青藏高原及邻区壳幔速度结构及面波方位各向异性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原是印度板块向欧亚板块碰撞俯冲的产物,其地壳上地幔结构复杂,深部结构是青藏高原隆升动力学机制研究的基础和关键。在近期的青藏高原地球动力学研究中,壳幔变形和耦合的问题是当前研究的热点之一。本文试图利用青藏高原及其周边的宽频带数字记录作Rayleigh面波的层析成像,以获得青藏高原及邻区从地壳到岩石圈地幔的群速度和方位各向异性图像,以及三维S波速度结构,了解俯冲碰撞模型并探讨壳幔变形耦合的构造意义。
     本文收集了CDSN、IRIS、INDEPTH、PASSCAL、中国国家数字地震台网以及2000-2001年和2004-2006年期间在云南和川西藏东地区布设宽频带流动台网台站的中长周期面波资料,路径覆盖中国大陆及其邻近区域(120S-55°N,70°-145°E),利用多重滤波技术提取了6000多条混合路径Rayleigh波群速度频散,采用1°×1°网格划分的Occam反演方法获得青藏高原及邻区(18°-45°N,70°-115°E)7-184秒42个周期的群速度和各向异性分布。再由纯路径频散反演青藏高原及邻区每个经纬度节点介质的S波速度随深度的变化,获得0-350km深度地壳上地幔三维速度分布,给出了11条纬向、7条经向速度剖面和7个不同深度范围的速度平面分布图。最后分析解释青藏高原及邻区各地体的速度结构及方位各向异性,并与面波相速度(?)SKS结果进行了对比分析。
     本文研究结果显示出青藏高原及邻区的深部速度结构和各向异性分布存在明显的横向变化和分区特征:其一,青藏高原具有厚壳(60-70km)和厚岩石圈(超过200km),并且青藏高原的中地壳(25-45km)存在速度约为3.2km/s的低速层;在青藏高原北部羌塘地体、松潘-甘孜-可可西里地体是低速岩石圈上地幔,而南部的喜马拉雅地体、拉萨地体是高速的岩石圈上地幔;其二,青藏高原地壳的各向异性快波方向表现为环绕喜马拉雅东构造结的顺时针旋转,在88°E以西地区各向异性快波方向为NS向,以东地区各向异性快波方向为从NE-EW-NW向变化,其各向异性快波方向基本与相速度及SKS快波方向结果一致;高原的上地幔岩石圈各向异性快波方向大约为NEE或EW向;软流圈各向异性快波方向EW向;各向异性的强度总体上随周期(深度)增大而减小:其三,青藏高原东南部邻区的滇缅泰板块和印支板块之间的上地幔有巨型低速体,低速体物质上涌到地壳,可能与印度板块向东俯冲到缅甸弧之下,引起软流圈上升有关;其四,青藏高原面波各向异性快波方向从地壳到上地幔在大部分区域变化较小,可能属于垂直连贯变形的壳幔变形模型;而在高原外的云南地区,快波方向从地壳到上地幔变化较大,可能属于壳幔解耦模型;其五,在青藏高原及其邻近区域(180一45°N,700一1150E)内射线较密的地区(青藏高原西南的印度板块除外),各向异性强度大于2%且水平尺度大于400km的群速度和各向异性特征是分辨出来的;最后,反演结果约束了印度板块与欧亚板块碰撞动力学模式,即在青藏高原南部,印度板块岩石圈盖层的速度与青藏高原南部的喜马拉雅地体、拉萨地体岩石圈盖层的速度是一致的,印度板块上地幔盖层可能低角度俯冲到青藏高原上地幔之中,使得青藏高原南部岩石圈厚度超过200km,而北部岩石圈上地幔存在低速层的结构,类似于岩石圈拆离下沉,软流圈物质侵入到上地幔顶部的情形。
Tibetan Plateau is the dynamic consequence of the collision between India and Eurasian plates, and the crust and upper mantle structure in this region is extremely complex.The research of deep structure of the Tibetan Plateau is the basis and key for understanding the dynamic mechanism of the Tibetan Plateau uplift.In the recent studies on the geodynamics of Tibetan Plateau, the deformation and coupling of crust and mantle is one of the current foci of research.
     This thesis attempts to use the broadband digital records from the Tibetan Plateau and surrounding areas to perform a Rayleigh surface wave tomography to obtain group volocity and azimuthal anisotropy images and3-D S wave velocity images from crust to lithospheric mantle beneath the Tibetan Plateau, to understands the subduction-collision model and probes into the tectonic significance of the crust-mantle deformation coupling. To ensure a better path coverage, the long period surface wave data are collected from broadband seismic stations in a large region (12°-5°N,70°-145°E) including those of CDSN, IRIS, PASSCAL in1991-1992, INDEPTH in1994and1999, and the China Earthquake network established in2002,especially broadband temporary networks(total35stations)deployed in Yunnan during2000-2001, and from eastern Tibet to western Sichuan during2004-2006. More than6000mixed path dispersions of Rayleigh wave group velocity were measured by means of time-frequency analysis based on multiple-filter.China and adjacent regions(12°S-55°N,70°-145°E) was divided into a1°×1°grid, and group velocity and azimuthal anisotropy distributions of fundamental Rayleigh wave between7-184s were determined by Occam's inversion.From the pure-path dispersion curves, the three-dimensional shear velocity structures in0-350km depths are inverted at each node in the Tibetan Plateau and surrounding areas(18°-45°N,70°-115°E). Seven average velocity distributions of shear wave in different depth rages, eleven profiles along parallels and seven profiles along meridians of shear wave velocity were displayed to analyze and explain the velocity structure and azimuthal anisotropy of each terrane of the Tibetan Plateau and surrounding areas, and then compare the velocity structure and azimuthal anisotropy images with those of the phase velocity of surface waves and SKS results.
