巴林石的矿物学与宝石学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴林石是中国四大名石之一,石质细润、质地光洁、色彩绚丽、种类众多,在国内外的知名度越来越高。本文通过现代测试方法对巴林石的矿物学特征、宝石学性质、岩石化学特点、矿床成因等进行了研究,使巴林石的研究进一步系统、科学、完善。
     主要矿物组成的研究表明:巴林石的主要矿物成分为高岭石族矿物,具体为较有序高岭石、较有序地开石、高岭石—地开石过渡矿物。通过计算X射线衍射分析中的结晶指数和红外吸收光谱中的A/B值,认为从高岭石~高岭石—地开石过渡矿物~地开石,结晶指数由高~低~高(即有序度由高~低~高),A/B值逐渐降低。研究中发现,当地俗称的“刚玉”的主要矿物成分为明矾石和石英,硬度较高不适做雕刻石。
     鱼子冻、水草冻、鸡血石是巴林石中的珍贵品种,经研究发现鱼子冻中的“鱼子”为硬水铝石,水草冻中的“水草”为赤铁矿和黑辰砂,鸡血石中的“血”为辰砂,巴林石中常见的黑色不透明矿物主要是黄铁矿。
     测定了巴林石的宝石学基本性质,对巴林石进行了系统的分类与命名,建议以“类别+题材”的方式对巴林石艺术品进行命名。对巴林鸡血石、福黄石、冻石、彩石、图案石分别进行了质量评价,提出了评价要素,并进行等级划分。
     颜色成因的研究,认为白色系列的巴林石,矿物成分为较纯净的高岭石族矿物,几乎不含致色元素;红色系列的巴林石为矿物颗粒间分布的赤铁矿呈色,若是较淡的粉红色,则是由于Fe和Mn类质同象替代高岭石中的Al而致色;黄色系列的巴林石,由颗粒间浸染的大量褐铁矿呈色,Fe~(3+)进入高岭石矿物的晶格中,由于电子跃迁和电荷转移,也可以产生黄色;黑色系列的巴林石是由于含有黄铁矿而致色。
     运用透光率测试、扫描电镜分析和粒度统计等测试方法对巴林石透明度的影响因素进行了研究,认为无色或浅色巴林石,其颗粒度和主要矿物组成是透明度的重要影响因素,如冻石类平均颗粒度小,矿物组成纯净单一,透明度较高。而彩色巴林石,内部含有的暗色次要矿物对透明度起主要作用,暗色矿物越多,透明度越差。
     区域岩石化学分析表明,区域火山岩为亚碱性系列的钙碱性岩系,岩石化学特征表明区域岩浆活动经过了分异结晶或同化混染作用。巴林石及围岩的稀土元素特征分析及稀土配分曲线大致相似,表明巴林石的成矿物质来源于流纹岩。
     测得了巴林石的氢氧同位素组成,认为巴林石矿床为热液蚀变型矿床,估算其成矿温度约在200℃~230℃,成矿热液来源于大气降水。巴林石的成矿与火山期后热液作用密切相关,热液活动具有多期多阶段的特点。强烈的硅化以及明矾石化、高岭石化、黄铁矿化是巴林石的重要找矿标志,辰砂化和黄铁矿化是巴林鸡血石的找矿标志。
     在巴林石矿区东部的白音沙那地区新发现了一种艳蓝色、蓝紫色的石料,经电子探针,X射线粉晶衍射、红外吸收光谱等分析,确定其主要矿物组成为蓝线石、石英和叶腊石,新发现的蓝线石岩属巴林石的一个新品种。
Balin Stone is one of the "Chinese Famous Stones " with sleek texture, flowery color and various category, and is well-known at home and aboard. This thesis has done some research on mineralogy, gemology, petrochemistry and deposit genesis of Balin Stones by modern testing methods. So the Balin Stone's study will be more systemic and scientific.
    Study on mineral composition indicates that the main mineral compositions of Balin Stone are ordered kaolinite, ordered dickite and trasitional minerals of kaolinite and dickite. The HL and A/B have been calculated to testify the structural order is higher when mineral compositions are kaolinite and dickite, but lower when it's kaolinite's and dickite's trasitional minerals. We have discovered the main mineral compositions of some samples which are called "Hard Stone" by indigene are alunite and quartz. It is too hard to be carved.
    The "roe gel", "float grass gel" and "chicken-blood stone" is rare and costly. Study on subordinate mineral indicates that the "roe" in "roe gel" is diaspore, the "float grass" in"float grass gel" is hematite and black cinnabar, the "blood" in "chicken-blood stone" is cinnabar and the black and opaque mineral in Balin Stone is mainly pyrite.
