船型参数化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
参数化技术在20世纪90年代后期已经得到了广泛的应用,许多利用参数化技术开发的专用设计系统,使设计人员从大量繁重而琐碎的工作中解脱出来,从而不仅提高了设计速度,增强了市场快速反应能力,而且还有效地减少了信息的存储。在船型设计中,由于船东要求的多变性和船体线型的复杂性,整个设计过程需要多次反复地进行线型修改以及性能计算,这就要求船型的设计尽量做到参数化。
     经过长期的研究与发展,数学船型设计技术已经取得了较快的发展和长足的进步,但是根据特征参数和特征曲线开发出的船体线型与实际的船型差距很大,没有达到预期的目标。论文在采用NURBS技术表达船体曲线曲面的基础上,提出了常规船型的参数化设计方法:根据特征参数,应用光顺曲线的参数化设计技术,就可以设计纵向特征曲线,生成横剖面曲线,进而得到光顺实用的船体曲面。
     船体曲线曲面十分复杂,在NURBS(非均匀有理B样条)方法出现以前,要用一个式子统一表示船体曲线曲面几乎是不可能的。本文利用NRUBS曲线的节点、升阶、插值算法以及二次曲线曲面的NURBS表示,并正确选择边界条件和参数化方法,实现了用单一NURBS函数表达完整的船型。由于采用了NURBS技术,可以方便地将船型数据导入Shipflow、Fluent、MaxSurf、NAPA和TRIBON等船舶水动力分析、设计、生产设计软件。
     本文考虑了球艏、艉部特征参数,将横剖面曲线的“形心”作为设计的特征参数,讨论了横剖面曲线的曲率极值点等,从而实现了常规船型的参数化设计。该方法建立了船型与特征参数、特征曲线之间的联系,将船型的设计与优化转化为影响船舶水动力性能的、少量的特征参数与特征曲线的设计与优化。
     近年来,对船舶性能的要求愈来愈高,同类船舶更新换代愈来愈快,因而,以往的船型资料难以满足新的要求,传统的船型设计正面临着新的挑战。而船型参数化设计的出现,为水动力性能优化提供了船型生成与变换的工具,为快速、高效开发水动力性能优异的船型提供了可能。本文以设计经验为指导,应用参数化设计方法优化了某船的纵向特征曲线以及艉部特征参数,CFD数值模拟结果显示:螺旋桨盘面的伴流不均匀性和伴流峰值显著降低,伴流分布有了较大改善。
Parametric design system of special product has been widely applied since 1990s and accordingly freed the designers from a mass of trivial matters, which not only improved the design efficiency and enhanced the ability to rapidly react to the market, but also reduced the information storage. In shipbuilding, due to the diversity of the demand of ship owners and complexity of the hull form, it is always repetitious to modify the hull form and carry out its corresponding performance computing, which brings the necessity of the parametric design to hull form.
     The technology of the design to mathematic hull form has been developed well after a long time of research. However, the prospective object is always difficult to achieve as the hull form derived from characteristic parameters and curves is dissimilar from the practical hull form. In this paper, the parametric design method to regular hull form is proposed based on the technique of representing the hull form by NURBS. According to this method, the longitude curves and the sections are derived from characteristic parameters, and then the faired practical hull form could be obtained.
     In view of the complexity of the curves and the surface of ships, it seems to be impossible to express them by a uniform formula before the method of NURBS was used. In the paper, the whole hull form is successfully represented by a uniform NURBS formula by using the algorithm of NURBS curve, the NURBS representation of quadratic curves, the correcting boundary conditions as well as the parametric method. With the application of NURBS, the data of hull form could be conveniently imported to Shipflow, Fluent, MaxSurf, Napa, Tribon and other softwares for the analysis, design and manufacture of ships.
     This paper considers the parameters of bulbous bow and stern, adopts the centroid of the area between section and design waterline as the characteristic parameter and discusses the maximum curvature points. Consequently, the parametric design to regular hull form is achieved and the relation between the hull form and the characteristic parameters and curves is established, by which the design and optimization of hull form is transferred to the design and optimization of fewer parameters and curves affecting the hydrodynamic performance.
