城镇生活垃圾与污水厂污泥一体化处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市生活垃圾量的快速递增和污水处理厂污泥产量的不断增长,将其无害化和资源化处理与处置迫在眉睫。论文在全面综述当前国内外生活垃圾和污水处理厂污泥处理与处置技术时,发现将二者分开单独处理与处置,过程繁琐,在一定程度上增加了处理和管理的难度,限制了垃圾和污泥的资源化;认为开发一种新型的将生活垃圾与污水处理厂污泥在同一反应器中一体化处理,并充分利用垃圾产热为污泥厌氧消化提供温度条件,不仅节约用地,便于管理,而且还节约能源,产生新能源。为此,论文在污泥浓缩消化一体化反应器的基础上,开发了城市生活垃圾与污水处理厂污泥一体化处理反应器。主要研究内容包括:以污泥浓缩消化一体化反应器TISTD为基础,结合垃圾厌氧/好氧堆肥处理原理设计开发了一体化处理城镇生活垃圾与污水处理厂污泥的反应器;以餐厅厨房垃圾及污水处理厂二沉池的污泥为研究对象对反应器进行了优化;利用优化反应器一体化处理了厨余垃圾和污水处理厂二沉池污泥,并对优化反应器的处理效果进行了分析。取得的主要成果有:
     ①以污泥浓缩消化一体化反应器TISTD为基础,结合垃圾堆肥处理原理提出反应器设计的思路及设计要点,依照小城镇生活垃圾实际产生量当中有机质的含量与相同规模的小城镇污水处理厂污泥产生量的比值确定了反应器垃圾堆肥仓与污泥浓缩消化仓的体积比(1:1),反应器有效容积为440L,污泥仓设计投配率30%,垃圾仓每次添加新鲜垃圾40kg,垃圾处理采用厌氧发酵的方式。
     ②试验考察了反应器在启动阶段的运行状况,结果表明:在整个试验过程中,反应器各部分的温度变化趋势基本一致,但是两仓的温度均较低;垃圾仓一直为酸性较强的环境,虽然产生较多的气体(最大25L/d)能为污泥仓补充搅拌用气体,但垃圾发酵周期长;污泥仓同样出现了较严重的酸化现象,有机质去除效果差,VS/TS仅从0.4~0.8降为0.3~0.45,VSS去除率也只在0.18~0.25之间。说明反应器持续运行状况不理想。
     ③根据反应器存在的不足,在对反应器运行效果充分分析的基础上对反应器进行了优化:通过热平衡方程的计算将垃圾仓与污泥仓的容积比确定为5:1,将两仓之间的隔板改为PP板,反应器外加保温层。优化反应器总的有效容积为710L,其中垃圾仓600L,采用好氧堆肥方式,垃圾仓将污泥浓缩消化仓完全包围住,增加了气体除臭系统。
     ④通过多次试验对优化反应器的运行状况进行了考察,结果表明:污泥仓温度的变化曲线趋势与垃圾仓的一致,污泥仓的温度平均低于垃圾仓10℃左右,垃圾仓最高温度达到50℃,污泥仓的温度在污泥厌氧消化的适宜温度范围内;反应器pH变化范围不大,在启动1周后基本上在中性左右波动;污泥仓VS/TS平均下降了32.2%,含水率平均下降了1.43%,在污泥仓在反应器启动的20~30天时,产气量渐趋稳定,日产气量为15L左右,排泥比阻为7.2×1011m/kg~7.9×1011m/kg;说明反应器运行平稳,污泥仓对污泥浓缩消化的效果要优于垃圾仓对垃圾的处理效果;除臭系统对反应器运行过程中产生的臭气除臭效果良好。
     ⑤优化反应器的垃圾仓中的纤维素酶和蛋白酶的活性波动较大,但污泥仓中的蛋白酶的活性和辅酶F420浓度在分别在反应器启动的第3天和第5天达到峰值,并一直处于相对稳定的状态。
     ⑥反应器中的垃圾和污泥DNA的PCR扩增图谱条带较明显、亮度较高,无明显拖尾和RNA干扰现象,说明系统中垃圾和污泥微生物含量丰富。在反应器运行的不同时期,垃圾、垃圾渗滤液和污泥中TGGE图谱具有多个条带,说明微生物种群呈多样性分布,表明反应器在运行过程中能维持多种微生物的存在,能够承受高冲击负荷。泳带条带显示,污泥样品生物多样性最好。
     研究证实将城市生活垃圾和污水处理厂污泥置于同一反应器一体化处理简单可行,研究成果为进一步优化反应器并最终推动此反应器在小城镇实践具有重要的意义。
With the rapid growth of the domestic garbage and the continuous increase in the sewage sludge in our country, the disposal to make them harmless resources is very urgent. When the current techniques in the domestic garbage and sewage sludge treatment were overall summarized, it was found that the complex treatment process would to some extent increase the difficulty of disposal and management and limit the resources utilization of the garbage and sludge if we treated them separately. It is considered that an integration reactor for coordination treatment of domestic garbage with sewage sludge which could provide the temperature condition for the sludge anaerobic digestion with the heat produced by the garbage could not only save lands and be easy to manage, but also save energy and produce new energy. Therefore, upon the base of the TISTD reactor, the development of an integration reactor for coordination treatment of domestic garbage with sewage