    Having mensurated the basal gemological characters, on the basis of which classified and named Balin Stone systematically and suggested to name Balin Stone artworks with "category and subject matter". Quality evaluation indicates different evaluation factors with five categories.
    Colouration mechanism is studied to explain that white Balin Stone is pure kaolinite mineral with little colorgenous elements. Lots of hematites exist in red Balin Stone and work for redness, whereas, the pink is due to the isomorphous substitution of Fe and Mn. Abundant limonites occurring in intergrain can explain the yellowness, and Fe~(3+) can enter into crystal lattice to help for yellowness by electron transition and charge transfer. Black and opaque pyrites in Balin Stone induce blackness.
    Transmissivity test, scanning electro-microscopy observation and grain size analysis are adopted to study the influencing factors of transparence. The results show that average grain size and main mineral composition are the influencing factors of transparence to light-colored Balin Stone. The smaller average grain size and the purer main mineral composition are, the better transparence is. But to chromatic Balin Stone, dark and opaque subordinate minerals are the main influencing factors of transparence.
    Analysis of regional petrochemistry shows that regional volcanic rocks belong to the cale-alka-line series of subalkaline series. Characters of petrochemistry indicate regional magma generates fractional crystallization or assimilation and contamination. REE analysis and homoplasy of chondrite-normalized REE patems of Balin Stones and its surrouding rocks indicate that rhyolite is Balin Stone's source of ore-forming materials.
    Balin Stone deposit is proved to be hydrothermal ore deposit by testing the hydrogen and oxygen isotopic compositions of Balin Stone. The ore-forming temperature is estimated
    to be from 200℃ to 230℃ and mineralizing fluid is derived from meteoric water. The mineralization associates with volcanic hydrothermal alteration which has been experiencing a long and complicated process. Silicification, alunitization, kaolinization and pyritization are the important exploration indications to Balin Stone, and cinnabaration and pyritization are the exploration indications to Balin Chicken-blood Stone.
