氟烷基亚胺酰卤衍生物合成含氟杂环化合物的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氟的各类杂环化合物,由于其往往相对于不含氟类似物,具有更为特殊的生理活性性质,越来越受到研究人员的关注。可以说,现在开发任何一种新药物,都必须对其含氟类似物进行活性测试和筛选,因此,就需要合成各种各样的基于天然化合物的或者基于全新结构的含氟化合物,以用来进行生物活性评估。然而许多情况下,合成一般有机化合物的方法,往往不适用于含氟底物,而且往往只有在分子的特定位置引入含氟基团才能起到改善其生理活性的作用,所以,开展多样的有效的方法学来合成我们所需的含氟目标分子就显得十分必要。
     本论文主要研究了氟烷基胺基烯酮和氟烷基炔基亚胺两个含氟砌块的反应,通过过渡金属的参与,合成了一系列有潜在价值的含氟杂环分子。主要分为以下五部分:
     1)研究了氟烷基胺基烯酮的分子内亲卤反应,以较好的产率合成2,2-二氟-2,3-二氢呋喃,同时研究了分子间串联反应的可能性,得到了多取代的二氢呋喃化合物;在底物的扩展过程中,还意外得到了3,3-二氟-2,3-二氢吲哚化合物;同时我们也对二氢呋喃化合物进行了衍生化。
     2)研究了氟烷基胺基烯酮与末端芳基炔烃在钯催化下的Sonogashira/分子内亲核加成串联反应,以优秀的产率合成了一系列的2-三氟甲基喹啉化合物。同时将方法学应用到不含氟的分子中,也取得了不错的结果。
     3)研究了氟烷基-N-(邻卤芳基)炔基亚胺的分子内碳钯化反应合成了2-三氟甲基吲哚产物;同时通过改变反应思路,使用氟烷基炔基亚胺和芳基碘代物通过一个钯催化的基于碳氢键活化的分子间串联反应,合成了一系列3H-吲哚化合物,并对其还原反应进行了拓展;该方法学同样也能用于不含氟的底物。
     4)研究了氟烷基-N-(邻卤芳基)炔基亚胺与叠氮化钠在碘化亚铜催化下的串联反应,合成一类结构新颖的4-氟烷基-[1,2,3]三唑[1,5-a]喹喔啉化合物。
     5)研究了氟烷基炔基亚胺与苄胺的串联反应,通过碳氟键断裂合成了一系列3-氟(氟烷基)吡啶化合物;同时通过对碱的控制,选择性的合成了另一类氟烷基二氢嘧啶化合物,为这两类杂环的合成提供了一种全新的路线。
Fluorinated heterocycles have received considerable attention in recent years due to their unique chemical and biological properties compared with non-fluorinated analogs. It would not be an exaggeration to say that currently every new drug discovery and development program without exception explores fluorine-containing drug candidates. Therefore, a wide variety of fluorine-containing compounds based either on known natural products or on new skeletons is needed for biological evaluation. However, in many cases, synthetic methods developed for ordinary organic molecules do not work well for fluorochemicals because of their unique reactivity, and selective introduction of fluorine into molecule at a specified position is another challenge. So it is necessary to develop efficient synthetic methods applicable to fluorine-containing organic compounds.
     This dissertation is focused on the study of reactions of fluoroalkyl enaminoketones and fluoroalkyl alkynylimines, and its application in fluoro-heterocycle synthesis through transition metal catalysis. It consists of five chapters.
     1)An efficient strategy for the synthesis of 2,2-difluoro-2,3-dihydrofuran products fromβ-fluoroalkyl-β-enaminoketones is described. The reaction occurred via intramolecular halophilic attack-initiated cascade process. A series of 2,3-dihydrofurans were prepared in high yields. And an intermolecular domino process achieved providing polysubstituted dihydrofurans.
     2 ) A new, rapid and high-yielding method to prepare 3,4-disubstituded 2-trifluoromethylquinolines by palladium catalyzed tandem Sonogashira?alkyne carbocyclization ofβ-trifluoromethylβ-enaminoketones with aryl alkynes is described. This reaction can also be expanded to the non-fluorine containing substrates.