sludge was introduced in this paper. The main research content included: On the base of TISTD reactor and combining the theory of garbage aerobic/anaerobic treatment, an integration reactor for coordination treatment of domestic garbage with sewage sludge was designed and developed; By taking the kitchen waste and secondary sludge as study objects, the reactor was optimized; The optimized reactor was used to treat domestic garbage in coordination with secondary sludge and the disposal effect was analyzed. The main achievements included:
     ①On the base of the TISTD reactor and combining the theory of waste compost treatment, the design ideas and key points of the reactor were proposed. According to the ratio of actual volume of garbage production in the small town and secondary sludge production of wastewater treatment plant in the same scale town, the volume ratio of the waste compost tank and the TISTD tank was identified (1:1). The effective volume of the reactor is 440L. The design dosage rate is 30%.The sludge phased cultivation method was employed to start up the reactor at the dosage rate of 10%. The anaerobic fermentation method was adopted for the garbage treatment.
     ②The status of the reactor during the start stage was investigated through experiment. The results showed: every part of the reactor showed no significant difference in the changing trend of the temperature during the entire experiment. But the temperature of the two tanks was relatively low. The garbage tank was always in the relatively strong acid environment. Though the garbage tank produced a lot of gas (25L/d at most) which can supplement the stir gas, the period of garbage fermentation was very long. The sludge tank also emerged serious acidification phenomenon. The treatment effect of the organic matter was not well. VS/TS only decreased from 0.4-0.8 to 0.3-0.45 and the removal rate of VSS remains in 0.18-0.25 which showed that the sustained running situation of the reactor was not very well.
     ③According to the shortages of the reactor and on the basis of full analysis on the running effect of the reactor, the reactor was optimized. Through heat equilibrium calculation, the volume ratio of the waste compost tank and the TISTD tank was determined as 4:1.The material of the baffle between the two tanks was changed to polypropylene (PP). Insulation was also added in the exterior of the reactor. The effective volume of the optimized reactor is 710 and that of the garbage tank is 600L.The anaerobic fermentation method was adopted. The TISTD tank is fully surrounded by the garbage tank. The deodorization system was also added.