    The dumortierite rock is cobalt blue and blue-purple, and it's a new discovery at Baiyinshana east to Balin Stone mining area. The mineralogical research was made by electronic microprobe analysis. X-ray diffraction and IR spectra to confirm it is composed of particulate quartz, dumortierite and pyrophyllite. The dumortierite rocks belong to a new category of Balin Stone.
引文
1.奥岩,陈进.缅甸各种颜色翡翠化学成分特征[J].珠宝科技,1997(4):37~40
    2.包绍华.昌化鸡血石质量评价要素之分析[J].浙江树人大学学报,2002(5):61~65
    3.包绍华.浙江昌化鸡血石的地质成因及鉴定特征[J].浙江地质,2002(1):82~86
    4.蔡国声.鉴赏鸡血石[M].福建:福建美术出版社,2001
    5.陈志强.鸡血石的鉴定[J].中国宝玉石,1992(4):14
    6.陈志强,邓燕华.鸡血石的宝石学特征及影响其质量的主要因素[J].浙江地质,1993(1):55~61
    7.陈志强,邓燕华.鸡血石的矿物成分[J].桂林冶金地质学院学报,1992(4):356~366
    8.陈涛.浙江青田石几个新品种的矿物学特征初步研究[J].岩石矿物学杂志,2004(2):186~192
    9.陈克樵,魏家秀.鸡血石与新血石原料—朱砂玉的研究[J].矿床地质,1996(增刊):105~108
    10.陈义贤,陈文寄等.辽西及邻区中生代火山岩一年代学、地球化学和构造背景[M].地质出版社,1997
    11.程敦模,赵定华,汤志凯,等.浙江昌化鸡血石宝石矿物学及其成因的研究[J].科学通报,1985(18):1409~1413
    12.迟国政.中国巴林石[J].内蒙古地质,2002(2):36~38
    13.邓燕华.宝(玉)石矿床[M].北京:北京工业大学出版社,1992
    14.丁尚南.瑰丽珍贵的田黄石—简介寿山石之王“田黄”[J].美术之友,1997(1):64~65
    15.法默V.C.(应育浦译).矿物的红外光谱[M].北京:科学出版社,1982
    16.范良明,杨永富.浙江青田石及其颜色成因的初步研究[J].成都地质学院学报,1985(2):32~44
    17.高天钧,张智亮,刘志逊.寿山石成矿地质条件及找矿前景[J].福建地质,1997,16(3):110~131
    18.郭继春,曲俊生.影响鸡血石“血”的因素及“走血”成因研究[J].珠宝科技,1996(3):52~55
    19.郭继春,张妮,朱文斌等.昌化鸡血石冻地致色机理探讨[J].岩石矿物学杂志,2004(1):54~56
    20.郭振有,张凤鸣.巴林石欣赏[M].呼和浩特:内蒙古人民出版社,2000
    21.郭发柽.寿山石雕刻生产与市场拓展之我见[J].中国集体经济,2004(2):42~45
    22.郭发柽.寿山石与寿山石文化[J].宝石和宝石学杂志.2000(4):51~54
    23.恒之.话说田黄[J].上海工艺美术,1996(2):36~37
    24.胡福居.巴林石志[M].北京:北京出版社,1989
    25.黄学雄.缅甸翡翠透明度与结构关系研究[硕士学位论文].北京:北京大学,2003
    26.黄伯龄.矿物差热分析鉴定手册[M].北京:科学出版社,1987
    27.廖宗廷,周征宇,李冉,等.鸡血石“走血”之迷新探索[J].宝石和宝石学杂志,2002(4):6~9
    28.廖宗廷,腾英,许耀明.昌化鸡血石“地”的矿物成分[J].宝石和宝石学杂志,2002(3):22~25
    29.廖宗廷,周征宇,腾英.昌化鸡血石“地”的矿物成分及其对质量的影响[J].同济大学学报(自然科学版),2004(7):897~900
    30.林嵩山.昌化、巴林鸡血石的特征及鉴定[J].宝石和宝石学杂志,2000(1):21~22
    31.林强,葛文春,孙德友等.东北地区中生代火山岩的大地构造意义[J].地质科学,1998(2):129~129
    32.李嘉靖,常继先.巴林右旗巴林石成矿地质条件及工艺美术特征[J].内蒙古地质,1983(1):61~65
    33.李玉娟.寿山石的矿物组分和特征[J].福建地质,2005(2):79~89
    34.李海负.巴林鸡血石及其工艺性能[J].珠宝科技,1994(3):52~55
    35.李海负.巴林鸡血石[J].地球,1992
    36.李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992
    37.李志群,沐蕊.中国印章石的材料与资源研究[J].中国矿业,2000(4):18~21