     3)Treatment of various types of N-(o-haloaryl)alkynylimines in the presence of palladium catalyst gave 2-trifluoromethyl indoles in high yields. Another strategy developed through Pd-catalyzed cascade carbopalladation/C-H activation process using fluoroalkyl alkynylimines and aryl iodides provided a series of 2-fluoroalkyl 3-methylene-3H-indoles in good yields. Method for reduction of these products was also developed. This reaction can also be expanded to the non-fluorine containing substrates.
     4)Novel tricyclic 4-(trifluoromethyl)-[1,2,3]triazolo[1,5-a]quinoxalines were readily prepared from N-(o-haloaryl)alkynylimines and sodium azide via copper(I)-catalyzed tandem reactions.
     5)A chemoselective strategy for the synthesis of poly-substituted pyridines and fluoroalkyl dihydropyrimidines based on C-F bond breaking of the anionically activated fluoroalkyl group was described. A series of pyridines and dihydropyrimidines were prepared through this domino process in high yields under noble metal-free conditions.
引文
[1] Nicolas F, Morel B, Belhomme C, et al. H. Role of elemental fluorine in nuclear field, J. Fluorine Chem. 2007, 128: 285-295.
    [2] Moissan H, Hebd C R. "Action d'un courantélectrique sur l'acide fluorhydrique anhydre. Seances Acad. Sci. 1886, 102: 1543-1544.
    [3] Swarts F. Note sur un nouveau dérivéfluore du carbone. Bull. Acad. Roy. Belg. 1892, 24: 309.
    [4] Swarts F, Sur l'acide fluoracetique. Bull. Soc. Chem. Belg. 1896, 15:1134.
    [5] Kettering C F. Refrigerating apparatus. US Patent 1886339, 1932, 1-5.
    [6] Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone. Nature. 1974, 249: 810.
    [7] Plunkett R J. Tetrafluoroethylene polymers. US Patent 2230654, 1941, 1-2.
    [8] Rhodes R. The Making of the Atomic Bomb. New York: Simon and Schuster, 1986.
    [9] Fowler R D, Burford W B III, Hamilton J M, et al. Synthesis of fluorocarbons. Ind. Eng. Chem. 1947, 39, 292.
    [10] Simons J H. The electrochemical process for the production of fluorocarbons.1. The generalized procedure and its use with nitrogen compounds. Trans. Electrochem. Soc. 1949, 95: 47.
    [11] Olah G A, Chambers R D, Prakash, G K S. Synthetic Fluorine Chemistry. New York: Wiley, 1992.
    [12] Marais J S C. The isolation of the toxic principle“K cymonate”from“Gifblaar”,Dichapetalum cymosum. Onderstepoort J. Vet. Sci. Anim. Ind. 1943, 18: 203.
    [13] Fried J, Sabo E F. 9-alpha-fluoro derivatives of cortisone and hydrocortisone. J. Am. Chem. Soc. 1954, 76: 1455-1456.
    [14] Heidelberger C, Chaudburi N K, Danneberge D, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature.1957, 179: 663-666.
    [15] O’Hagan D, Harper D B. The fluorinated natural products. Nat. Prod. Rep. 1994, 11: 123-133.
    [16] Chambers K P. Fluorine in Organic Chemistry, New York: Wiley, 1973.
    [17] Smart B E. In Organofluorine Chemistry: Principles and Commercial Applications; New York: Plenum, 1994, pp. 57–88.
    [18] Cox R J, Hadfield A T, Mayo-Martin M B. Difluoromethylene analogues of aspartyl phosphate: the first synthetic inhibitors of aspartate semi-aldehyde dehydrogenase. Chem. Commun. 2001, 1710-1711, and references cited therein.
    [19] Li Y, Hu J. Facile synthesis of chiral alpha-difluoromethyl amines from N-(tert-butylsulfinyl)aldimines. Angew. Chem., Int. Ed. 2006, 44: 5882-5886.
    [20] Thayer A M. Fabulous Fluorine. C & E News. 2006, 84: 15-24.
    [21] Audouard C, Ma J, Cahard D. Enantioselective electrophilic fluorination: The complete story. Adv. Org. Synth. 2006, 431-461.
    [22]卿凤翎,邱小龙,有机氟化学,科学出版社, 2007年.