     ④Through a lot of experiments, the running status of the optimized reactor was investigated. The results showed: the trend of temperature curve of the TISTD tank was consistent with that of the garbage tank. Compared with the garbage tank, the average temperature of the TISTD tank was about 10℃lower. The peak temperature of the garbage tank could achieved 50℃. The temperature of the TISTD tank was in the range which was very suitable for the anaerobic digestion. The pH of the reactor didn’t change significantly, which fluctuated up or down from 7.0 a week after start. In the TISTD tank, VS/TS was reduced 32.2% on average and the moisture content was decreased 1.43% on average.20-30 days after the start of the TISTD tank, the gas production gradually tended to stabilization, which was about 15L/d. The specific resistivity of the discharging sludge was 7.2×1011 m/kg~7.9×1011 m/kg; The results illustrated that the reactor were running stably and the treatment effect of the TISTD tank was better than that of the garbage tank. The deodorization effect of the deodorization system against the stench which was produced during the reactor running was good.
     ⑤The cellulase and protease activities in the garbage tank of the optimized reactor fluctuated a lot. However, the protease activities and the concentration of coenzyme F420 in the TISTD tank achieved peak value in the third day and fifth day respectively after the start and both of them remained stable in the next days.
     ⑥The bands of the PCR-TGGE patterns of the garbage and sludge in the reactor were very clear and bright and had no obvious trail and RNA interference phenomenon, which illustrated the system contained a large number of microorganisms. In different running stage, the TGGE patterns of garbage,leachate and sludge contained diverse bands which demonstrated a higher degree of diversity in the microorganism distribution. It showed that diverse microorganisms could exist during the reactor running to ensure the TISTD has a strong resistance to shock load. The TGGE bands showed that the sludge tank had the highest degree of microorganism diversity.
     The research demonstrated that it was simple and feasible to treat domestic garbage in coordination with sewage sludge in the same reactor. This research finding is very significant for the further optimization of the reactor and the promotion of the reactor in small towns.
引文
[1]刘大义,张扣.城镇生活垃圾优化处理技术研究[J].环境工程, 2005, 23(3): 57-59.
    [2]刘宏远.生物反应器填埋场系统的仿真研究[D].杭州:浙江大学, 2003.
    [3]付融冰,杨海真,甘明强.中国城市污水厂污泥处理现状及其进展[J].环境科学与技术, 2004, 27(5): 108-110.
    [4]袁霄梅,黄广霞,李光.我国生活垃圾处理现状及对策[J].环境卫生工程, 2009, 17(2): 31- 32.
    [5]刘文海,李秀金.利用生物反应器处理生活垃圾试验研究[J].环境工程, 2009, 27 (增刊) : 356-360.
    [6]王洪臣.污泥处理处置设施的规划建设与管理[A]. 2010年中国城镇污泥处理处置技术与应用高级研讨会[C], 2010. 1-8.
    [7]胡锋平,朱自伟,李伟民等.城市污水处理厂污泥浓缩工艺的应用与发展趋势[J].重庆建筑大学学报, 2004, 26(5): 124-127.
    [8]王永霞,樊建军,莫卫松.超声波技术在污泥处理中的应用[J].重庆建筑大学学报, 2007, 29(3): 91-94
    [9]王星,赵天涛,赵由才主编.污泥生物处理技术[M].北京:冶金工业出版社, 2010.
    [10]李季,吴为中.国内外污水处理厂污泥产生、处理及处置分析[M].北京:化学工业出版社, 2003.
    [11]张峥嵘,黄少斌.污水污泥肥料化利用的分析与研究[J].化肥工业, 2007, 34(1): 26-31
    [12]杭世珺,陈吉宁,郑兴灿,王凯军等.污泥处理处置的认识误区与控制对策[J].中国给水排水, 2004, 20(12): 89-92.
    [13]聂永丰主编.三废处理工程技术手册.固体废物卷[M].北京:化学工业出版, 2000.
    [14]刘京媛,徐海云.我国城市生活垃圾分类收集与收费方式探讨[J].环境卫生工程, 2004, 12(1): 23-27.
    [15]张乐观,朱新锋.我国生活垃圾的处理现状及发展趋势[J].工业安全与环保, 2006, 32(9): 37-39.