    38.梁业广.晶体场中第一过渡型离子轨道分裂及宝石呈色机理[J].桂林工学院学报,2002(1):21~25
    39.刘钦甫,杨晓杰,丁述理.华北晚古生代煤系高岭岩微量元素和稀土元素地球化学研究[J].地球化学,1998,3(2):196~203
    40.刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:科学出版社,1984
    41.刘钦甫,张鹏飞.华北晚古生代煤系高岭岩物质组成和成矿机理研究[M].北京:海洋出版社,1997
    42.刘作程,刘丽.鉴别鸡血石真伪的简便方法.珠宝科技,1996(6):23
    43.栾秉璈.中国宝石和玉石[M].乌鲁木齐:新疆人民出版社,1989
    44.罗大富,刘建安.泉州市火山岩型叶腊矿的成矿规律和形成机理初探[J].西部探矿工程,2005(8):79~81
    45.吕志成,段国正,郝立波等.大兴安岭中南段中生代中基性火山岩岩石学地球化学研究[J].高校地质学报,2004(6):186~198
    46.马伟幸,王蓓.微量元素对宝玉石物理性质的影响[J].广东微量元素科学,2004(11):68~70
    47.门国礼.巴林石考[M].呼和浩特:内蒙古人民出版社,1991
    48.牟莉,崔文元.昌化明矾石地鸡血石的矿物学研究[J].岩石矿物学杂志,2004(1):69~74
    49.内蒙古自治区第三地质大队.内蒙古自治区巴林右旗雅马吐叶腊石、“鸡血石”矿普查评价地质报告.1983年5月
    50.欧阳秋眉,李汉声,郭熙,等.具有白色条带的粉红色翡翠的宝石学特征.宝石和宝石学杂志,2006(9):1~3
    51.庞奖励,孙根年,陈林.黑山热液型矿床稀土元素的地球化学行为[J].中国稀土学报,1999,17(2):157~161
    52.彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982
    53.彭卓伦.蓝线石的矿物学特征[J].矿物岩石地球化学通报,1998,17(3)
    54.邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991
    55.任磊夫.粘土矿物及其研究方法[M].福建省地质局科技情报室,1982
    56.任磊夫.粘土矿物与粘土岩[M].北京:地质出版社,1992
    57.任磊夫.田黄宝石的矿物学研究[J].岩石矿物学杂志,1988(2):151~157
    58.沈喜伦,顾国华.国之珍宝—寿山石、鸡血石[J].江苏地质,2000(4):245~248
    59.施加辛.寿山石有关问题的探讨—兼谈田黄石的命名、评价[J].珠宝科技,2001(4):21~24
    60.汤德平,郑宗坦.寿山石的矿物组成与宝石学研究[J].宝石和宝石学杂志,1999(4):28~36
    61.滕瑛,廖宗廷.昌化鸡血石的成矿构造背景及成因探讨.上海地质,2001(3):43-48
    62.涂华民.宝玉石的呈色机理[J].化学教育,2006(1):6~11
    63.王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社,1989
    64.王子祥.草原瑰宝—巴林石[J].矿产与地质,1994(1):29~82
    65.王之田,张树文,孙树人,等.大兴安岭东南缘成矿集中区成矿演化特征与找矿潜力[J].有色金属矿产与勘查,1997(4):4~12
    66.王时麒,闫欣,俞宁.岫玉透明度的控制因素[J].宝石和宝石学杂质,2002(4):10~14
    67.王濮,潘兆橹,翁玲宝.系统矿物学[M].北京:地质出版社,1982
    68.闻辂,梁婉雪,章正刚,等.矿物红外光谱学[M].重庆:重庆大学出版社,1988
    69.呙敏超.中国独有的玉石—鸡血石[J].国土资源导刊,2004(5):54~55
    70.吴植民.昌化鸡血与巴林鸡血的变色原因及其比较[J].珠宝科技,1992,(2):11
    71.吴瑞华,刘琼林.Fe~(3+)在蓝宝石作用的研究[J].长春科技大学学报,2000(1):38~41
    72.武新逢,崔文元.寿山石的矿物学研究[J].岩石矿物学杂志,1999(2):186~192
    73.邢水成,吴正松.昌化鸡血石矿体赋存规律的初步探讨[J].矿山地质,1983(1):33~35
    74.徐步台,邵益生.浙江高岭土矿床氢氧同位素组成特征[J].地质研究,1985,1:18~26
    75.须藤俊男.粘土矿物[M].北京:科学出版社,1959
    76.杨雅秀.“图章石”的主要矿物成分为迪开石类矿物非叶腊石矿物[J].建材地质,1995(3):8~14
    77.杨雅秀,陶维屏,陈钦强.中国凝灰岩蚀变型高岭土矿床及矿物[J].国际交流地质学术论文集4—为二十七届国际地质大会编写,1985,4:103~112
    78.杨雅秀,张乃娴.中国粘土矿物[M].北京:地质出版社,1994
    79.杨志琼,赵杏媛,章聆.高岭石类粘土矿物的红外吸收光谱分析[J].石油实验地质,1988(3):60~65
    80.杨争火,任恩成.昭盟玛雅吐巴林石矿成因[J].内蒙古地质,1983(3):15~29
    81.杨争火,任恩成.内蒙古巴林石矿物成分研究[J].中国地质,1986(6):29~31