     In recent years, the demand to hydrodynamic performance has been improved and the update of the hull form has been accelerated. Therefore, the existed resources of hull form cannot satisfy the new demand, which brings the new challenge to the traditional design method for hull form. However, the application of the parametric design to hull form provides the means for quick generation and variation of hull form to hydrodynamic optimization, which makes it possible that the hull form with excellent hydrodynamic performance can be created quickly and efficiently. Applying the parametric design to hull form and guided by design experience, the longitude characteristic curves and the parameters of stern are optimized in this paper. And the numerical simulation results of the optimized hull show that the non-uniform level of wake and the wake peak of propeller plane are decreased remarkably, and that the wake distribution is improved.
引文
1.黄宏波等.船舶设计实用手册——总体分册[M].北京:国防工业出版社, 1998. 593—615
    2.钱文豪.船舶型线设计[J].船舶, 1998, (1):47—60
    3.陈宾康,董元胜.计算机辅助船舶设计[M].北京:国防工业出版社, 1994.1—241
    4.赵成璧.船舶曲面设计现代方法与软件系统的研究[D]:[博士学位论文].武汉:武汉理工大学交通学院,1999
    5.陈绍平. NURBS曲线及其在船舶型线设计中的应用研究[D]:[博士学位论文].武汉:武汉理工大学交通学院,2002
    6.曾隆杰.船舶CAD[M].人民出版社,2000
    7.周超骏.计算机辅助船体型线设计[M].上海:上海交通大学出版社, 1992.1—170
    8.周超骏,刘鼎元.船体数学线型设计——曲面法探讨[J].上海交通大学学报, 1981, 15(4):21—31
    9. N.G Fog. A B-SPLINE SURFACE SYSTEM FOR SHIP HULL DESIGN[J]. Computer application in the automation of shipyard operation and ship design, 1985,359—366
    10. J S Kouh,H Soding. Rational Cubic Spline for Ship Hull Representation[J]. ICCAS, 1985,401—412
    11. Joseph J.Gorski, et al. The Use of a RANS Code in the Design and Analysis of a Naval Combatant[C]. 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan, 2002
    12. K.-S. Min, et al. Study on the CFD Application for VLCC Hull-Form Design[C]. 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2002
    13. Chi Yang, Francis Noblesse, Rainald Lohner, Dane Hendrix.. Practical CFD Applications to Design of a Wave Cancellation Multihull Ship[C]. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France, 2000
    14. Tahara Y., Paterson E.P., Stern F. and Himeno Y. Flow and Wave-Field Optimization of Surface Combatant using CFD-based Optimization methods[C]. Proceedings of the 23rd Symposium of Naval Hydrodynamics, Val de Reuil, France, 2000
    15. Hino T. Shape Optimization of Practical Ship Hull Forms Using Navier-Stokes Analysis[C]. Proceedings of the 7th International Conference on Numerical Ship Hydrodynamics, Nates, France, 1999
    16.王言英.基于阻力性能船体型线精细优化的CFD方法[J].大连理工大学学报,2002, 42(2):127—133
    17. Harries, S. Parametric Design and Hydrodynamic Optimization of Ship Hull Forms[Ph.D. Thesis]. Germany: Institut für Schiffs-und Meerestechnik, Technische Universit?t Berlin, 1998.