     The inversion results indicate that the Tibetan plateau and surrounding areas show obvious lateral variation of crust and upper mantle velocity structure and azimuthal anisotropy images in different terranes. At first, the Tibetan plateau has a thick crust (60-70km) and very thick lithosphere (exceeding200km), there also exists a low velocity layer (Vs<3.2km/s) in the middle crust (about in25-45km depth range).The Qiangtang and Songpan-Ganze-Hoh Xil terranes in north Tibetan plateau show high velocity of upper mantle lithosphere, but Himalayan and Lhasa terranes located in south Tibetan plateau depict low velocity of upper mantle lithosphere. Second, the crust anisotropy images show clockwise rotation surrounding the eastern Himalayan syntaxis. The fast wave directions for azimuthal anisotropy in west of88°E are NS,while in east part the fast wave directions change from NE-EW-NW which are consistent with fast wave directions of phase velocity and SKS. Third, the huge low velocity body exists in Yunnan-Burma-Thai block and Indochina block of southeast Tibetan plateau and upwells to crust which may be associated with the Indian plate eastward subducted under the Burma Arc, causing an uplift of the asthenosphere. Fourth, the fast wave directions of surface wave anisotropy are small changes from the crust to upper mantle in most regions inside Tibetan plateau which may belong to the vertical coherent deformation of the crust and mantle deformation model; while in Yunnan outside the plateau, the fast directions from the crust to upper mantle are large changes which may belong to the model of the crust-mantle decoupling.Fiveth. in the areas of good path coverage (excluding Indian plate on the southwest of the Tibetan Plateau) of the Tibetan Plateau and adjacent areas((18°-45°N,70°-115°E) the group velocity and anisotropic features of scope greater than400km and strength greater than2%are reliable.At last, the inversion result constrains the collision model between the India and Eurasian plates. In Himalayan and Lhasa terranes of south Tibetan plateau, there is a north- dipping lithosphere lid of high velocity similar to that of India plate, mimicking a subducting plate. In north Tibetan plateau, upper mantle shows a sub-Moho low velocity zone, which could be explained by lithosphere delaminating and sinking and asthenosphere uplifting to the top of upper mantle.
引文
曹小林,张雪梅,朱介寿.1999.中国及邻区的地震面波频散反演,成都理工学院学报,26(3)295-298.
    曹小林,朱介寿,赵连峰等.2001.南海及邻区地壳上地幔三维S波速度结构的面波波形反演.地震学报,23(2):113-124.
    常利军,王椿镛,丁志峰.2006.云南地区SKS波分裂研究.地球物理学报,49:197~204
    常利军,王椿镛,丁志峰等.2008.青藏高原东北缘上地幔各向异性研究.地球物理学报,51(2):431-438
    陈国英,宋仲和,安昌强等.1991.华北地区三维地壳上地幔结构.地球物理学报,34(2):172-181.
    陈国英,宋仲和,安昌强等.1995.中国北部及其邻区地壳上地幔三维速度结构.地球物理学报,38(3):321-328.
    陈国英,曾融生.1985.用地震面波频散研究喜马拉雅山与西藏高原岩石层构造异常.地球物理学报,28(增刊I):167-173.
    陈国英,曾融生.1985.用地震面波频散研究喜马拉雅山和西藏高原岩石圈构造异常.地球物理学报.28(增刊1):167~173
    陈立华,宋仲和,安昌强等.1992.中国南北带地壳上地幔三维面波速度结构和各向异性.地球物理学报,35(5):574-583.
    丁志峰,何正勤,孙为国等.青藏高原东部及其边缘地区的地壳上地慢三维速度结构.地球物理学报,1999,42(2):197~205
    丁志峰,何正勤,吴建平等。青藏高原地震波三维速度结构的研究。中国地震,2001,17(2)202~209
    丁志峰,曾融生,吴大铭。青藏高原的Pn波速度和Moho界面的起伏。地震学报,1992,14(增刊):592-599
    丁志峰,曾融生.1996.青藏高原上地幔横波各向异性的探测研究.地球物理学报,39(2):211~220
    J‘志峰,曾融生.1996.青藏高原横波分裂的观测研究.地球物理学报,39(2):211-220
    房立华,吴建平,吕作勇.2009.华北地区基于噪声的瑞利面波群速度层析成像.地球物理学报,5 2(3):663~671
    冯锐,何正勤.1980.青藏高原东部地区的面波Q值.地球物理学报,23(3):291-297.
    冯锐,周海南,姚政生.1987.面波的频散、反演、和层析成象.中国地震,3(1):15-28.
    冯锐,周海南.1985.青藏高原的地壳Q结构.地球物理学报,28(增刊):174-184.
    冯锐,朱介寿,丁韫玉等.1981.利用地震面波研究中国地壳结构.地震学报,3(4):335-349.