    82.杨文宗.浙东南主要非金属矿产成矿规律和预测[J].地质研究,1991(2):1~10
    83.杨春广,朱景田.巴林石[M].呼和浩特:内蒙古人民出版社,2002
    84.杨春广.中国国石巴林石[M].呼和浩特:内蒙古人民出版社,2004
    85.易发成.高岭土矿物的氢氧稳定同位素地球化学及其在研究高岭土矿床中的应用评价[J].建材地质,1987(4):10~16
    86.易发成,李虎杰,郑自立,等.苏州高岭土矿床地球化学及成因[M].北京:地质出版社,1996
    87.俞宁,王时麒,杨东.独山玉透明度的控制因素及成因探讨[J].珠宝科技,2004(2):48~56
    88.赵振华.铕地球化学特征的控制因素[J].南京大学学报(地球科学版),1993,15(3):271
    89.赵国龙,杨桂林,王忠.大兴安岭中南部中生代火山岩[M].北京:科学技术出版社,1989
    90.赵国良.浅议物质颜色的成因[J].湖州师专学报(自然科学版),1999,21(增刊):18~20
    91.张守亮,崔文元.巴林鸡血石的宝石矿物学研究[J].宝石和宝石学杂志,2002(3):26~30
    92.张庆麟.真假鸡血石辨识[J].上海工艺美术,1998(4):36~37
    93.张宁克.吉林省长白县热液型高岭石、地开石和珍珠石的矿物特征[J].吉林地质,1986(1):71~77
    94.张汝藩,李康,孙松茂.扫描电镜在粘土矿物研究中的应用[J].地质科学,1986(4):411—412
    95.张永北,孙世华,本间弘次,毛骞.大兴安岭南段林西地区中生代酸性岩类岩浆的混染作用[J].岩石学报,2003,19(3):369~384
    96.张蓓莉.系统宝石学[M].北京:地质出版社,1997
    97.张天乐,王宗良.中国粘士矿物的电子显微镜研究[M].北京:地质出版社,1978
    98.郑淑蕙,邵益生,徐步台.中国高岭土矿物的氢氧稳定同位素研究[J].地质出版社:国际交流地质学术论文集—为二十七届国际地质大会撰写,1985(3):213~222
    99.郑晓君.福州寿山田黄石及其鉴别[J].中国集体经济,2005(8):52~54
    100.钟华邦.田黄宝石的特征[J].宝石和宝石学杂志,2001(2):29~30
    101.中科院贵阳地化所.矿物X射线粉晶鉴定手册[M].北京:科学出版社,1978
    102.周国平主编.宝石学[M].武汉:中国地质大学出版社,1993
    103.朱选民,蒋红旗,厉群勇.浙江省非叶腊石型青田石的宝石学研究[J].宝石和宝石学杂志,2002(1):6~11
    104.朱选民,亓利剑.浙江青田石的矿物学特征及成玉机理[J].浙江国土资源,2002(1):50~53
    105.朱选民.浙江青田石矿物成分和成玉机理研究[J].岩石矿物学杂志,2003(1):65~70
    106.朱选民,亓利剑,蒋红旗等.浙江青田叶腊石型蓝刚玉的宝石学特征及成因探讨[J].宝石和宝石学杂志,2001(4):15~19
    107.朱如凯,孙亚芸,张运东.晋北晚古生代煤系高岭岩的特征及成因[J].中国区域地质,1997,5(2):153~161
    108. Alexander V D., Griffen D T., Martin T J. Crystal chemistry of some Fe- and Ti-poor dumortierites[J]. American Mineralogist,1986,71:786~794
    109. Bailey S.W. Polymorphism of the kaolin minerals[J]. Am Miner,1963,48:1196~1209
    110. Boynton W V. Consmochemistry of the rare earth elements:meteorite studies. Rare earth element geochemistry,1984, 2:63~114
    111. Brindley G.W., Brown G. Crystal Structures of Clay Minerals and their X-ray Identification. London:Mineralogical Soc.,1980:450
    112. Cantrell K J, Bryne R H. Rare earth element complexation by carbonate and oxalate ions. Geochim.Cosmochim. Acta, 1987,51:597
    113. Collins W J. Evolution of petrogenetic models for Lachlan Fold Belt granites:implications for crustal architecture and tectonic models. Australian Journal Of Earth Science,1998,45:483~500
    114. Cruz M, Real M. Diagenetic kaolinite/dickite. Clays and Clay Minerals,1993,41(5):570~579
    