    [23] Pearlson W H. The simons electrochemical fluorination process. J. Fluorine Chem. 1986, 32: 29-40.
    [24] Hull K L, Anani W Q, Sanford M S. Palladium-catalyzed fluorination of carbon-hydrogen bonds. J. Am. Chem. Soc. 2006, 128: 7134-7135.
    [25] Furuya T, Kaiser H M, Ritter T. Palladium-mediated fluorination of arylboronic acids. Angew. Chem., Int. Ed. 2008, 47: 5993–5996.
    [26] Furuya T, and Ritter T. Carbon-fluorine reductive elimination from a high-valent palladium fluoride. J. Am. Chem. Soc. 2008, 130: 10060–10061.
    [27] Wang X, Mei T, and Yu J. Versatile Pd(OTf)2·2H2O-catalyzed ortho-fluorination using NMP as a promoter. J. Am. Chem. Soc. 2009, 131: 7520–7521.
    [28] Watson D A, Su M, Teverovskiy G, et al. Formation of ArF from LPdAr(F): catalytic conversion of aryl triflates to aryl fluorides. Science. 2009, 325: 1661–1664.
    [29] Wu T, Yin G, Liu G. Palladium-catalyzed intramolecular aminofluorination of unactivated alkenes. J. Am. Chem. Soc. 2009, 131: 16354–16355.
    [30] Ma J A, Cahard D. Strategies for nucleophilic, electrophilic, and radical trifluoromethylations. J. Fluorine Chem. 2007, 128: 975-996.
    [31] Cho E J, Senecal T D, Kinzel T, et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science. 2009, 328: 1679-1681.
    [32] Ball N D, Kampf J W, and Sanford M S. Aryl?CF3 bond-forming reductive elimination from Palladium(IV). J. Am. Chem. Soc. 2010, 132: 2878–2879.
    [33] Wang X, Truesdale L, Yu J. Pd(II)-catalyzed ortho-trifluoromethylation of arenes using TFA as a promoter. J. Am. Chem. Soc. 2010, 132: 3648–3649.
    [34] Chu L, Qing F. Copper-mediated aerobic oxidative trifluoromethylation of terminal alkynes with Me3SiCF3. J. Am. Chem. Soc. 2010, 132: 7262–7263.
    [35] Baasner B, Hagemann H, Tatlow J C. Methods of Organic Chemistry, V. E 10b, Part 1, Organo-Fluorine Compounds. New York: Houben-Weyl, 1998, p402-720.
    [36] Baasner B, Hagemann H, Tatlow J C. Methods of Organic Chemistry, V. E 10b, Part 2, Organo-Fluorine Compounds. New York: Houben-Weyl, 1998, p1-292.
    [37] Soloshonok V A. Fluorine-Containing Synthons, ACS, 2005.
    [38] Tamura K, Mizukami H, Maeda K, et al. One-pot synthesis of trifluoroacetimidoyl halides. J. Org. Chem. 1993, 58: 32-35.
    [39] Wu Y, Li Y, Deng J. One-pot synthesis of bromodifluoroacetimidoyl halides and its Suzuki coupling reactions with aryl boronic acids. J. Fluorine Chem. 2005, 126: 791-795.
    [40] Uneyama K, Chemistries of trifluoroacetimidoyl halides: preparation, reactions, andapplications for the synthesis of fluorinated heterocycles. J. Fluorine Chem. 1999, 97: 11-25.
    [41] Uneyama K, Morimoto O, Yamashita F. Trifluoroacetimidoyl chlorides as a new trifluoromethyl building block for fluorinated nitrogen heterocycles. Tetrahedron Lett. 1989, 30: 4821-4824.
    [42] Uneyama K, Hao J, Amii H. A novel synthesis ofβ-trifluoromethyl-substituted isoserine via intramolecular rearrangement of imino ethers. Tetrahedron Lett. 1998, 39: 4079-4082.
    [43] Fustero S, Pina B, de la Torre M G, et al. First highly diastereoselective synthesis of synα-methylβ-fluoroalkylβ-amino esters. Org. Lett. 1999, 1: 977-980.
