利用PCR-SSCP技术分析猪粪堆肥微生物群落动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以猪粪和稻草为原料进行室内堆肥,设置2个试验组分别为堆体1(被动通风静态垛)和堆体2(强制通风静态垛),在为期30d的堆程中,均测定了2个堆体上、中、下层的一系列理化指标如温度、CO_2、PH、含水率、总有机碳(TOC)、全氮(TKN)和C/N随时间的变化,也用分子生物学方法(PCR-SSCP)检测了每堆体三层的细菌和真菌群落数随时间的变化,并调用SAS6.12软件中的T检验程序和相关分析程序处理数据,旨在研究堆肥微生物群落结构动态,其中涉及到同一堆体不同堆肥阶段微生物群落结构比较;不同堆体或不同堆肥工艺微生物群落结构比较;微生物群落结构演替与堆肥理化性质变化的关系;真菌群落动态和细菌群落动态的比较。试验结果如下:
     不论是从堆料的物理性状还是化学指标来看,堆体0~30d都快速经历了完整的常规堆肥一次发酵过程。且微生物分子生物学检测(PCR—SSCP)表明这个过程中细菌和真菌构成的微生物群落发生了很大的变化。
     堆体内细菌类群数在0~100d的堆肥期中总体呈振荡下降,梯级递减的趋势。而2个堆体的真菌群落动态表明:第9d真菌群落已有繁荣迹象,但15~24d处于最繁荣的阶段。
     将细菌与真菌群落动态进行比较可知:两堆体各层的细菌变化与真菌变化主要表现为较弱的负相关(r<0,p>0.05);堆体各层条带数均是真菌平均数大于细菌平均数:但全过程中,真菌类群数的变异要大于细菌;不管是真菌还是细菌,强制通风堆每个点的类群平均数明显大于被动通风堆(真菌为3.128个对2.641个;细菌为2.436个对1.54个)。
     将细菌和真菌的类群变化结合起来,得出:在14d以前,细菌类群明显占据优势,14d以后真菌类群数超过细菌,并一直处于优势状态,尤其是在15~24d内十分突出,类群数远远高于细菌。
     将理化指标平均数与细菌和真菌的相关性进行分析可知:细菌类群数与温度和CO_2释放量呈显著正相关(r>0,p<0.05),与OC和C/N呈极显著正相关(r>0,p<0.01),而与KN呈显著负相关((r<0,p<0.05);真菌类群数只与pH和含水率呈显著正相关(r>0,p<0.05)。
     细菌类群数量变化与堆体的温度和C/N变化趋势比较一致,在第一次发酵(0~30d阶段)中,18d以前是细菌最活跃的阶段,之后细菌成为群落中的劣势微生物类群。由于堆肥30d以前堆体温度主要在44~71℃,在SSCP图谱上的条带可能是好氧高温细菌占主导。
     利用取样日的温度、C/N、KN和真菌类群数的标准化数据进行比较作图,可以看出:真菌最适宜的温度可能是42.5~50℃;C/N变得不适宜于细菌生长似乎也间接有利于真菌的繁殖;而KN的相对含量过高可能对真菌的繁殖有抑制作用,从而协同温度造成了真菌类群数下降。
     把细菌和真菌的类群数数据除以相应的平均数,得到无量纲标准化数据可知,第15d是一个明显的分界线,前期细菌的优势地位在15d后被真菌取而代之,从整个微生物群落的角度看,第27d以前群落是兴旺的,以后则趋向衰弱。
In this study, swine manure and rice straw were used to be compostingmaterials indoor. Two trial groups were set up, which were called staticwindrow of passive aeration (Pile One) and static windrow of forced aeration(Pile Two), respectively. Physical and Chemical parameters, such astemperature, carbon dioxide, pH, moisture content, total organic carbon,total kjeldahl nitrogen, the ratio of carbon to nitrogen, were determined inthirty days. The test samples were taken from both piles at three points ofdifferent depth every 3d, In addition, bacteria and fungi populations weredetected with the biological technique of Single Strand ConformationPolymorphism. The procedures of t-test and correlation analysis in thesoftware of SAS 6.12 were applied to analyze statistically the data obtainedin the experiment in order to understand the development of the microbialstructures within and between piles in different composting phases, therelationship between macroscopic parameters and the succession Of microbialcommunities, and comparing the community of fungi with that of bacterial.