    冯锐.1982.地震面波在研究地壳上地幔构造中的应用.国际地震动态,(3):1-4.
    傅竹武,庄真,吕梓龄等.1993.用长周期地震面波研究华南地区地壳和上地幔三维构造.地震学报,15(2):159-167.
    高锐,黄东定,卢德源等.2000.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面.科学通报,45(17):1874-1879
    高锐,吴功建.青藏高原亚东一格尔木地学断面地球物理综合解释模型与现今地球动力学过程.长春地质学院学报,1995,25(3):241-250
    高锐.青藏高原岩石圈结构与地球动力学的30个为什么.地质论评,1997,43(5):460~464
    高原,滕吉文.2005.中国大陆地壳与上地幔各向异性研究.地球物理学进展,20(1):180-185
    何正勤,丁志峰,叶太兰等.2001.中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究.地震学报,23(6):596-603.
    贺日政,赵大鹏,高锐,王宝善,齐诚.2006.西昆仑造山带下岩石圈地幔速度结构.地球物理学报,(03)
    甘卫军,沈正康,张培震,等.2004.青藏高原地壳水平差异运动的观测研究.大地测量与地球动力学,24(1):29-35
    胡家富,温一波,谢应齐.1998.利用地震面波频散反演岩石圈结构的奇异值分解算法.地球物理学报,41(2):211-217.
    胡家富,张中杰,张慧等.1996.中国内蒙古高原及周边地带岩石圈三维速度结构.地球物理学报,11(4):20~33.
    胡家富,庄真,腾吉文.1992.中长周期数字化面波记录与中国东南地区地壳结构.地球物理学报,35(5):584~593.
    黄忠贤,郑月军.1998.面波速度的Occam反演.见:寸丹集——庆贺刘光鼎院士工作50周年学术论文集.北京:科学出版社,692-704.
    黄忠贤,Friederich W.1998德国南部地区Love波相速度分布.地球物理学报.41(6):788-794
    姜枚,许志琴,Him A等.2001.青藏高原及其部分邻区地震各向异性和上地幔特征.地球学报,22(2):111-116
    阚荣举,张四昌,晏凤桐等.1977.我国西南地区现代构造应力场与现代构造活动特征的探讨.地球物理学报,20:96~109
    李白基,师洁珊,宋子安等.1977.地震面波频散的数字计算.地球物理学报.20(4):283-298.
    李白基,李宁等.1989.南北地震带和两侧的瑞利波群速度差异及其大地构造意义.地震学报.11:268~274.
    李红谊,刘福田,孙若昧等.2001.中国大陆东部及海域地壳-上地幔结构研究.地震学报.23(5):471-479.
    廖武林,丁志峰,曾融生等.2007.喜马拉雅地区S波分裂研究.地球物理学报,50(5):1437-1447
    刘瑞丰,陈培善,李强.1993.云南及邻近地区三维速度图像.地震学报,15(1): 61-67.
    吕庆田,姜枚,马开义等.1996.三维走时反演与青藏高原南部深部构造.地震学报,18(4):451-459.
    马杏垣主编.1989.中国岩石圈动力学地图集.北京:中国地图出版社.
    穆治国,董伟,Gurtis G H.1987.腾冲火山活动时代和岩浆来源问题.地球物理学报30(2):261~270.
    彭艳菊.2001.用Love波研究中国大陆及邻区地壳上地幔速度结构.[硕士论文]
    彭艳菊,苏伟,郑月军,黄忠贤.2002.中国大陆及海域Love波层析成像.地球物理学报,45(06):792-801
    彭艳菊,黄忠贤,苏伟,郑月军.2007.中国大陆及邻区海域地壳上地幔各向异性研究.地球物理学报,50(3):752-759.
    石耀霖,金文.1995.面波频散反演地球物理内部构造的遗传算法.地球物理学报.38(2):189-198.
    石玉涛,高原,吴晶等.2006.云南地区地壳介质各向异性——快剪切波偏振特征.地震学报,28:574-585
    宋仲和,安昌强,陈国英等.1991.中国西部三维速度结构及其各向异性.地球物理学报.34(6)
    宋仲和,陈国英,安昌强等.1992.中国东部及其相邻海域S波三维速度结构.地球物理学报.35(3):316~330.
    宋仲和,陈国英,安昌强等.1993a.中国大陆及其相邻海域瑞利波群速度分布特征.地震学报.15(1):32-38.
    宋仲和,陈国英,安昌强等.1993b.中国大陆及其海域地壳-上地幔三维速度结构.中国科学(B辑),23(2):180-188.
    宋仲和,谭承业.1965.用瑞利波和勒夫波群速度确定我国地壳厚度.地球物理学报.14:158-167.
    苏伟,彭艳菊,郑月军等.2002.青藏高原及其邻区地壳上地幔S波速度结构.地球学报,23(3):193-200
    苏伟,王椿镛,黄忠贤.青藏高原及邻区的Rayleigh面波的方位各向异性.中国科学(D辑):地球科学,2008,38(6):674~682
    孙鸿烈主编.1996.青藏高原的形成演化.上海:上海科学技术出版社.
    孙克忠,冯锐,姚政生等.1989.西藏-日本剖面的岩石圈构造.地震学报,11(2):161-169.