    [44] Huang W, Yuan C. Studies on organophosphorus compounds 92: a facile synthesis of 1-substituted 5-trifluoromethylimidazole-4-phosphonates. Synthesis 1996, 511-513.
    [45] Uneyama K, Kobayashi M. Electrochemical oxidation of N,N'-disubstituted trifluoroethanimidamides. an approach to N-substituted 2-(trifluoromethyl)-benzimidazoles. J. Org. Chem. 1994, 59: 3003-3014.
    [46] Wu Y, Zhang M, Li Y. Facile synthesis ofα-fluoro substituted amidines from imidoyl chlorides and some of its application. J. Fluorine Chem. 2006, 127: 1168-1174.
    [47] Uneyama K, Sugimoto K. N-Substituted 2,2,2-trifluoroethanimidic acid 1-methylethylidene hydrazides as synthetic blocks for trifluoromethylated nitrogen heterocycles: syntheses and oxidative cyclizations. J. Org. Chem. 1992, 57: 6014-6019.
    [48] Mae M, Amii H, Uneyama K. First synthesis of 3,3-difluoroserine and cysteine derivatives via Mg(0)-promoted selective C-F bond cleavage of trifluoromethylimines. Tetrahedron Lett. 2000, 41: 7893-7896.
    [49] Watanabe H, Hashizume Y, Uneyama K. Homologation of trifluoroacetimidoyl iodides by palladium-catalyzed carbonylation. An approach toα-amino perfluoroalkanoic acids. Tetrahedron Lett. 1992, 33: 4333-4336.
    [50] Amii H, Kohda M, Seo M, et al. A novel route to the fluorinated diimines: carbon monoxide-promoted reductive homocoupling of fluorinated imidoyl iodides in the presence of a palladium catalyst. Chem. Commun. 2003, 1752-1753.
    [51] Amii H, Kishikawa Y, Uneyama K. Rh(I)-catalyzed coupling cyclization of N-aryl trifluoroacetimidoyl chlorides with alkynes: one-pot synthesis of fluorinated quinolines. Org. Lett. 2001, 3: 1109-1112.
    [52] Uneyama K, Amii H. A review of Mg metal-promoted C-F bond activation; a reliable synthetic approach to difluorinated organic compounds. J. Fluorine Chem. 2002, 114: 127-131.
    [53] Kobayashi T, Nakagawa T, Amii H, et al. Mg-promoted double silylation of trifluoroacetimidoyl chlorides. A new entry to the fluorinated dianion equivalents. Org. Lett. 2003, 5: 4297-4300.
    [54] Uneyama K, Yamashita F, Sugimoto K, et al. N,N'-disubstituted trifluoroacetamidines for trifluoromethylated polynitrogen heterocycles. Tetrahedron Lett. 1990, 31: 2717-2718.
    [55] Isobe A, Takagi J, Katagiri T, et al. Palladium-catalyzed chloroimination of imidoyl chlorides to a triple bond: an intramolecular reaction leading to 4-chloroquinolines. Org. Lett. 2008, 10: 2657-2659.
    [56] Yu H, Huang W. A convenient synthesis of 3-polyfluoroalkyl pyrazoles and 6-polyfluoroalkyl pyrimidines fromβ-polyfluoroalkyl enaminones. J. Fluorine Chem. 1997, 84: 65-67.
    [57] Huang W, Yuan C, Wang Z. Facile synthesis of 1-substituted 5-trifluoromethyl-imidazole-4-carboxylates. J. Fluorine Chem. 1995, 74: 279-282.
    [58] Danoh Y, Matta H, Uemura J, et al. Generation and reactions of trifluoroacetimidoyl radicals. Bull. Chem. Soc. Jpn. 1995, 68: 1497-1507.
    [59] Yu B, Tao H. Glycosyl trifluoroacetimidates. 2. synthesis of Dioscin and Xiebai Saponin I. J. Org. Chem. 2002, 67: 9099-9102.
    [60] Wu Y, Li Y, Deng J.β-Bromodifluoromethylβ-Enaminoketones: Versatile synthetic intermediates for synthesis of CF2-containing compounds. Tetrahedron Lett. 2005, 46: 5357-5760.