     The variance curve of physical and chemical parameters indicated that thetwo piles hadexperienced an integrity course of fermentation in compostingprophase, while the results of PCR-SSCP detection manifested that themicrobial populations, composed of bacteria and fungi, changed greatly.
     The number of bacterial groups descended vibrationally in the 0~100dcomposting process. Community dynamics of fungi in two piles proved that fungipopulation had already flourished in the 9d, whose prosperous stage was the15~24d.
     Comparing the community of bacterial and fungi, it can be realized that,the correlation analysis of community succession between bacterial and fungimainly reflected weakly negative correlation (r<0,p>0.05),that more fungispecies OTUs were amplified by PCR-SSCP than bacteria species in this researchdue to the length of fungi primer being shorter than bacteria primer, that the variance of fungi species was significantly greater than that of bacteriaspecies, that the average numbers of bacteria and fungi in the pile of forcedaeration were higher than those in passive aeration pile (2.436 versus 1.54to bacteria species and 3.128 versus 2.641 to fungi species).
     Integrating community variation of bacterial and fungi, the results weregained that, the bacterial community predominated obviously before the 15thday. However, the number of fungi groups surpassed that of bacterial groupsand had the advantage all the time, especially in the period of 15~24d, whichkept far away from that of bacterial groups.
     The number of bacterial groups was significantly positive correlativewith the change of the temperature and carbon dioxide (r>0,p<0. 05), and hadextremely significantly positive correlation with the change of total organiccarbon and the ratio of carbon to nitrogen(r>0,p<0.01),but had significantlynegative correlation with the change of total kjeldahl nitrogen. While thenumber of fungi groups was significant positive correlative with the changeof pH and moisture content.
     The bacterial number change tendency was similar to the trend oftemperature and the ratio of carbon to nitrogen changing. In 0~30d, the activestage of bacteria was before the eighteenth day, however, bacterial communitybecame inferior microbial species after that phase. Because the piletemperature was mainly in the scope of forty-four celsius degree toseventy-one celsius degree during thirty composting days, aerobic andthermophilic bacteria amplified by PCR-Single Strand ConformationPolymorphism may be the prevailing microbial population.
     Through the curve of the standard data derived from the fungi communitynumber and the macroscopic parameters such as temperature, the ratio of carbonto nitrogen and total kjeldahl nitrogen, it was observed that, the optimaltemperature for fungi may be 42.5~50 celsius degree. And the ratio of carbonbecame unsuitable for bacteria to grow, which may benefit the growth of fungi.The relative amount of total kjeldahl nitrogen became more and more high, which may inhibit the propagating of fungi in coordination with temperature.
     Standard data transformed from the ratio of the number of bacterial andfungi groups to their corresponding average number, indicated that, thebacterial community was predominated before the 15th day while the fungicommunity was prosperous afterwards. In conclusion, the compostingmicroorganism community was thrifty before the 27th day, but ran downafterward.