    孙克忠,滕吉文.1985.用长周期面波研究西藏高原地区的地壳和上地幔的速度分布.地球物理学报.28(增刊I):43-53.
    唐小勇,范文渊,冯永革等.2011.新疆地区环境噪声层析成像研究.地球物理学报,54(8): 2042-2049,DOI:10.3969/j.issn.0001-5733.2011.08.011
    滕吉文,张中杰,杨顶辉等.1996.青藏高原地体划分的地球物理标志研究.地球物理学报.39(5):629~641.
    王椿镛,楼海,吕智勇等.青藏高原东部地壳上地幔S波速度结构-下地壳流的深部环境.中国科学D辑,2008,38(1):22-32.
    王椿镛,常利军,吕智勇等.2007.青藏高原东部上地幔各向异性及相关的壳幔耦合型式.中国科学D辑:地球科学,37(4):495~503
    王伟,高星,历玉英,张亚斌.用转换函数研究青藏高原地壳S波速度结构一"Hi-CLIMB"剖面.地球物理学报,2011,54(11):2769-2778, doi:10.3969/j.issn.0001-5733.2011.11.007
    魏文博,金胜,叶高峰,等.2009.藏南岩石圈导电性结构与流变性-超宽频带大地电磁测深研究结果.39(11):1591-1606
    吴功建,高锐,余钦范等.1991.青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究.地球物理学报,34(5):552-562.
    吴功建,高锐,余钦范等.青藏高原亚东一格尔木地学断面综合地质地球物理调查研究.地球物理学报,1991,34(5):553~561
    吴建平,明跃红,曾融生.2001.遗传算法中的光滑约束反演及其在青藏高原面波研究中的应用.地震学报,23(1):45-53.
    吴建平,曾融生.1996.青藏高原Q值结构反演.地震学报,18(2):208~214.
    吴庆举,曾融生.1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报,41(5):669-679
    吴庆举,曾融生,赵文津.2004.喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程.中国科学D辑地球科学.34(10):919~925
    熊熊.2001.青藏高原隆升的地幔动力学机制研究进展.见:青藏高原岩石圈现今变动与动力学.马宗晋等主编.北京:地震出版社,214~222.
    许志琴,杨经绥,李海兵,等.2011.印度-亚洲碰撞大地构造.地质学报.85(1):1-33
    许志琴,姜枚,杨经绥,等.2004.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉.地学前缘,11(04).:299-343
    许忠淮,汪素云,黄雨蕊等.1987.由多个小震推断的青甘和川滇地区地壳应力场的方向特征.地球物理学报,30:476~486
    许忠淮.2001.东亚地区现今构造应力图的编制.地震学报,23:492-501
    薛光琦,钱辉,姜枚,等.2003.青藏高原东北部天然地震探测与岩石圈深部特征.地球学报,24(01):19-26.
    薛光琦,王有学,宿和平.2005.拉萨地体内低速异常成因的探讨——壳内局部熔融的地震层析证据.地球学报,26(05):411-415
    姚振兴,李白基,梁尚鸿等.1981.青藏高原地区瑞利波群速度和地壳构造.地球物理学报,24(3):287-295.
    姚政生,张诚,冯锐.1986.面波反演技术与青海地区上地壳结构.西北地震学报.8(1):65-73.
    易桂喜,姚华建,朱介寿等.2008.中国大陆及邻区Rayleigh面波相速度分布特征.地球物理学报,52(2):402-411
    易桂喜,姚华建,朱介寿等.2010.用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征.地球物理学报,53(2):256-268, DOI:10.3969/j.issn.00015733.2010.02.004
    尹安.2001.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,22(3)193-230
    曾融生,大铭,Owens. T.J.中美合作课题“青藏高原地壳上地慢结构以及地球动力学的研究”介绍,地震学报,1992,14(增刊),521-522
    曾融生,丁志峰,吴庆举等.2000.喜马拉雅及南藏的地壳俯冲带-地震学证据.地球物理学报.43(6):780-797.
    曾融生,宋子安.1963.我国境内瑞利波相速度.地球物理学报,12:148~165.
    张智,田小波.2011.青藏高原中部地壳和上地幔各向异性分析.地球物理学报,54(11):2761~2768, doi:10.3969/j.issn.00015733.2011.11.006
    赵文津,吴珍汉,史大年等.2008.国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究.地球学报,(03)
    赵文津,薛光琦,吴珍汉,等.2004(a).西藏高原上地幔的精细结构与构造——地震层析成像给山的启示.地球物理学报,47(3):449-458.
    赵文津,薛光琦,赵逊,等.2004(b). INDEPTH-Ⅲ地震层析成像——藏北印度岩石圈俯冲断落的证据.地球学报,25(1):1-10.
    郑洪伟,李廷栋,高锐等.2007.印度岩石圈地幔向北俯冲到羌塘地体之下的远震P波层析成像证据.地球物理学报,,50(5):1418-1426.
    郑月军,黄忠贤,刘福田等.2000.中国东部海域地壳-上地幔瑞利波速度结构研究.地球物理学报.43(4):480~487.
    周兵,朱介寿,秦建业.1991.青藏高原及邻近区域S波三维速度结构.地球物理学报,34(4):426-441.
