of prolactin levels in marmoset males: From adult son to first time fat her[J]. Horm Behavior, 2004, 46(5): 670~677.
    [193]高列,许荣焜.催乳素基因转录调控的分子机制[J].国外医学内分泌学分册, 2001, 21(6): 314-316.
    [194] Youngren O M, E Ealawani M E, Pitts G R, et al. Active immunization with vasoactive intestinal peptide prevents the secretion of prolactin induced by electrical stimulation of the turkey hypothalamus[J]. Gen Comp Endocrinol, 1994, 95: 330~336.
    [195] Sangsoo S, E Halawani M E. Protein kinase-C mediates chicken vasoactive intestinal peptide stimulated prolactin secretion and gene expression in turkeyprimary pituitary cell[J]. Gen Comp Endocrinol, 1995, 99: 289~297.
    [196] Kristin L W, Tom E P. Ontogeny of prolactin-secreting cells during chick embryonic development: effect of vasoactive intestinal peptide[J]. Gen Comp Endocrinol, 1998, 112: 240~246.
    [197] Hoya D L, Vila M, Simenez V, et al. Anlerjor pituitary development and Pit-1/GHF-1 transcription factor[J]. Cell Mol life Sci, 1998, 54: 1059~1066.
    [198] Kiyoto Kurima, John A Proudman, Mohamed E E I Halawani, et al. The Turkey prolactin-encoding gene and its regulatory region[J]. Gene, 1995, 156: 309~310.
    [199] Parker M G. Transcriptional activation by oestrogen receptor[J]. Bilchem Soc Symp, 1998, 63: 45~50.
    [200] Youngren O M, Gilbert R P, Richard E P, et al. The stimulation and inhibitory effects of dopamine on prolactin secretion in the turkey[J]. Gen Comp Endocrinol, 1995, 98: 111~117.
    [201] Renu B, Orlan Y, Seong K, et al. Dopamine infusion into the third ventricle increases gene expression of hypothalamic vasoactive intestinal peptide and pituitary prolactin and luteinizing hormoneβsubunit in the turkey[J]. Gen Comp Endocrinol, 2003, 130: 41~47.
    [202] Seong W K, Orlan M Y, E1 Halawani M E. Influence of VIP on prolactinemia in turkey anterior pituitary cells: role of cAMP second messenger in VIP-induced prolactin gene expression[J]. Regul Pept, 2002, 109: 39~44.
    [203] Jacob KK, Stanley FM. CCAAT/Enhancer-binding protein alpha isa hysiologic alegulator ofprolactin geneexpression[J]. Endocrinology, 1999, 140(100): 42-50.
    [204] Takeshi Ohkubo, Minoru Tanaka, Kunio Nakashima. Molecular Cloning of the Chicken Prolactin Gene and Activation by Pit-1 and cAMP-Induced Factor in GH3 Cells[J]. General and Comparative Endocrinology, 2000, 119: 208~216.
    [205] Brym P, Kaminski S, Wojcik E. Nucleotide sequence polymorphism within exon 4 of t he bovine prolactin gene and its associations with milk performancet raits[J]. Appl Genet, 2005, 45(2): 179~185.
    [206]王寿昆,林福忠,李昂,等.番鸭催乳素基因微卫星多态性[J].上海交通大学学报(农业科学版), 2006, 24(2): 143-145.
    [207] Liang Y, Cui J, Yang G, et al. Polymorphisms of 5' flanking region of chicken prolactin gene[J]. Domest Anim Endocrinol, 2006, 30(1): 1~16.
    [208]崔建勋,杜红丽,张细权.鸡催乳素基因序列多态及生物信息学分析[J].遗传, 2005, 27(2): 208-214.
    [209] Jiang R S, Xu G Y, Zhang X Q, et al. Association of polymorphism for prolactin and prolactin receptor genes with broody raits in chickens[J]. Poult Sci, 2005, 84(6): 839~845.
    [210] Mellai M, Giordano M D, Alfonso S, et al. Prolactin and prolactin receptor gene polymorphisms in multiple sclerosis and systemic lupus erythematosus[J]. Hum Immunol, 2003, 64(2): 274~284.
    [211] Reddy I J, David C G, Sarma P V, et al. The possible role of prolactin in laying performance and steroid hormone secretion in domestic hen(Gallus domesticus)[J]. Gene Comp Endocrinol, 2002, 127(3): 249~255.
    [212] Khatami S R, Lazebnyi O E , Maksimenko V F, et al. Association of DNA polymorphisms of the growth hormone and prolactin genes with milk productivity in Yaroslavl and black-and-whitecattle[J]. Genetika, 2005, 42 (2): 229~236.
    [213]李吉涛.中国荷斯坦奶牛催乳素基因5’调控区多态性及其与产奶性状关系的研究: [学位论文][D].山东农业大学, 2004.
    [214] Udina I G, Turkova S O, Kostiuchenko M V, et al. Polymorphism of cattle prolactin gene: microsatellites, PCR2RFLP[J]. Genetika, 2001, 37(4): 511~516.
    [215] Zadworny D, Kansaku N, Bedecarats G, et al. Prolactin and its receptor in Galliformes[J]. Avian Poult Biol Rev, 2002, 13(3): 23~22.
    [216]周敏,张细权,施振旦,等.三个品种家鸡催乳素基因cDNA的克隆及序列分析[J].遗传学报, 2001, 28(7): 614-620.
    [217]额尔和花,詹慧琴,张淑君,等.鸡催乳素基因外显子中的SNP检测[C].家禽研究最新进展-第十一次全国家禽学术讨论会论文集, 2003.