引文
[1] 夏岿然,夏淑梅.固体废物的处理及综合利用[J].黑龙江环境通报,2002,26(1):46~47
    [2] 曾光明,黄国和,袁兴中等.堆肥环境生物与控制[M].北京,科学出版社,2006,1
    [3] 徐志平.畜禽废弃物污染与商品有机肥料产业发展[J].耕作与栽培,2003,(5):57~58
    [4] 丁疆华.广州市畜禽粪便污染与防治对策[.门.环境科学研究,2000,13(3):57~59
    [5] 陈永军,王权,龚鹏飞等.畜禽粪便污染在疾病传染中的危害及防治对策[J].上海畜牧兽医通讯,2006,(2):70~71
    [6] 邵宏华.城郊禽场滋味难受[N].中国环境报,1996-11-09
    [7] 黄国锋.猪粪混合堆肥工艺、物质转变及腐熟度研究[D].博士学位论文,华南农业大学,2002
    [8] 范小建.切实加强有机肥建设,努力提高农业综合生产能力[N].农民日报,2005-06-21
    [9] 黄鸿翔,李书田,李向林等.我国有机肥的现状与发展前景分析[J].土壤肥料,2006,(1):3~8
    [10] 杨竹青,刘玉霞,赵德宇.畜禽粪便无害化生物技术处理资源化与产业化[J].饲料广角,2003,(16):26~27
    [11] 李文华.中国生态农业面临的机遇与挑战[J].中国生态农业学报,2004,12(1):1~3
    [12] McKinley V L, Vestal J R. Biokinetic analyses of adaptation and succession: microbial activity in composting municipal sewage sludge[J]. Applied and Environmental Microbiology, 1984, 47:933~941
    [13] Thomas Redlinger, Jay Graham, Ver6nica Corella-Barud. Survival of Fecal Coliforms in Dry-Composting Toilets[J]. Applied and Environmental Microbiology, 2001, 67: 4036~4040
    [14] J. L. Derikx, F. H. M. Simons, H. J. M. Op den Camp. Evolution of Volatile Sulfur Compounds during Laboratory-Scale Incubations and Indoor Preparation of Compost Used as a Substrate in Mushroom Cultivation[J]. Applied and Environmental Microbiology, 1991, 57:563~567
    [15] Haug R T. Compost Engineering: Principles and Practice[M]. Ann Arbor Science, 1980
    [16] De Bertoldi M, Ferranti M P, LHermite P, et al. Compost: Production, Quality and Use[M]. London, Elsevier ApPlied Science Publishers Ltd., 1987, 52~60
    [17] Polprasert C. Organic Waste Recycling[J]. John Wiley & Sons, 1989, 63~104
    [18] Bertoldi M D, Civilini M, Comi G. MSW compost standards in european community[J]. BioCycle, August, 1990, 60~62
    [19] Diaz L F, Savage G M, Eggerth L L, et al. Composting and Recycling Municipal Solid Waste[M]. Boca Raton (USA), Lewis Publishers, 1993, 121~174
    [20] Augenstein D, Wise D L, Dat N X, et al. Composting of municipal solid waste and sewage sludge: Potential for fuel gas production of a developing country[J]. Resources, Conservation and Recycling, 1996, 16:254~279
    [21] 李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京,化学工业出版社,2000
    [22] 陈志宇,苏继影,栾冬梅.畜禽粪便堆肥技术研究进展[J].当代畜牧,2004,(10):41~43
    [23] 倪骏,孙可伟.城市垃圾堆肥技术评述[J].中国资源综合利用,2004.8:28~31
    [24] Design Manual Number 44: Composting of Municipal Wasterwater Sludges[S]. WWBLDM 44. US EPA 625/4-85/014. August 1985
    [25] 金家志,邵凤君,陆华.肉鸡舍垫料堆肥化处理研究[J].农业环境保护,1997,16(2):65~67
    [26] Genevini P L, Adani F, Villa C. Dairy cattle slurry and rice hull co-composting[A]. In: De Bertoldi MP, Sequi P, Lemmes B, et al, (eds). The Science of Composting, Part Ⅰ [C]. Glasgow, Blackie, 1996, 567~576
    [27] Pioncelot R P. A Scientific Examination of Principles and Practice of Co, posting[J]. Compost science, 1974, 15(2): 24~31
    [28] Kasper Jr V, Derr D A. Sludge composting and utilization: an economic analysis of the Camden sludge composting facility[R]. Final Report to USEPA, NJDEP. CCMUA. Rutgers State Univ., New Brunswick, N J, 1981, 182
    [29] 魏源送,王敏健,王菊思.堆肥技术及进展[J].环境科学进展,1999,7(3):11~23
    [30] Lau A K, Lo K V, Liao P H, et al. Aeration experiments for swine waste composting[J]. Biores Technol, 1992, 41:145~452
    [31] LetonT G, Stentiford E I. Control of Aeration in Static Pile Composting[J]. Waste Management & Research, 1990, 8:299~306
    [32] Finstein M S, Miller F C, Strom P F, et al. Composting Ecosystem Management for Waste Treatment[J]. Biotechnology, 1983, June: 347~353