    周华伟,Murphy A.M,林清良.西藏及其周围地区地壳、地幔层析成像,印度板块大规模俯冲于西藏高原之下的证据,地学前缘,2002,9(4):285-292.
    朱介寿,曹家敏等.1997.中国及邻区地球三维结构初始模型的建立,地球物理学报,40(5)627-638.
    朱露培,曾融生,吴大铭等.利用宽频带远震体波波形研究青藏高原地壳上地慢速度结构的初步结果.地震学报,1992,14(增刊):581-591
    庄真,邓大量.1987.勒夫波群速度与太平洋地壳上地幔三维速度构造.地球物理学报,30(3):246-259.
    庄真,邓大量.1988.太平洋盆地勒夫波与瑞利波不一致性的研究.地球物理学报,31(2):156-164.
    庄真,傅竹武,吕梓龄等.1992.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构.地球物理学报,35(6):694-709.
    庄真,傅竹武,吕梓龄等.1992.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构.地球物理学报,35(6):69
    Arrowsmith S. J.et.al.2010. The seismoacoustic wavefield:A new paradigm in studying geophysical phenomena, Rev. Geophys.,48, RG4003. doi:10.1029/2010RG000335
    Barazangi M and Ni J.1982. Propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau:Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology,10:179-185
    Barazangi M., and Ni. J.1982. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau:Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology,10:179-185.
    Beghoul N, Barazangi M, Isacks B.1993. Lithospheric structure of Tibet and Western North America: Mechanisms of uplift and a comparative study. J. Geophys. Res.,98(B2):1997-2016.
    Bendick, R., and Flesch, L.M.,2007, Reconciling lithospheric deformation and lower crustal flow beneath central Tibet:Geology, v.35:p.895-898, Doi:10.1130/G23714A.1.
    Bensen, G. D., M. H. Ritzwoller, and N. M. Shapiro.2008., Broadband ambient noise surface wave tomography across the United States, J. Geophys. Res.,113, B05306,doi:10.1029/2007JB005248.
    Bensen, G. D., M. H. Ritzwoller, and Y. Yang.2009., A 3D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise,Geophys. J. Int.,177, 1177-1196, doi:10.1111/j.1365-246X.2009.04125.x.
    Bourjot L, Romanowicz B.1992. Crust and upper mantle tomography in Tibet using surface waves. Geophys. Res. Lett.,19:881-884
    Bourjot L, Romanowicz B.1992. Crust and upper mantle tomography in tibet using surface waves. Geophys. Res. Lett.,19:881-884.
    Brandon C., and B. Romanowicz.1986. A "no-lid" zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves. J. Geophys. Res.,91(B6):6547-6564.
    Capon, J.1969. High-resolution frequency-wavenumber spectrum analysis, Proceedings of the IEEE,57, 1408-1418.
    Cassidy, J. F., and M. G. Bostock.1996., Shear-wave splitting above the subducting Juan de Fuca Plate, Geophys. Res. Lett.,23(9),941-944, doi:10.1029/96GL00976.
    Chen W P and Molnar P.1981. Constraints on the seismic wave velocity structure beneath the Tibetan plateau and their tectonic implications. J. Geophys. Res.,86:5937-5962
    Cho, K. H., R. B. Herrmann, C. J. Ammon, and K. Lee.2007. Imaging the upper crust of the Korean Peninsula by surfacewave tomography, Bull. Seismol. Soc. Am.,97,198-207, doi:10.1785/ 0120060096.
    Clark M K, Royden L H.2000. Topographic ooze:building the eastern margin of Tibet by lower crustal flow. Geology,28:703-706
    Constable S C, Parker R L and Constable C G.1987. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics,52:289-300
    Constable S C, Parker R L, Constable C G.1987. Occam's inversion:A practical alagorithm for generating smooth models from electromagnetic sounding data. Geophysics.42(3):289-300.
    Cotte N, Pedersen H, Campillo M, et al.1999. Determination of the crustal structure in southern Tibet by dispersion and amplitude analysis of Rayleigh waves. Geophys. J. Int.,138:809-819
    Cotte N, Pedersen H, Campillo M, et al.1999. Determination of the crustal structure in southern Tibet by dispersion and amplitude analysis of Rayleigh waves. Geophys. J. Int.,138:809-819.
    Crampin, S.,1978. Seismic wave propagation through a cracked solid:polarization as a possible dilatancy diagnostic, Geophys. J. R. astr. Soc.,53,467-496.
    Crampin, S. & Lovell, J.H.,1991. A decade of shear-wave splitting in the Earth's crust:what does it mean? what use can we make of it? and what should we do next?, Geophys. J. Int.,107,387-407.
    Crampin, S.,1994. The fracture criticality of crustal rocks, Geophys. J. Int.,118,428-438
    Curtis A, Woodhouse J H.1997. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion. J. Geophys. Res.,102:11789-11813
    Curtis A, Woodhouse J H.1997. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion. J.Geophys.Res.,102:11789-11813.
    Debayle E, Kennett B and Priestley K.2005. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature,433, doi:10.1038/nature03247
    DeGroot_Hedlin C, Constable S.1990. Occam's inversion to generate smooth, two-dimensional models from megnetotelluric data. Geophysics.55(12):1613-1624.