    18. Harries, S. Systematic optimization– a key for improving ship hydrodynamics[J]. Hansa, 2005, 142(12)
    19. Abt, C. and Harries, S. FRIENDSHIP Framework-integrating ship-design modeling, simulation, and optimization[J]. The Naval Architect, RINA, 2007(1)
    20. Harries, S. and Hinrichsen, H. The InSAC– A new design feature for the improvement of transport efficiency[J]. Hansa, 2006, 143(9)
    21. Piegl L., Tiller W. The NURBS book[M]: Second Edition. Berlin, Heidelberg: Springer-Verlag, 1997
    22. Piegl L., Tiller W. Computing the derivative of NURBS with respect to a knot[J]. Computer-Aided Geometric Design, 1998,15:925—934
    23. Piegl L., Tiller W. Parameterization for surface fitting in reverse engineering[J]. Computer-Aided Design, 2001,33:593—603
    24. Yamaguchi F. Curves and surfaces in computer aided geometric design[M]. Springer-Verlag ,1988
    25.施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1994
    26.朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000
    27.苏步青,刘鼎元.计算几何[M].上海:上海科学技术出版社,1982
    28. Rabien Uwe,Langbecker U. Product modeling for design and approval in shipbuilding[J]. Practical Design of Ships and Mobile Units, Elsevier Science BV, 1998:323—330
    29. Ventura M, Guedes SC. Hull form modeling using NURBS curves and surfaces. 7th Symposium on Practical Design of Ship and Mobile Units, Netherlands. 1998,9:289—296
    30. Nam JH, Parsons MG. A parametric approach for initial hull form modeling using NURBS representation[J]. Journal of ship production, 2000,16(2):76—89
    31. Kantorowitz E, Degina R, Krits A. Fitting correctly shaped splines to ship lines given by inaccurate points[J]. Ship Technology Research, 2000,47:63—66
    32. Islam MM, Khondoker MRH, Rahman CM. Application of artificial intelligence techniques in automatic hull form generation[J]. Ocean Engineering, 2001,28:1531—1544
    33. Subramanian VA, Suchithran PR. Interactive curve fairing and bi-quintic surface generation for ship design[J]. Shipbuilding Progress, 199,46(466) :189—208
    34.李彦本,林焰,纪尚卓,戴寅生.数学船型型线设计方法研究[J].大连理工大学学报,1999,38(4):382—386
    35. Harries Stefan, Nowacki HCH. Form parameter approach to the design of fair hull shapes[J]. 10th international conference on computer applications in shipbuilding, ICCAS’99, MIT, June 7-June 11, 1999,Cambridge,MA,USA
    36.顾耀林,吴龙周,吴有生.船体三维网格的自动生成算法及其图形用户界面的设计[M].中国造船, 1999,4:87—91
    37. Ye Jieping, Qu Ruibin. Faring of parametric cubic splines[J]. Mathematical and Computer Modelling, 1999(30) :121—131
    38. Woodward C.D. Skinning techniques for interactive B-spline surface interpolation[J]. Computer-Aided Design, 1988,20(8)
    39. Qu Ruibin,Ye Jieping. Approximationg of minimum energy curves[J]. Applied Mathematics and Computation, 2000(108) :153—166
    40. Walton DJ, Meek DS. Curvature extrema of planar parametric polynomial cubic curves[J]. Journal of Computational and Applied Mathematics, 2001,134:69—83
    41. Yoon TK, Kim DJ,Chung YW,etc. Ship hull surface fairing system[J]. Practical Design of Ships and Mobile Units, Elsevier Science BV, 1998:341—349
    42. Sarfraz M, Butt S, Hussain MZ. Visualization of shaped data by a rational cubic spline interpolation[J]. Computer&Graphics, 2001,25:833—845
    43.李安平,蒋大为.三次均匀有理B样条曲线的光顺算法[J].航空计算计算, 1997,2:43—47