    [33] Finstein M S, Miller F C, Strom P F. Monitoring and evaluating composting process performance[J]. Journal of the Water Pollution Control Federation, 1986, 58(4): 272~278
    [34] Crombie G. Evolution of A Compost Plant[J]. Biocusly, 1985, 23(6): 17~25
    [35] USEPA. Compost of municipal water sludges[R]. Center for env. Research Information Office of Research and Development, EPA 625/4-85/014, 1985
    [36] 付海燕,曾光明,黄国和等.堆肥过程中产生生物表面活性剂的细胞筛选[J].环境科学学报,2004,24(5):936~938
    [37] 黄红丽,曾光明,黄国和等.堆肥中木质素降解微生物及其对腐殖质形成作用[J].中国 生物工程杂志,2004,24(8):39~31
    [38] 戴芳,曾光明,吴小红.生物表面活性剂在农业废物好氧堆肥中的应用[J].环境科学,2005,26(4):181~185
    [39] Amann R I, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev., 1995, 59(1): 143~169
    [40] Torsvik V, Sorheim R, Goksoyr J. Tota. bacterial diversity in soil and sediment communities-a review[J]. J. Ind. Microbiol Biotech., 1996, 17(3): 170~178
    [41] Ward D M, Bateson M M, Weller R, et al. Ribosomal rRNA analysis of microorganisms as they occur in nature[J]. Adv Microb Ecol, 1992, 12:219~287
    [42] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proc Natl Acad Sci USA, 1989, 86 (8): 2766~2770
    [43] Schwieger F, Tebbe C C. A new approach to utilize PeR-single-strand-conformation-polymorphism for 16S rRNA gene-based microbiol community analysis[J]. Applied and Environmental Microbiology, 1998, 64:4870~4876
    [44] Binder T, Berg T, Siegert W, et al. PCR-SSCP: Nonradioisotopic detection with biotinylated primers and streptavidin-alkaline phosphatase conjugate[J]. Biotechniques, 1995, 18(5): 780~781
    [45] 赵阳国,任南琪,王爱杰等.SSCP技术在微生物群落监测中的应用[J].中国给水排放,2004,20(11):25~28
    [46] Avaniss-Aghajani, E K Jones, D Chapman, et al. A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences[J]. BioTechniques, 1994, 17(1): 144~149
    [47] Bruce K. D. Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling[J]. Applied and Environmental Microbiology, 1997, 63:4914~4919
    [48] Lee D H, Y G Zo, S J Kim. Nonradioactiwe method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism[J]. Appl Environ Microbiol, 1996, 62:3112~3120
    [49] Liu W T, T L Marsh, H Cheng, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Appl Environ Microbiol, 1997, 63:4516~4522
    [50] Massol-Deya A A, D A Odelson, R F Hickey, et al. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis [ARDRA][A]. In: A D Akkermans, et al, (eds). Molecular microbial ecology manual[C]. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1995, 1~8
    [51] Muyzer G A, E C de Waal, A G Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993, 59:695~700
    [52] Terence L Marsh, Paul Saxman, James Cole, et al. Terminal Restriction Fragment Length Polymorphism Analysis Program, a Web-Based Research Tool for Microbial Community Analysis[J]. Applied and Environmental Microbiology, 2000, 66(8): 3616~3620
    [53] 卢莉琼,徐亚同,梁俊.分子生物学方法在微生物多样性及微生物生态研究中的应用[J].应用与环境生物学报,2004,10(6):826~830
    [54] Marek K Sliwinskil, Robert M Goodman. Spatial Heterogeneity of Crenarchaeal Assemblages within Mesophilic Soil Ecosystems as Revealed by PCR-Single-Stranded Conformation Polymorphism Profiling[J]. Applied and Environmental Microbiology, 2004, 70(3): 1811~1820
    [55] Frederique Duthoit, Jean-Jacques Godon, Marie-Christine Montel. Bacterial Community Dynamics during Production of Registered Designation of Origin Salers Cheese as Evaluated by 16S rRNA Gene Single-Strand Conformation Polymorphism Analysis[J]. Applied and Environmental Microbiology, 2003, 69 (7): 3840~3848