    [61] Wu Y, Zhang M, Li Y. Facile synthesis of fluorinatedα-imino alkynes by the coupling reaction of imidoyl iodides with terminal alkynes. J. Fluorine Chem. 2006, 127: 218-222.
    [62] Tietze L F, Brasche G, Gericke G. Domino Reactions in Organic Synthesis, Weinheim: Wiley, 2006.
    [1] Baciocchi E, Lillocci C. Dehalogenation reactions of vicinal dihalides. Part III. Dehalogenations of 1-chloro-2-iodo-1,2-diphenylethane induced by a variety of nucleophiles. The nucleophilic reactivity towards iodine. J. Chem. Soc. Perkin Trans. 2, 1973, 38-41.
    [2] Zefirov N S, Makhon'kov D I. X-philic reactions. Chem. Rev. 1982, 82: 615-624.
    [3] Bowman W R. Reactivity of substituted aliphatic nitro-compounds with nucleophiles. Chem. Soc. Rev. 1988, 17: 283-316.
    [4] Li X, Jiang X, Zhang X. Relative reactivities of bromine-substituted substrates toward bromophilic attack by a carbanion. Chin. J. Chem. 1992, 10: 186-188.
    [5] Li X, Pan H, Jiang X. Spontaneous reactions of potassium phenoxide with dibromoperflouroalkanes. first evidence for bromophilic attack on C-Br bonds by the phenoxide. Tetrahedron Lett. 1984, 25: 4937-4940.
    [6] Li X, Pan H, Jiang X, et al. Reactions of per(chloro, fluoro)ethanes with aryloxide and alkoxide ions. evidence for chlorophilic attack on C-Cl bonds. Angew. Chem., Int. Ed. 1985, 24: 871-872.
    [7] Li X, Pan H, Jiang X. N-Perhalofluoroalkylation of secondary amines by the reactions of the amines and amides with perhalofluoroalkanes. Halophilic attack on nitrogen nucleophile on C-Br bond. Tetrahedron Lett. 1987, 28: 3699-3702.
    [8] Petko K I, Sokolenko T M, Bezdudny A V, et al. N-(2-bromotetrafluoroethyl) derivatives of five-membered nitrogen-containing heterocycles. J. Fluorine Chem. 2005, 126: 1342-1346.
    [9] Petko K I, Kot S Y, Yagupolskii L M. Halophilic reaction of N-sodium-substituted azoles with polyhaloperfluoroethanes containing different vicinal halogen atoms. J. Fluorine Chem. 2008, 129: 1119-1123.
    [10] Underwood G R, Dietze P E. Nucleophilic-substitution at centers other than carbon - reaction at the chlorine of N-chloroacetanilides with triethylamine as the nucleophile. J. Org. Chem. 1984, 49: 5225-5229.
    [11] Eberson L, Finkelstein M, Folkesson B, et al. Halogen interchange during complex-formation between N-halosuccinimides and quaternary ammonium halides. J. Org. Chem. 1986, 51: 4400-4403.
    [12] Galvagni M, Kelleher F, Paradisi C, et al. Base-induced disproportionation of halomethyl phenyl sulfones to methyl and dihalomethyl phenyl sulfones. J. Org. Chem. 1990, 55: 4454-4456.
    [13] Popov V I, Boiko V N, Yagupolskii L M. Phase-transfer catalysed ion-radical perfluoroalkylation of thiols. J. Fluorine Chem. 1982, 21: 365-369.
    [14] Li X, Pan H, Fu W, et al. Distinctive and solvent-dependent behaviour of someper(chloro, fluoro)ethanes in their reactions with PhSNa. Competing mechanistic pathways in halophilic reactions. J. Fluorine Chem. 1986, 31: 213-229.
    [15] Li X, Jiang X, Pan H, et al. Nucleophilic substitutions of perhalofluoroalkanes initiated by halophilic attacks. Pure & Appl. Chem. 1987, 59: 1015-1020.
    [16] Li X, Hu J. Novel reactions of phosphonium ylides with perhaloalkanes: First examples of halophilic attacks by phosphonium ylides and a facile route to [alpha]-haloalkylphosphonium salts. Tetrahedron Lett. 1987, 28: 6317-6320.