    Dziewonski A, Bloch S and Landisman M.1969. A technique for the analysis of transient signals. Bull. Seismol. Soc. Am.,59(1):427-444
    Dziewonski A. and A. L. Hales.1972. Numerical analysis of dispersed seismic waves, in Methods of Computational Physics, vol.11. B.A.Bolt ed., New York:Academic Press,39-85.
    Dziewonski A., S. Bloch, and M. Landisman.1969. A technique for the analysis of transient signals. Bull. Seismol. Soc. Am.,59(1):427-444.
    England P C and Houseman G A.1986. Finite strain calculation of continental deformation,2. Comparison with the India-Asia collision zone, J. Geophys. Res.,91:3664-3676
    Ewing W. M., W. S. Jardetsky, and F. Press.1957. Elastic Waves in Layered Media. McGraw-Hill. New York.
    Feng C. C. and T. Teng.1983a. Three-dimensional crust and upper mantle structure of the Eurasian continent. J. Geophys. Res.88:2261-2272.
    Flesch L M, Holt W E, Silver P G, et al.2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear-wave splitting data. Earth Planet Sci Lett,238:248-268
    Forsyth D W, Li A. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference.//Levander A,Nolet G eds. Seismic Earth:Array Analysis of Broad-band Seismograms. Washington:American Geophysical Union.2005:81-97.
    Friederich W, Wielandt E, Stange S. Multiple forward scattering of surface waves:Comparison with an exact solution and Born single-scattering methods. Geophysical Journal International,1993,112(2): 264-275.
    Friederich W, Wielandt E. Interpretation of seismic surface-waves in regional networks-joint estimation of wave-field geometry and local phase-velocity-method and numerical tests. Geophysical Journal International,1995,120(3):731-744.
    Friederich W. Wave-theoretical inversion of teleseismic surface waves in a regional network: phase-velocity maps and a three-dimensionalupper-mantle shear-wave-velocity model for southern Germany. Geophysical Journal International,1998,132(1):203-225.
    Fu YYV et al.2008. Indian mantle corner flow at southern Tibet revealedby shear wave splitting measurements. Geophys Res Lett.35:L02308 DOI:10.1029/2007GL031753.
    Guibert J, Poupinet G., Jiang M.1996. A study of azimuthal P residuals and shear-wave splitting across the Kunlun range (northern Tibetan Plateau). Phys. Earth Planet Int.,95:167-174.
    Gutenberg B.1924. Dispersion und extinktion von seismischen oberflachenwellen und der aufbau der obersten erdschechten. Phys. Z.25:377-381.
    Gutenberg B.1926. Uber gruppengeschwindigkeit bei erbebebwellen. Phys. Z.27:111-114.
    Haskell N. A.1953. The dispersion of surface waves on multi-layered media. Bull. Seism. Soc. Amer. 43:17-34.
    Hearn T M.1996. Anisotropic Pn tomography in the western United States. J. Geophys. Res.,101 (B4): 8403-8414
    Herquel G, Tapponnier P.2005. Seismic anisotropy in western Tibet. Geophys Res Lett.32:L17306 doi: 10.1029/2005GL023561.
    Hess H. H.1964. Seismic anisotropy of the uppermost mantle under oceans. Nature,203:629-631
    Him A, Lepine J C, Jobert G., et al.1984. Crustal structure and variability of the Himalayan border of Tibet. Nature,307:23-25
    Him A, Jiang M,1995. Sapin M, et al. Seismic anisotropy as an indicator of mantle flow beneath Himalayas and Tibet. Nature,75:571-574
    Holt W E.2000a.Correlated crust and mantle strain field in Tibet. Geology,28:67-70
    Holt W E, Chamot-Rooke N, LePichon X, et al.2000b. Velocity field in Asia inferred from Quaternary faults slip rates and global positioning system observations. J. Geophys. Res.,105:19185-19209
    Huang W C, Ni J, Tilmann F, et al.2000. Seismic polarization anisotropy beneath the central Tibetan Plateau. J. Geophs. Res.,105:27979-27989
    Huang, Z. X., W. Su, Y. J. Peng, Y. J. Zheng, and H. Y. Li.2003. Rayleigh wave tomography of China and adjacent regions, J. Geophys. Res.,108(B2),2073, doi:10.1029/2001JB001696.
    Huang Z, Luo Y, Peng Y, et al. Azimuthal anisotropy of Rayleigh waves in East Asia. Geophys. Res. Let., 2004,31, L15617, doi:10.1029/2004G020399
    Humphreys E and Clayton R W.1988. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res.,93:1073-1085
    Inoue H, Fukao Y, Tanabe K, et al.1990. Whole mantle P-wave travel time tomography. Phys. Earth Planet. Inter.,59:294-328
    Jeffreys H.1928. The effect on Love waves of heterogeneity in the lower mantle. Mon. Not. R. Astron. Soc. Geophys. Suppl.2:101-111.
    Jeffreys H.1935. The surface waves of earthquakes. Mon. Not. R. Astron. Soc. Geophys. Suppl. 2:101-111.
    Kaneshima S and Silver P G.1995. Anisotropy loci in the mantle beneath Central Peru. Phys.Earth Planet. Inter.,88:257-272
    Karato S and Li P.1992. Diffusive creep in perovskites:Implications for the rheology of the lower mantle. Science,255:1238-1240
    Kosarev G, Kind R, Sobolev SV, et al.1999. Seismic evidence for a detached Indian lithospheric mantal beneath Tibet. Science,283:1306-1309.