    [56] Frank Schwieger, Christoph C Tebbe. Effect of Field Inoculation with Sinorhizobium meliloti L33 on the Composition of Bacterial Communities in Rhizospheres of a Target Plant (Medicago sativa) and a Non-Target Plant (Chenopodium album)—Linking of 16S rRNA Gene-Based Single-Strand Conformation Polymorphism Community Profiles to the Diversity of Cultivated Bacteria[J] Applied and Environmental Microbiology, 2000, 66(8): 3556~3565
    [57] Achim Schmalenberger, Frank Schwieger, Christoph C Tebbe. Effect of Primers Hybridizing to Different Evolutionarily Conserved Regions of the Small-Subunit rRNA Gene in PCR-Based Microbial Community Analyses and Genetic Profiling[J]. Applied and Environmental Microbiology, 2001, 67(8): 3557~3563
    [58] 赵阳国,任南琪,王爱杰等.SSCP技术解析硫酸盐还原反应器中微生物群落结构[J].环境科学,2005,26(4):171~176
    [59] Myran W, ADC Fluit, Jan V. Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation poly-morphism analysis of the 16S rRNA gene[J]. J Clin Microbiol, 1995, 33(10): 2601~2606
    [60] Sabine Peters, Stefanie Koschinsky, Frank Schwieger, et al. Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes[J]. Applied and Environmental Microbiology, 2000, 66(3): 930~936
    [61] Pascal Peu, Hubert Brugere, Anne-Marie Pourcher, et al. Dynamics of a Pig Slurry Microbial Community during Anaerobic Storage and Management[J]. Applied and Environmental Microbiology, 2006, 72 (5): 3578~3585
    [62] Delbes C, Moletta R, Godon J J. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem[J]. FEMS Microbiol Ecol, 2001, 35:16~26
    [63] Iwamoto T, Sonobe T, Hayashi K. Novel algorithm identifies species in a polymycobacterial sample by fluorescence capillary electrophoresis-based single-strand conformation polymorphism analysis[J]. J Clin Microbiol, 2002,40: 4705~4712
    [64] 吴银宝,廖新第,汪植三等.猪粪堆肥微生物及其对堆制腐熟的影响[J].家畜生态,2003,23(4):34~38
    [65] White T J, T Burns, S Lee, et al. AmplLification and direct sequencing of fungal ribosomal genes for phylogenetics[A]. In: M A Innis, D H Gelfand, J J Sninsky, et al, (eds). PCR protocols. A guide to methods and applications[C]. San Diego, Calif, Academic Press, 1990, 315~322
    [66] Haug R T. The practical handbook of compost engineering[M].New York, Lewis Publisher, 1993
    [67] 李国健,钱新东.堆肥腐熟度指标的探讨[J].城市环境与城市生态,1990,3(2):27~30
    [68] Bishop P L , Godfrey C. Nitrogen transformation during sludge composting[J]. BioCycle, 1983, 24:34~39
    [69] Ekling Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments, Ⅱ: nitrogen turnover and losses[J]. Biores Technol, 2000,74:125~133
    [70] 杨国清.固体废物处理工程[M].北京,科学出版社,2000
    [71] 吴正松,彭绪亚,蔡华帅等.微生物在堆肥化中的应用研究[J].重庆建筑大学学报,2005,27(1):92~96
    [72] Schneiderbauer A , Sanderman H , Ernst D. Isolation of functional NNA from plant tissues rich in phenolic compounds[J].Analytical Biochemisty, 1991,197:91~95
    [73] Udy G B, Evans M J. Microplate DNA preparation, PCR screening and cell freezing for gene targeting in embryonic-stem cells[J]. BioTechniques,1994,17: 887~894
    [74] Purohit H J, Kapley A, Moharikar A A, et al. A novel approach for extraction of PCR—com patible DNA from activated sludge samples collected from different biological effluent treatment plants[J]. Journal of Microbiological Methods, 2003, 52:315~323
    [75] 施苏华,章群,陈月琴等.一种简易的植物核酸提取方法—从干叶和新鲜叶中快速提取RNA和DNA[J].中山大学学报(自然科学版),1996,35(2):103~105
    [76] 钟华,赖旭龙,魏荣平等.一种从大熊猫粪便中提取DNA的改进方法[J].动物学报,2003,49(5):670~674

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700