    [17] Wu Y, Li Y, Deng J.β-Bromodifluoromethylβ-enaminoketones: Versatile synthetic intermediates for synthesis of CF2-containing compounds. Tetrahedron Lett. 2005, 46: 5357-5760.
    [18] Shang Y, Ju K, He X, et al. Copper-catalyzed multicomponent reaction: Synthesis of 4-arylsulfonylimino-4,5-dihydrofuran derivatives. J. Org. Chem. 2010, 75: 5743-5745 and references cited therein.
    [19] O’Hagan D, Harper D B. Fluorine-containing natural products. J. Fluorine Chem. 1999, 100: 127-133.
    [20] Etzold G, Hintsche R, Kowollik G, et al. Nucleoside von fluorzuckern-VI : Synthese und reaktivit?t von 3’-fluor-und 3’-chlor-3’-desoxy-thymidin. Tetrahedron, 1971, 27: 2463-2472.
    [21] Watanabe K A, Reichman U, Hirota K, et al. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2'-fluoro-2'-deoxyarabinofuranosylpyrimidine nucleosides. J. Med. Chem. 1979, 22: 21-24.
    [22] Okabe M, Sun R C, Zenchoff G B. Synthesis of 1-(2,3-dideoxy-2-fluoro-beta--D-threo-pentofuranosyl)cytosine (F-ddC). A promising agent for the treatment of acquired immune deficiency syndrome. J. Org. Chem. 1991, 56: 4392-4397.
    [23] Kuroboshi M, Hiyama T. A Facile Synthesis ofα,α-difluoroalkyl ethers and carbonyl fluoride acetals by oxidative desulfurization-fluorination. Synlett. 1994, 251-252.
    [24] Bunnelle W H, McKinnis B R, Narayanan B A. Difluorination of esters. Preparationof alpha, alpha-difluoro ethers. J. Org. Chem. 1990, 55: 768-770.
    [25] Neumann J J, Suri M, Glorius F. Efficient synthesis of pyrazoles: oxidative C-C/N-N bond-formation cascade. Angew. Chem., Int. Ed. 2010, 49: 7790-7794.
    [26] Bernini R, Cacchi S, Fabrizi G., et al. Polysubstituted quinolines from 2-alkynylanilines andα,β-ynones through a sequential conjugate addition-cyclization process. Synlett, 2009, 1245-1250.
    [27] Bernini R, Fabrizi G, Sferrazza A, et al. Copper-catalyzed C-C bond formation through C-H functionalization: synthesis of multisubstituted indoles from N-aryl enaminones. Angew. Chem., Int. Ed. 2009, 48: 8078-8081.
    [28] Würtz S, Rakshit S, Neumann J, et al. Palladium-catalyzed oxidative cyclization of N-aryl enamines: from anilines to indoles. Angew. Chem., Int. Ed. 2008, 47: 7230-7233.
    [29] Kobayashi T, Nakagawa T, Amii H, et al. Mg-promoted double silylation of trifluoroacetimidoyl chlorides. A new entry to the fluorinated dianion equivalents. Org. Lett. 2003, 5: 4297-4300.
    [30] Palacios F, Vicario J and Aparicio D. Efficient synthesis of 1-azadienes derived fromα-aminoesters. Regioselective preparation ofα-dehydroamino acids, vinylglycines, andα-amino acids. J. Org. Chem. 2006, 71: 7690-7696.
    [1] Ohnmacht C J, Patel A R, Lutz R E. Antimalarials. 7. Bis(trifluoromethyl)- alpha-(2-piperidyl)-4-quinolinemethanols. J. Med. Chem. 1971, 14: 926-928.
    [2] Lilienkampf A, Mao J L, Wan B J, et al. P. Structure?activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating mycobacterium tuberculosis. J. Med. Chem. 2009, 52: 2109-2118.
    [3] Dyke H J, Montana J G. N-oxides of heterocyclic compounds with TNF and PDE-IV inhibiting activity. WO 2000026208, 2000, 1-27.
    [4] Raasch M S. Chemistry of Sulfur Tetrafluoride. 9. Reaction with amino acids inhydrogen fluoride. J. Org. Chem. 1962, 27: 1406-1409.
    [5] Kobayash Y, Kumadaki I. Trifluoromethylation of aromatic compounds. Tetrahedron Lett. 1969, 10: 4095-4096.