    44.李安平,冯有前.有理B样条曲线的光顺拟合法[J].纯粹数学与应用数学, 2000,16(1) :80—83
    45.满家巨,胡事民,雍俊海,孙家广. B-样条曲线的节点去除与光顺[J].软件学报, 2000,12(1) :143—147
    46.穆国旺,涂侯杰,雷毅,朱心雄.参数三次B样条曲线的一种整体光顺方法[J].工程图学学报, 1998,1:28—34
    47.宁涛. NURBS曲面造型应用技术研究[D]:[博士学位论文].北京航空航天大学博士学位论文, 1996,9
    48.施光燕,董加礼.最优化方法[M].北京:高等教育出版社, 1999,9
    49.王子若,陈永昌.优化计算方法[M].北京:机械工业出版社, 1986,6
    50.蔡宣三.最优化与最优控制[M].北京:清华大学出版社, 1982,12
    51.徐宁,李春光等.几种现代优化算法的比较研究[J].系统工程与电子技术, 2002, 24(12)
    52.沈爱玲,朱德通.线性表达式约束优化问题的仿射内点不定dogleg算法[J].上海师范大学学报(自然科学报), 2006
    53. Harries, S. and Abt, C. Parametric Curve Design Applying Fairness Criteria[C]. International Workshop on Creating Fair and Shape-Preserving Curves and Surfaces, Network Fairshape, Berlin/Potsdam, Germany, 1998
    54. Abc, C., Bade, S.D. Birk, L. Parametric hull form design– A step towards one week ship design[C]. 8th international symposium on practical design of ships and other floating structures. PRADS 2001, Shanghai, 2001
    55. Abt, C. and Harries, S. A New Approach to Integration of CAD and CFD for Naval Architects[C]. 6th International Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT2007), Cortona, April 2007
    56. F. Perez-Arribas, J.A. Suarez-Suarez, L. Fernandez-Jambrina. Auto surface modeling of a ship hull[J]. Computer-Aided Design, 2006,38: 584—594
    57. Birmingham, R W, Smith T A G. Auto hull form generation, a practical tool for design and research[C]. Practical design of ships and mobile Units, The Hague 1998
    58. FRIENDSHIP SYSTEMS. Imaging Functionality for flexible shapes[J]. The Naval Architect, RINA, 2007(4)
    59. Harries, S. Fundamentals of advanced hydrodynamic design[J]. The Naval Architect, RINA, 2006(4)
    60. Harries, S. and Abt, C. and Hochkirch, K. Modeling meets Simulation– Process Integration to improve Design[C]. Honorary colloquium for Prof. Hagen, Prof. Schluter and Prof. Thiel, University of Duisburg-Essen, July 2004
    61. Harries S, ABT C. Formal Hydrodynamic Optimization of a Fast Monohull on the Basis of Parametric Hull Design[C]. FAST’99–5th International Conference on Fast Sea Transportation, Seattle, 1999
    62. Harries S, ABT C, GICHKURCH K. Hydrodynamic Modeling of Sailing Yachts[C]. 15th Chesapeake Sailing Yacht Symposium, Annapolis, 2001
    63. Harries S, Valdenazzi F. Systematic Exploration and Formal Exploitation in the Hydrodynamic Design of Ship Hull Forms[R]. Technical Report, CETENA– Technical University of Berlin Genoa, 2001
    64. Poloni C, Giurgevich A, Onesti L, Pediroda V. Hybridization of a Multi– objective Genetic Algorithm, a Neural Network and a Classical Optimizer for a Complex Design Problem in Fluid Dynamics[M]. Computer Methods in Applied Mechanics and Engineering. North– Hoddand:Elsevier Science Ltd., 1999
    65. Spicer D, Cook J, Poloni C, Sen P. EP 2008 FRONTIER:Industrial Multiobjective DesignOptimisation[C]. ECCOMAS 98,1998
    66. Harries S, Valdenazzi F, Abt C, Viviani U. Investigation on Optimization Strategies for the Hydrodynamic Design of Fast Ferries[C]. Fast’01 Southampton, 2001
    67. Larsson L. Gothenburg 2000– A workshop on numerical ship hydrodynamics[R]. Gothenburg,Sweden, Chalmers University Report CHA/NA V/R–02/0073
    68. Valdenazzi F, Harries S, Viviani U, Abt C. Seakeeping Optimisation of Fast Vessels by Means of Parametric Modeling[R]. HSMV02,Naples, 2002.