    Landisman M., A. Dziewonski, and Y. Sato.1969. Recent improvements in the analysis of surface wave observation. Geophys. J. R. Astron. Soc.17:369-403.
    Landisman M., A. Dziewonski, Y. Sato, and R. Masse.1968. Preliminary report on recent improvements in the analysis of surface waves. Nuovo Cimento. Suppl.6:126-131.
    Lave T, Avouac J P, Lacassin R, et al.1996. Seismic anisotropy beneath Tibet:evidence for eastward extrusion of the Tibetan lithosphere? Earth Planet Sci. Lett.,140:83-96
    Lei, J., D. Zhao, and Y. Su (2009), Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data, J. Geophys. Res.,114, B05302, doi:10.1029/2008JB0058818.
    Lerner-Lam A. L. and T. H. Jordan.1983. Earth structure from fundamental and higher-mode waveform analysis. Geophys. J. R. Astron. Soc.75:759-797.
    Li A, Forsyth D W, Fischer K. M. Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion. J. Geophys. Res.,2003,108(B8):2362
    Li A, Burke K. Upper mantle structure of southern Africa from Rayleigh wave tomography. Journal of Geophysical Research,2006,111:10303-1031
    Li, C., R. D. van der Hilst, A. S. Meltzer, R. Sun, and E. R. Engdahl.2008.,Subduction of the Indian lithosphere beneath the Tibetan plateau and Burma, Earth Planet. Sci. Lett.,274,157-168.
    Li, H., W. Su, C.-Y. Wang, and Z. Huang.2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet, Earth Planet. Sci. Lett.,282,201-211, doi:10.1016/j.epsl.2009.03.021.
    Lin, F. C., M. P. Moschetti, and M. H. Ritzwoller (2008), Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps, Geophys. J. Int.,173,281-298, doi:10.1111/j.1365-246X.2008.03720.x.
    Mainprice, D., and P.G. Silver.1993.Interpretation of SKS-waves using samples from the subcontinental lithosphere, Phys. Earth Planet. Inter.,78:257-280
    McNamara D, Owens T, Silver P G, et al.1994. Shear-wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res.,99:13655-13665
    McNamara D.E. and R.P. Buland.2004. Ambient Noise Levels in the Continental United States, Bull. Seism. Soc. Am.,94,4,1517-1527.
    McNamara, D.E., T. J. Owens, and W. R. Walter.1995. Observations of regional phase propagation across the Tibetan Plateau. J. Geophys. Res.,100(B11):22215-22229.
    McNamara, D.E., Walter W. R., Owens T. J., et al.1997. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res.,102(B1):493-506.
    Molnar P.1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implication. Phil. Trans. R. Soc. Lond. A326: 33-88.
    Molnar P., P.England. J. Mantinod.1993. Mantle dynamics, uplift of Tibetan Plateau and the Indian Monsoon. Rev. Of Geophys.37(4):357-396.
    Montagner J P and Griot-Pommera D A. How to relate body wave and surface wave anisotropy? J. Geophys. Res.,2000,105(B8):19015-19027
    Montagner J P, Tanimoto T.1991. Global upper mantle tomography of seismic velocities and anisotroples. J. Geophys. Res.,96:20337-20351
    Montagner J. P., T. Tanimoto.1991. Global upper mantle tomography of seismic velocities and anisotroples. J. Geophys. Res.96:20337-20351.
    Moschetti, M. P., M. H. Ritzwoller, and N. M. Shapiro (2007), Surface wave tomography of the western United States from ambient seismic noise:Rayleigh wave group velocity maps, Geochem. Geophys. Geosyst.,8, Q08010, doi:10.1029/2007GC001655.
    Nishida, K., H. Kawakatsu, and K. Obara.2008. Three dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters, J. Geophys. Res.,113, B10302, doi: 10.1029/2007JB005395.
    Nolet G.1988. Partitioned waveform inversion and two-dimensional structure under the Network of Autonomously Recording Seismographs, J. Geophys. Res.93:321-334.
    Nolet G.1990. Partitioned waveform inversion and two-dimensional structure under the Network of Autonomously Recording Seismographys. J. Geophys. Res.95:8499-8512.
    Owens T J, Zandt G.1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature,387:37-43.
    Plateau. J Geophys Res.2000.105(B12):27979-27989.
    Press F.1956. Determination of crustal structure from phase velocity of Rayleigh waves. Part Ⅰ. Southern California. Geol. Soc. Am. Bull.67:1647-1658.
    Ritzwoller M. H., and Levshin A. L.1998. Eurasian surface wave tomography:Group velocity. J. Geophys. Res.103(B3):4839-4878.
    Royden L H, Burchfiel B C, King R W, et al.1997. Surface deformation and lower crustal flow in eastern Tibet. Science,276:788-790
    Romanowicz B.1982. Constraints on the structure of the Tibet plateau from pure path phase velocities of Love and Rayleigh waves. J. Geophys. Res.,87:6865-6883
    Sandoval E, Ni J, Kind R, et al.1997. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. J. Geophs. Res.,102:17813-17823
    Sandvol E, Ni J, Kind R, Zhao WJ.1997. Seismic anisotropy beneath the southernHimalayas-Tibet collision zone. J Geophys Res,102(B8):17813-17823.