    [16]朱金城.开拓我国城市食杂性有机生活垃圾资源化综合利用产业化的道路[J].再生资源研究. 2001, (4): 22-26.
    [17]廖利编著.城市垃圾清运处理设施规划[M].北京:科学出版社, 1999.
    [18]李国学,张福锁编著.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社, 2000.
    [19]国家环境保护总局污染控制司.城市固体废物与处理处置技术[M].北京:中国石化出版社, 2000.
    [20]翁焕新.污泥无害化、减量化、资源化处理新技术[M].北京:科学出版社, 2009.
    [21]董保澎.国内外城市生活垃圾处理概况及我国垃圾处理发展趋势.第四届全国固体废物处理与资源综合利用技术交流会论文集(一), 2001, 8-10.
    [22]郝晓地,蔡正清,甘一萍.剩余污泥预处理技术概览[J].环境科学学报, 2011, 31(1): 1-12.
    [23]朱兰保,盛蒂.我国城市生活垃圾处理现状及其对策[J].环境卫生工程, 2006, 14(3): 35-39.
    [24]魏自民,席北斗,赵越.生活垃圾微生物强化堆肥技术[M].北京:中国环境科学出版社, 2008.
    [25]李定龙,戴肖云,赵宋敏等. pH对厨余垃圾厌氧发酵产酸的影响[J].环境科学与技术, 2011, 34(4): 125-128.
    [26]杨延梅,张相锋,杨志峰等.厨余好氧堆肥中的氮素转化与氮素损失研究[J].环境科学与技术, 2006, 29(12): 54-56.
    [27]杨延梅,杨志峰,张相锋等.底物含氮量对厨余堆肥氮素转化及其损失的影响研究[J].环境科学学报, 2007, 27 (6) : 993– 999.
    [28]张玉成,朱建林,李兵.太阳能-生物反应器处理厨余垃圾的研究[J].安徽农业科学, 2011, 39(1): 588-590.
    [29]彭绪亚,丁文川,吴正松等.垃圾渗出液微生物循环强化培养菌剂在堆肥中的应用[J].环境科学学报, 2005, 25(7): 959- 964.
    [30]彭绪亚,蔡华帅,刘国涛等.通风模式对垃圾渗出液微生物循环接种强化堆肥的影响[J].农业环境科学学报, 2006, 25(1): 254-257.
    [31]胡春明,姚波,席北斗等.堆肥复合功能菌剂的优化组合研究[J].环境科学研究, 2010, 23(8): 1039-1043.
    [32]姚波,席北斗,魏自民等.不同接种方式对生活垃圾堆肥水溶性有机物荧光特性影响[J].光谱学与光谱分析, 2011, 31(3): 714-718.
    [33]党秋玲,刘驰,席北斗等.生活垃圾堆肥过程中细菌群落演替规律[J].环境科学研究, 2011, 24(2): 236-242.
    [34] A. J. García, M. B. Esteban, M. C. Márquez, et al. Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs[J]. Waste Management, 25(2005): 780–787.
    [35] Hazel B. Gonzales, Hideki Sakashita, Yoichi Nakano, et al. Food waste mineralization and accumulation in biological solubilization and composting processes[J]. Chemosphere, 79 (2010): 238–241.
    [36] Somjai Karnchanawong, Nakorn Suriyanon. Household organic waste composting using binswith different types of passive aeration[J]. Resources, Conservation and Recycling, 55 (2011): 548-553.
    [37] Wenming Zong, Ruisong Yub, Peng Zhang, et al. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation[J]. biomass and bioenergy, 33(2009)1458–1463.
    [38] P. A. Caton, M. A. Carr, S. S. Kim, M. J. Beautyman. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study[J]. Energy Conversion and Management, 51(2010): 1157-1169.
    [39] Banjarata Jolanun, Sirintornthep Towprayoon. Novel bulking agent from clay residue for food waste composting[J]. Bioresource Technology, 101 (2010): 4484-4490.