    115. Cruz M, Dolores R, Franco F. Thermal decomposition of dickite-hydrazine intercalation complex[J]. Clays and Clay Miner,2000,48:586~592
    
    116. Deer W.A. et al.,Rock forming minerals Longmans,1962:204~206
    
    117. Farmer,V.C. The layer Silicates: the Infrared Spectra of Minerals. Mineralogical Society, 1974:331-364
    
    118. Fanner V C. Transverse and longitudinal crystal modes associated with OH stretching region vibrations in single crystals of kaolinite and dickite. Spectrochim Acta,2000,56A(5):927~930
    
    119. Graig,H. Isotopic variations in meteoric water. Science, 1961,133:1702—1703
    
    120. Harder H.,Trace elements as colouring agents in jadeites. Journal of Gemology,1995,24:508—511
    
    121. Haydn.H.Murray, Janelle janssen. Oxygen isotopes-Indicators of Kaolin genesis. In proceedings of the 27th IGC,1984,15:287~303
    
    122. Hinckley D N. Variability in "Crystallinity" values among the Kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals,1963,11:229~235
    
    123. Hopf S. Behaviour of rare earth elements in geothermal systems of New Zealand. J.Geochim. Explor,1993,47:333
    
    124. Ishikawa Y.,Sawaguchi T.,Iwaya S,and Horiuch M. Delieation of prospecting targets for kuroko deposits based on modes of volcanism of underlying daeite and alteration halos. Mining Gelolgy,1976,26:106-117
    
    125. Krupp.R. Physicochemical aspects of mercury metallogenesis. Chemical Geology.,1998,69:345— 356.
    
    126. Kulla,J.B., Anderson,T.F. Experimental Oxygen isotope fractionaction between Kaolinite and water. In Short papers of the 4th ICGCIG,1978:234~235
    
    127. Le Bas M.J., R.W.Le Maitre, A.Streckeisen, et al. A chemical classification of volcanic rocks based on the total alkalisilica diagram. J.Petrol.,1986,27:745—750
    
    128. MacLean W.H.,Barrett T.J. Lithogeochemical techniques ysing immobile wlwments. Journal of Geochemical Exploration,1993,48:109—133
    