    69. Abt C, Harries S, Heimann J, Winter H. From Redesign to Optimal Hull Lines by Means of Parametric Modeling[C]. 2ND International Conference on Computer Application and Information Technology in the Maritime Industres, Hamburg, 2003
    70. Abt C, Harries S, Hochkirch K. Constraint management for marine design applications[C].
    9th International Sypmposium on Practical Design of Ships and Other Floating Structures, PRADS 2004, Travemunde, 2004
    71. Harries S, Heimann J. Optimization of the wave– making characteristics of Fast Ferries[C]. 7th International Conference on Fast Sea Transportation, Ischia, 2003
    72. Valdenazzi F, Harries S, Janson C E, Lee–Andersen M. Optomisation of the Forebody and its Experimental Verfication[C]. International Conference on Ship and Shipping Research, NAV 2003
    73. Harries S, Schulze D. Numerical Investigation of a Systematic Model Series for the Design of Fast Monohull[C]. FAST’97– 4th International Conference on Fast Sea Transportation, Sydney, 1997
    74. Maisonneuve JJ, Harries S, Marzi J. Towards Optimal Design of Ship Hull Shapes[C]. IMDC’03, Athens, 2003
    75. Hoekstra M, Raven H. A Practical Approach to Constrained Hydrodynamic Optimization of Ships[C]. NAV 2003, Palermo, 2003
    76. Janson CE, Larsson L. A Method for the Optimisation of Ship Hulls From a Resistance Point of View[C]. 21st Symposium on Naval Hydrodynamics, Trondheim, 1996
    77. Marzi J. Use of CFD Method for Hullform Optimization in a Model Basin[C]. MARNET– CFD Workshop, Haslar, U.K.,2003
    78. Scott P, Dane H, Francis N. Hydrodynamic Optimization of Ship Hull Forms[J]. Applied Ocean Research, 2001,23: 337—355
    79. Birk,L., Harries S. OPTIMISTIC—Optimization in Marine Design[M]. Berlin: Mensch&Buch Berlag, 2003
    80. F Perez-Arribas, J.A. Suarez-Suarez. Automatic Surface Modelling of a Ship Hull[J]. Computer-Aided Design,2006,38:584—594
    81. Kourosh K. Automatic Hull Form Optimisation Towards Lower Resistance and Wash Using Artificial Intelligence[C]. FAST’03, Italy, 2003
    82.杨佑宗,杨奕,陈文炜等.船舶线型设计与研究[J].上海造船,2001(56):18—23
    83.刘森.论船型研究问题[C].中国造船工程学会论文集,1962
    84.刘森,刘海,杨佑宗等.单桨船舶后体船形与艉部剧振[J].船舶性能研究,1997(1)
    85.刘应中.船舶兴波阻力理论[M].北京:国防工业出版社, 2003
    86.邵世明.船舶阻力[M].上海:上海交通大学出版社,1995
    87.杜月中.一种实用船型设计方法[J].中国造船,2004,45(1) :8—12
    88.仵大伟.船体曲面表达与三维船舶设计研究[D]:[博士学位论文].大连:大连理工大学,2002
    89.陆丛红.基于NURBS表达的船舶初步设计关键技术研究[D]:[博士学位论文].大连:大连理工大学,2005
    90.黄少锋,李百齐,陈京普. CFD在船舶工程中的实际运用[C].第二十一届全国水动力学研讨会.北京:海洋出版社,2008
    91.张志荣.水面舰船综合粘性流场的实用化CFD研究[D]:[博士学位论文].无锡:中国船舶科学研究中心,2004
    92.虞铣辉.减少船尾部振动的有效措施——螺旋桨吸振穴的设计[J].船舶科研与设计, 1978, (3):3946
    93. Gao Zhi-liang, Zou Zao-jian. A three-dimensional desingularized high order panel method based on NURBS[J]. Journal of Hydrodynamics, Ser. B, 2008, 20 (2):137—146
    94. Gao Gao, MA Ling. A raised panel method based on NURBS for free-surface potential flows with forward speed[J]. Journal of Hydrodynamics, Ser. B, 2003, 15 (2):112—120
    95.陈京普,朱德祥,刘晓东.水面船非线性兴波数值方法研究[J].水动力学研究与进展(A辑), 2008.23(4):357—363
    96.陈京普,朱德祥,刘晓东.兴波阻力数值预报方法研究及其在集装箱船船型优化中的应用[J].水动力学研究与进展(A辑), 2006.21(1):113—121
    97.黄少锋,张志荣,赵锋,李百齐.带自由面肥大船粘性绕流场的数值模拟[J].船舶力学, 2008,12(1) :46—53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700