    [40]王绍文,秦华主编.城市污泥资源利用与污水土地处理技术[M].北京:中国建筑工业出版社, 2007.
    [41] Joseph Robinson, William R Knocke. Use of Dilatometric and Drying Techniques for Assessing Sludge Dewatering Characteristics[J]. Water Environment Research, 1992, 64 (1): 60-68.
    [42] Arne Vesilind P. The Role of Water in Sludge Dewatering[J]. Water Environment Research, 1994, 66(1): 4-11.
    [43] Carberry J B, Englande A J. Sludge Characteristics and Behavior[M]. Boston: Martinus Nijhoff Publishers, 1983.
    [44] Moller U K. Effects of Sludge Conditioning with Lime on Dewatering[M]. WPCF, 1966.
    [45] Enksson L, Alm B. Study of Flocculation Mechanism by Observing Effects of a Complexing Agent on Activated Sludge Properities[J]. Water Science and Technology, 1991, 24 (7): 21-28.
    [46] Elisabeth Neyens, Jan Baeyens, Raf Dewil, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, 106B: 83-92.
    [47]石吉,邵青.城市污水污泥的处理利用及发展[J].中国资源综合利用, 2004, 02: 15-18.
    [48]程洁红,张善发,陈华等.自热式高温好氧消化的污泥稳定化中试[J].中国给水排水, 2005, 21(11): 18-22.
    [49] Lapara T M, A1leman J E. Thermophilic aerobic biological wastewater treatment[J]. Wat Res, 1999, 33(4): 895-908.
    [50] Ugwuanyi J O, Harvey L M, Mcneil B. Effect of aeration rate and waste load on evolution of vollatile fatty acids and waste stabilization during thennophilic aerobic digestion of a model high strength agricultural waste[J]. Bioresource Technology, 2005, 96(6): 721-730.
    [51] Ugwuanyi J O, Harvey L M. Mcneil B. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of modelhigh strength agriculture waste[J]. Bioresource Technology, 2005, 96(6): 707-719.
    [52] Skjelhaugen O J. Thermophilic aerobic reactor for processing organic liquid Wastes[J]. wat Res, 1999, 33(7): 1593-1602.
    [53] Haner A, Mason C A, Hamer G. Death and lysis during aerobic ther-mophilic sludge treatment: characterization of recalcitrant products[J]. Wat Res, 1994, 28(4): 863-869.
    [54] JINY, LIYX, CHENTB, etal. Strategy of soil environmental protection for new century (in Chinese) [J]. Chinese Agri-culture Technology, 2001, 18 (1): 28-32.
    [55]尹军,陈雷,王鹤立.城市污水的资源再生及热能回收利用[M].北京:化学工业出版社, 2003.
    [56] M. Inguanzo, On the pyrolysis of sewage sludge: he influence of pyrolysis conditions on solid, liquid and gas f ractions[J]. Jour nal of Analytical and Applied Pyrolysis, 2002 (63) : 209-222.
    [57] Brian A. Bolto. Soluble polymers in water purification. Prog. Polym. Sci. , 1995, 20 (6): 1014 -1016.
    [58]张辰主编.污泥处理处置技术与工程实例[M].北京:化学工业出版社, 2006.
    [59]昝元峰,王树众等.污泥处理技术的新进展[J].中国给水排水, 2004, 20(6): 26-28.
    [60] Alexandre Valoand soon. Thermal, Chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. [J]. ChemTechnol Biotechnol, 2004, 79: 1197-1203.
    [61] PAN S C, LN C C, TSENG D H. Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources[J]. Conservation and Recycling, 2003, 39 (1): 79-90.
    [62] ZHAI Y B, WEIX X, ZENG GM, et a l. Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions[J]. Separation and Purification Technology, 2004, 38 (2): 191 -196.
    [63] Mulin Cai, Junxin Liu, Yuansong Wei. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environmental Science& Technology. 2004, 38(11): 3195.