    129. Marfunin A. S. Physics of Minerals and Inorganic Materials:An Introduction[M].Springer Verlag,1979.
    
    130. Marumo,K., matsuhisa,V., NagaSawa,K. Hydrogen and Oxygen isotopic compositions of Kaolin Minerals. In Fapan 7th 1CC,1981:315~320
    
    131. Mas,A., Guisseau,D., Mas, P.,et al. Clay minerals related to the hydrothermal activity of the Bouillante geothermal field. Journal of volcanology and geothermal research,2006,15:380—400
    
    132. Michard A. The rare earth element systematic in hydrothermal fluid. Geochim. Cosmochim. Acta,1989,53:745
    
    133. Moore P.B., Araki T. Dumortierite, Si_3B[Al_(6.75-0.25)O_(17.25) (OH )_( 0.75)]: a detailed structure analysis[J]. Neues Jahrbuch fur Mineralogie Abhandlungen,1978,132:231~24
    
    134. Newman A. Chemistry of Clays and Clay Minerals. Mineralogical Society Monograph,1987,6:22—26
    135. Parnell J, Baron M, Boyce A. Controls on kaolinite and dickite distribution, High- land boundary fault zone, Scotland and Northern Ireland[J]. J Geol Soc,2000,153:635—640
    
    136. Pearce J, et al. Trace element distribution diagrams for the tectonic interpretation of granitic rocks. Petrol., 1984,25:956-983
    
    137. Peccerillo,A., Tayor. Geochemistry of Eocene calkaline volcanic rocks from the Kastamonu area,Northern Turkey. Contrib.Miner.petrol., 1976,58
    
    138. Plancon A. Seacking faults in the Kaolin-Group mineral:defect structures of Kaolinite[J]. Clays and Clay Minerals,1989,137(3):203~210
    
    139. Platonov A.N., Langer K., Chopin C, et al. Fe~(2+)—Ti~(4+) charge-transfer in dumortierite[J]. European Journal of Mineralogy,2000,12:521—528
    
    140. Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Longman Group UK Ltd,1993
    
    141. Rittmann,A. Note to contribution by V.Gottini on the "Serial character of the volcanic rocks of pantelleria". Bull.Volcanol., 1970,33:979-981
    
    142. Russell J D, Kirkpatrick W M. Nacrite from the southern upland fault near Abington,Strathclyde,Scotland. Clay Minerals,1992,27:253—255
    
    143. Savin,S.M., Epstein,S. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim. Cosmochim. Acta,1970,34:25~42
    
    144. Sheppard,S.M.F.et al. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposites. Economic Geology,1969,64:755—777
    
    145. Sun S.S.,and MacDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. Blackwell Scientific Publications, 1989, 313—345
    
    146. Suzuoki,T., Epstein,S. Hydrogen isotope fractionaction between OH-bearing minerals. Geochim. Cosmochim. Asta,1976, 40:1299—1240
    
    147. Taner M.,Martin R. Significance of dumortierite in an aluminosilicate-rich alteration zone,Louvicourt, Quebec[J]. Canadian Mineralogist,1993,31:137146
    
    148. Taylor H.P.Jr. The application of oxygen and hydrogen isotope studies to proplems of hydrothermal alteration and ore deposition. Econ.Geol., 1974,69:843—883
    
    149. Werner Smykatz-Kloss. Differential thermal analysis. Springer Verlag,1974:64—67
    
    150. Xu X, Reiliy S Y, Griffin W La, et al. Genesis of youth lithospheric mantl in Southeastern China:A lam-ICPMAS trace element study[J]. Journal of petrology,2000,41:111—148
    
    151. Zamama M, Knidiri M. IR study of dickite-formamide intercalate[J]. Spectrochim Acta,2000,56A:1139~ 1147
    
    152. Zimbelman D.R., Rye R.O., Breit GN. Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chemical

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700