    Saygin, E., and B. L. N. Kennett (2010), Ambient seismic noise tomography of Australian continent, Tectonophysics,481,116-125, doi:10.1016/j.tecto.2008.11.013
    Shapiro N.M. and M.H. Ritzwoller.2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophys. J. Int. in press.
    Sherrington H F, Zandt G. and Frederiksen A.2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. J. Geophys. Res.,109, B02312, doi:10, 1029/2002JB002345
    Silver P G.Chan W.1991. Shear wave splitting and mantle deformation.J. Geophys. Res,96:16429-16454
    Silver P G.1996.Seismic anisotropy beneath the continents:probing the depths of geology. Annu. Rev. Earth. Planet. Sci.,24:385-432
    Silver P G, Chan W W.1988. Implication for continental structure and evolution from seismic anisotropy. Nature,335:34-39
    Smith M and Dahlen FA.1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. J. Geophys. Res.,78:3321-3333
    Snieder R.1988a. Large-scale waveform inversion of structure waves for lateral heterogeneity J. Geophys. Res.93(B10):12055-12080.
    Snieder R.1988b. Large-scale waveform inversion of structure waves for lateral heterogeneity,2. Application to surface wave in Europe and the Mediterranean, J. Geophys. Res.93:12067-12080.
    Sol S et al.2007. Geodynamics of the southeastern Tibetan Plateau from seismicanisotropy and geodesy. Geology.53:563-566.
    Stoneley R.1926. The effect of the ocean on Rayleigh waves. Mon. Not. R. Astron. Soc. Geophys. Suppl. 1:349-356.
    Stoneley R.1928. Dispersion of waves in a double surficial layer. Mon. Not. R. Astron. Soc. Geophys. Suppl.2:527-531.
    Tanimoto T.1991. Waveform inversion for the three-dimensional density and S wave structure J.Geophys. Res.96:8167-8189.
    Tanimoto T. and D. L. Anderson.1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle:Love and Rayleigh waves 100-250s. J. Geophys. Res.90:1842-1858.
    Tapponnier P, Peltzer G., Le Dain A Y, et al.1982. Propagating extrusion tectonics in Asia:New insight from simple experiments with plasticine. Geology,10:611-616
    Tilmann, F., Ni, J., INDEPTH seismic team,2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science 300,1424-1427.
    W. Lowrie.2007. Fundamentals of Geophysics Second Edition. New York:Cambridge University Press, 136-137.
    Wang Q, Zhang P Z, Frevmuller J T, et al. Present-day crustal deformation in China constrained by global positional system measurements. Science,2001,294:574-577
    Wielandt E. Propagation and structural interpretation of non-plane waves. Geophysical Journal International,1993,113(1):45-53.
    Woodhouse J. H. And Dziewonski A. M.1984. Mapping the upper mantle:Three-dimensional modeling of the earth structure by inversion of seismic waveform. J. Geophys. Res.,89,5953-5986.
    Wu F T and Levshin A L.1994. Surface wave group velocity tomography of East Asia. Phys. Earth Planet. Inter.,84:59-77
    Wu F T, Levshin A L and Kozhevnikov V M.1997. Rayleigh wave group velocity tomography of Siberia, China, and the vicinity. Pure Appl. Geophys.,149:447-473
    Wu F. T., and A. L. Levshin, and V. M. Kozhevnikov.1997. Rayleigh wave group velocity tomography of Siberia, China, and the vicinity. Pure Appl. Geophys.,149:447-473.
    Wu F. T., and A. L. Levshin.1994. Surface wave group velocity tomography of East Asia. Phys. Earth Planet. Inter.,84:59-77.
    Yao, H., R. D. van der Hilst, and J.-P. Montagner (2010), Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography, J. Geophys. Res.,115, B12307, doi:10.1029/2009JB007142
    Yuan X., J. Ni, R. Kind, J. Mechie, and E. Sandvol.1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res.,102(B12): 27491-27500.
    Yang, Y., M. Ritzwoller, A. Levshin, and N. Shapiro.2007. Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int.,168,259-274, doi:10.1111/j.1365-246X.2006.03203.x.
    Yang, Y. J., A. B. Li, and M. H. Ritzwoller.2008a., Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography, Geophys. J. Int.,174,235-248, doi:10.1111/j.1365-246X.2008.03779.x.
    Yang, Y. J., M. H. Ritzwoller, F. C. Lin, M. P. Moschetti, and N. M. Shapiro.2008b. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography, J. Geophys. Res.,113, B12310, doi:10.1029/2008JB005833
    Yang, Y., et al.2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography, Geochem. Geophys. Geosyst.,11, Q08010, doi:10.1029/2010 GC 003119
    Zhao J, Yuan X, Liu H et al.2010. The boundary between the Indian and Asian tectonic plates below Tibet. PNAS. June 7. doi:10.1073/pnas.1001921107.
    Zhang P Z, Shen Z K, Wang M, et al.2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,32(9):809-812
    Zheng, S., X. Sun, X. Song, Y. Yang, and M. H. Ritzwoller.2008. Surface wave tomography of China from ambient seismicnoise correlation, Geochem. Geophys. Geosyst.,9, Q05020, doi:10.1029/ 2008GC001981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700