    [64]杨晓奕,蒋展鹏.湿式氧化—两相厌氧消化处理剩余污泥[J].中国给水排水, 2003, 19(4): 48-51.
    [65]马娜,陈玲.城市污泥资源化利用研究[J].生态学杂志, 2004, 23(1): 86-89.
    [66] Yoon, Seong-Hoon, Lee Sangho. Critical operational parameters for zero sludge production in biological Wastewater treament plant processes combined with sludge disintegration[J]. Water Research, 2005, 39: 3738-3754.
    [67] Lutz H, Romeiro G A, Damasceno R N. Low temperature conversion of some Brazilian municipal and industrial sludges[J]. Bioresource Technology, 2002, 7 (1): 103-107.
    [68]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备, 2003, 4(1): 44-51.
    [69]程丽华,倪福祥.剩余活性污泥处理的清洁生产方向[J].青岛理工大学学报, 2006, 27(1): 105-109.
    [70] WILSONS, STOFFLELLA P. Compost amended media for growth and development of Mexican Heather[J]. Compost scienceand ulitization, 2001, 9 (1): 60-64.
    [71]郑镇,刘彬,虞旭.碱—热法预处理改善污泥厌氧消化性能的试验研究[J].水资源与水工程学报, 2011, 22(3): 110-112.
    [72]何品晶,李磊,郝丽萍,等.气体分离循环对高温厌氧消化过程的影响[J].中国环境科学, 2011, 31(2): 245-252.
    [73]赵田甜,陆少鸣,陶光华.污泥加热预处理对中温厌氧消化的影响[J].环境工程学报, 2008, 2(9): 1241-1246.
    [74]姚炜婷,孙水裕,郑莉,等.超声波-缺氧/好氧消化过程污泥胞外聚合物和溶出物的变化研究[J].环境科学, 2011, 32(6): 1665-1672.
    [75]马俊伟,曹芮,周刚,等.浓度对高固体污泥热水解特性及流动性的影响[J].环境科学, 2010, 31(7): 1583-1589.
    [76]刘和,刘晓玲,张晶晶,等.酸碱调控污泥厌氧发酵实现乙酸累积及微生物种群变化[J].微生物学报, 2009, 49 (12): 1643-1649.
    [77]王晋,刘和,许科伟,等.污泥厌氧消化过程中产氢产乙酸/同型产乙酸协同产酸研究[J].环境科学, 2011, 32(6): 1673-1678.
    [78] A. Bou?ková, M. Dohányos, J. E. Schmidt, et al. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge[J]. Water Research, 39 (2005): 1481-1488.
    [79] Paresh H. Rathod, Jyotindra C. Patel, M. R. Shah, et al. Recycling gamma irradiated sewage sludge as fertilizer: A case study using onion (Alium cepa) [J]. Applied Soil Ecology, 41(2009): 223–233.
    [80] A. G. Liew Abdullah, A. Idris, F. R. Ahmadun, et al. A kinetic study of a membrane anaerobic reactor (MAR) for treatment of sewage sludge[J]. Desalination, 183(2005)439-445.
    [81] Nuno Miguel Gabriel Coelho, Ronald L. Droste, Kevin J. Kennedy. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge[J]. Water Research, 45(2011): 2822-2834.
    [82] Lise Appels, Jan Degrève, Bart Van der Bruggen, et al. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion[J]. Bioresource Technology, 101 (2010) : 5743-5748.
    [83] Herto Dwi Ariesyady, Tsukasa Ito, Satoshi Okabe. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Research,41(2007): 1554–1568.
    [84]何强,郑伟青,刘鸿霞,杨巍,翟俊.污泥同时浓缩消化新型反应器的开发研究[J].环境工程学报, 2009, 11 (3) : 2077-2081.
    [85]杜俊,何强,刘鸿霞,杨皋伶. ICSTD反应器处理污泥的启动试验研究[J].环境工程学报, 2009, 8(3): 1429-1432.