    [218] Sasavage N L, NilsonT H, Horonitz S, et al. Nuc1eotide sequence of bovive prolactin messenge RNA[J]. Journal of Biology Chemistry, 1982, 257: 678~651.
    [219] Linzer D I H, Talamantes F. Nucleotide sequence of mouse prolactin and Growth hormon mRNA and expression of these mRNA during pregnancy[J]. Journal of Biology Chemistry, 1985, 260: 9574-~9579.
    [220] Kansaku N, Shimada K, Terada D, et al. Gene expression of prolactin, growthhoroone, and luteinizing hormone-βsubunit gene expression in the cephalic and caudal lobes of the anterior pituitary g1 and during embryogenesis and different reproductive stages in the chicken[J]. Gen Comp Endocrinol, 1994, 96: 197~205.
    [221]仲妍妍.番鸭催乳素基因的克隆与序列分析: [学位论文][D].福建农林大学, 2006.
    [222]詹慧琴,额尔和花,张淑君,等.鸡催乳素基因内含子2RFLP检测及与产蛋性关系的初步研究[M].家禽研究最新进展:吉林科学技术出版社, 2003, 30-32.
    [223]崔建勋,梁勇,邓学梅,等.鸡催乳素基因5'侧翼调控区近端启动子序列多态性及其与产蛋性能的关系[M].家禽研究最新进展:吉林科学技术出版社, 2003, 33-36.
    [224]姜润深.鸡PRL、PRLR和POU1F1基因变异对繁殖及POU1F1对生长性状的遗传效应: [学位论文][D].中国农业大学, 2005.
    [225] Laird, a.k. Postnatal growth of birds and mammals.[J]. Growth, 1996, 30: 349~248.
    [226] Laird, k. a., Tyler S. A., et al. Dynamics of normal growth.[J]. Growth, 1965, 29: 233-248.
    [227] Barbato, G.F. Genetics of the growth curve in poultry Physiological implications.Proceedings of the 2nd European poultry breeders roundtable[J]. Foulum, 1996: 153~166.
    [228]陶志伦,项云.金华猪生长曲线探讨[J].浙江农业学报, 2004, 16(2): 99-101.
    [229]王志跃,陈伟亮,白群安等.新扬州鸡生长模型的比较研究[J].黑龙江畜牧兽医, 2002, 10(12): 4-5.
    [230] S, Mignon-Grasteau, et al. Genetic Analysis of a Selection Experiment on the Growth Curve of Chickens[J]. British Poultry Science, 2001, 80: 849-854.
    [231]程治平主编.内分泌生理学[M].北京:人民卫生出版社, 1984, 64-70.
    [232] Chen H T, Pan F M, Chang W C. Purification of duck growth hormone and cloning of the complementary DNA[J]. Biochim Biophys Acta, 1988, 949: 247~251.
    [233] Kansaku N, Zadworny D, Guemene D. Genomic cloning of duck Growth hormone[J]. NCBI, GenBank, 2004,01,08.
    [234] Fotoubi N, Karatzas C N, Kublein U, et al. Identification of growth hormone DNA polymorphisms which respond to divergent selection for abdominal fat content in chickens[J]. Theoretical and Applied Genetics, 1993, 85: 931-936.
    [235]王宁,陈润生.基于内含子和外显子的系统发育分析的比较[J].科学通报, 1999, 44(19): 2095-2102.
    [236]李宁,章岩.鸡生长激素cDNA及其5'端调控区的克隆分析[J].中国农业科学, 1996, 31(2): 76-82.
    [237] Lamb I C, Galehouse D, Foster D N. Chicken growth hormone cDNA sequence[J]. Nuc Acids Res, 1988, 16: 9339.
    [238]杨凤萍,陈义权,李世平,等.鹅Myostatin基因编码区核苷酸多态性研究[J].扬州大学学报(农业与生命科学版), 2007, 28(4): 29-32.
    [239]许盛海,包文斌,程金花,等.鸭生长激素(GH)基因编码区及调控区多态性分析[J].畜牧兽医学报, 2007, 38(9): 907-912.
    [240] Sontheimer, E, J. Bridging sulfur substitutions in the analysis of pre-RNA splicing[J]. Methods, 1999, 18(1): 29~37.
    [241] Tosi, M. Molecular genetics of C1 inhibitor [J]. Immunobiology, 1998, 199: 358~365.
    [242]李长春,傅田,强巴央宗等.藏鸡和隐性白羽鸡GH基因的SNP检测及其与生长性状间的关联分析[J].中国农业科学院博士学位论文, 2005, 38(11): 2327-2332.
    [243]陈玲玲,彭贵子,张伟丽等. [J]. , (): .突变在基因组进化中的意义[J].遗传, 2006, 28(5): 631-638.
    [244] Zhang, Z,, M. Gerstein. Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes[J]. Nucleic Acids Research, 2003, 31(18): 5338~5348.
    [245] Edwards J D, Lee V M, McCouch S R. Sources and predictors of resolvable indel polymorphism assessed using the rice as a model [J]. Mol Gen Genomics, 2004, , 271: 298~307.
    [246]颜炳学,邓学梅,费菁,等.鸡生长激素基因单核苷酸多态与生长及屠体性状的相关性[J].科学通报, 2003, 48(12): 1304-1307.
    [247]敖金霞,李辉,王启贵,等.鹅生长激素基因内含子2单核苷酸多态性与体重性状的相关研究[J].中国畜牧杂志, 2006, 42(7): 9-11.
    [248]李长春,傅田,强巴央宗,等.藏鸡和隐性白羽鸡GH基因的SNP检测及其与生长性状间的关联分析[J].中国农业科学院博士学位论文, 2005, 38(11): 2327-2332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700