    [86]刘鸿霞,何强,李进丰,杜俊.改良型污泥浓缩消化反应器的试验研究[J].中国给水排水, 2009, 25(11): 63-65.
    [87]何强,杨巍,刘鸿霞,郑伟青,翟俊.两相一体式污泥浓缩消化反应器的性能研究[J].中国给水排水, 2009, 25(11): 15-17, 21.
    [88]刘鸿霞,何强,赵刘伟,韩易.浓缩消化一体化反应器处理污泥的试验研究[J].环境工程学报, 2009, 3(9): 1663-1666.
    [89]胡纪萃.试论内循环厌氧反应器[J].中国沼气, 1999, 17(2): 3-6.
    [90]何强,王祥勇.新型内循环污泥浓缩消化反应器[J].中国给水排水, 2005, 21(4): 5-8.
    [91]戴前进,李艺,方先金.城市污水处理厂剩余污泥厌氧消化试验研究[J].中国给水排水, 2006, 22(23): 95-98.
    [92]任南琪,王爱杰著.厌氧生物技术原理与应用[M].北京:化学工业出版社, 2004.
    [93]胡纪翠,顾夏生.废水厌氧处理理论与技术[M].北京:中国建筑工业出版社, 2003.
    [94]黄亚军.重庆市城市生活垃圾现状及综合处理探讨[J].环境卫生工程, 2007, 15(6): 54-56.
    [95]国家环境环保总局. 2005年中国环境公报[R].北京:国家环境环保总局, 2006.
    [96]室外排水设计规范GB50101-2005.北京:中国计划出版社, 2005.
    [97]杨国清主编.固体废物处理工程[M].北京:科学出版社, 2000.
    [98]代以春,徐庆元,等.厌氧消化技术在生活垃圾堆肥处理中的应用[J].环境卫生工程, 2005, 13(1): 50-52.
    [99]郑伟青.基于FLUENT模拟的两相一体式污泥浓缩消化反应器(TISTD)流态及其优化研究[D].重庆大学, 2008.
    [100] Robert C W, David R L. CRC Handbook of Chemistry and Physics[M]. Boca Raton, Florida: CRC Press, Inc. , 1990.
    [101]闵航.厌氧微生物学[M].杭州:浙江大学出版社, 1993.
    [102]陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社, 1990.
    [103]黄春花.论我国城市垃圾处理的现状与对策[J].生态与环境, 2010: 144.
    [104] Cigdem Eskicioglu, Kevin J. Kennedy and Ronald L. Droste. Characterization of soluble organic matter ofwaste activated sludge before and after thermal p retreatment[J]. Water Research, 2006, 40: 3725-3736.
    [105]张毅,王伟,唐秋萍,朱伟.污泥中温厌氧消化的实验研究[J].环境卫生工程, 2011, 19(1): 43-45.
    [106]刘树根,朱南文,楼紫阳,等. 2010.污泥高温好氧消化过程的生物多样性分析[J].环境科学学报, 30 (5) : 990– 995.
    [107] Ugwuanyi J O, Harvey L M, McNeil B. Diversity of thermophilic populations during thermophilic aerobic digestion of potato peel slurry[J]. Journal of Applied Microbiology, 2008, 104: 79-90.
    [108]杨洋,左剑恶,沈平,顾夏声.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学, 2006, 27(4): 691-695.
    [109]王倩,邱忠平,冯猛.垃圾降解过程中纤维素酶测定条件优化[J].皮革科学与工程, 2010, 20(6): 17-19.
    [110]程云环,桑树勋,张兴,曹丽文.生活垃圾模拟填埋条件下水解酶活力及产气研究[J].东北林业大学学报, 2007,35(5): 70-73.
    [111]沈东升.生活垃圾填埋生物处理技术[M].北京:化学工业出版社,2003.
    [112]陈琼华主编.生物化学[M].北京:人民卫生出版社, 1995.
    [113]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社, 1988.
    [114] Corell R L, Harch B D, Kirkby C A, et al. Statistical analysis of reduction in tensile strength of cotton strips as a measure of soil microbial activity[J]. J Microbiol Meth, 1997, 31: 9-17.
    [115] Semenov A M, Batomunkueva B P, Nizovtseva DV, et al. Method of determination of cellulose activity in soils and in microbial cultures, and its calibration[J]. J Microbiol Meth, 1996, 24: 259-267.
    [116]唐一,胡纪萃.辅酶F420作为厌氧污泥活性指标的研究[J].中国沼气, 1990, 8(1): 11-15.
    [117]孙宝盛,张斌,吴卿,金敏.应用PCR-DGGE技术解析MBR中微生物群落多样性[J].天津大学学报, 2008, 41(3): 356-361.
    [118]叶姜瑜. SUFR系统中微生物多样性及稳定性的试验研究[D].重庆大学, 2007.
    [119]李永峰,那冬晨,魏志刚,赵桃主编.环境分子生物学教程[M].上海:上海交通大学出版社, 2009.
    [120] Muyzer G, Waal E C D, Uitterlinden A G. Profiling pf complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993, 59: 695-700.
    [121] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Curr Opin Microbiol, 1999, 2: 317-322.
    [122] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis in microbial ecology[J]. Antonie van Leeuwenhoek, 1998, 73: 127-141.
    [123] Wintzingerode F V, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis[J]. FEMS Microbial Rev, 1997, 21: 213-229.
    [124] Theron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure in natural environments[J]. Crit Rev Microbiol, 2000, 26: 37-57.
    [125] MacNuaghton S J, Stephen J R, Venosa A D, et al. Microbial population changes during bioremediation of an experimental oil spill[J]. Appl Environ Microbiol, 1999, 65: 3566-3574.
    [126] Gelsomino A, Kejizer-Wolters A C, Cacco G, et al. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis[J]. J Microbiol Methods, 1999, 38: l-15.
    [127] Maarit-Niemi R, Heiskanen I, Wallenius K, et al. Extraction and purification of DNA in rhizosphere soil smaples for PCR-DGGE analysis of bacterial consortia[J]. J Microbiol Methods, 2001, 45: 155-165.
    [128] Ercolini D. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food[J]. J Microbiol Methods, 2004, 56: 297-314.
    [129] Zhnag X L, Yan X, Goa P P, et al. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system[J]. J Microbiol Methods, 2005, 60: l-11.
    [130] (美)K. B.穆里斯, F·费里, R·吉斯,等著. PCR聚合酶链式反应M].北京:科学出版社, 1997.
    [131] Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenoldegrading bacteria in activated sludge[J]. Appl Environ Microbiol, 1998, 64(11) : 4396-4402.
    [132]叶姜瑜,丁维,何强,孙兴福. TISTD反应器中的菌群结构及生态变化[J].土木建筑与环境工程, 2011, 33(1):147-152。
    [133]王云仙.热泵水源水体中藻类和细菌群落的变化[D].重庆大学,2010.
    [134]周玉兰,杨文月.不同显影液温度对聚丙烯酰胺凝胶银染结果的影响初探[J].民营科技, 2008, 8:27.
    [135] Deliphthay J R, Enzinger C, Johsen K, et al. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis[J]. Soil Biology & Biochemistry, 2004, 36(10): 1607-1614.
    [136] Stach J E, Bathe S, Clapp J P, et al. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods[J]. FEMS Microbiol Ecol, 2001, 36(23): 139-151.
    [137]沈同,王镜岩主编.生物化学[M].北京:高等教育出版社, 1990.
    [138]戚以政,汪叔雄编著.生化反应动力学与反应器[M].北京:化学工业出版社, 1999.
    [139]张嗣良,储炬编著.多尺度微生物过程优化[M].北京:化学工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700