    [6] Sehlosser M, Keller H, Sumida S, et al. How 2-anilinovinyl perfluoroalkyl ketones can be mechanistically correlated with their cyclization products 2-(perfluoroalkyl)quinolines. Tetrahedron Lett. 1997, 38: 8523-8526.
    [7] Amii H, Kishikawa Y and Uneyama K. Rh(I)-catalyzed coupling cyclization of N-aryl trifluoroacetimidoyl chlorides with alkynes: One-pot synthesis of fluorinated quinolines. Org. Lett. 2001, 3: 1109-1112.
    [8] Isobe A, Takagi J, Katagiri T, et al. Palladium-catalyzed chloroimination of imidoyl chlorides to a triple bond: An intramolecular reaction leading to 4-chloroquinolines. Org. Lett. 2008, 10: 2657-2659.
    [9] Li S, Yuan Y, Zhu J, et al. Efficient synthesis of 2-fluoromethylated quinolines via copper-catalyzed alkynylation and cyclization of fluorinated imidoyl iodides. Adv. Synth. Catal. 2010, 352: 1582-1586.
    [10] Xie H, Zhu J, Chen Z, et al. Synthesis of 2-trifluoromethyl quinoline by the reaction of fluorinated imine with alkyne catalyzed by Indium(III) triflate. Synlett, 2010, 2659-2663.
    [11] Bernini R, Cacchi S, Fabrizi G., et al. Polysubstituted quinolines from 2-alkynylanilines andα,β-ynones through a sequential conjugate addition-cyclization process. Synlett, 2009, 1245-1250.
    [12] Cheng J, Sun Y H, Wang F, et al. A copper- and amine-free sonogashira reaction employing aminophosphines as ligands. J. Org. Chem. 2004, 69: 5428-5432.
    [13] Cai Q, Zou B L and Ma D W. Mild Ullmann-type biaryl ether formation reaction by combination of ortho-substituent and ligand effects. Angew. Chem., Int. Ed. 2006, 45: 1276-1279.
    [14] Sole D, Diaz S, Solans X, et al. A comparative study of the chelating ability of the-N(R)-(CH2)(n)-CO-N(R)(2) framework in sigma-aryl palladium(II) complexes derived from 2-iodoanilines and 2-iodobenzylamines. Synthesis of new types of terdentate [C,N,O] Pd(II) complexes and C,N-bridged binuclear Pd(II) compounds. Organometallics. 2006, 25: 1995-2001.
    [15] Vicente J, Chicote M T, Martinez-Martinez A J, et al. Palladacycles Containing Terdentate [C,N,O](n-) (n=0, 1, 2) or Tetradentate [N,C,O,N '](n-) (n=1, 2) Ligands. The First 1,2-dihydroquinazoline-4-yl Complexes. Organometallics. 2008, 27: 3254-3271.
    [1] Li J J, Gribble G W. Palladium in Heterocyclic Chemistry, Vol. 26; Amsterdam: Elsevier Press, 2007, 81.
    [2] Kuethe J, Wong A, Qu C, et al. Synthesis of 5-substituted-1H-indol-2-yl-1H--quinolin-2-ones: A novel class of KDR kinase inhibitors. J. Org. Chem. 2005, 70: 2555-2567.
    [3] Kawasaki T, Higuchi K. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 2005, 22: 761-793.
    [4] Somei M, Yamada F. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep. 2005, 22: 73-103.
    [5] Humphrey G R and Kuethe J T. Practical methodologies for the synthesis of indoles. Chem. Rev. 2006, 106: 2875-2911.
    [6] Cacchi S and Fabrizi G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev. 2005, 105: 2873-2920.
    [7] Harriman G C B, Carson K G, Flynn D L, et al. Functionalized heterocycles as modulators of chemokine receptor function and methods of use therefor. WO2002072549, 2002, 1-319.
    [8] Akanmu M A, Songkram C, Kagechika H, et al. A novel melatonin derivative modulates sleep-wake cycle in rats. Neurosci. Lett. 2004, 364: 199-202.
    [9] Romines W H, Kania R S, Lou J, et al., Benzofused heteroaryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions includingthe same, and methods for their use. WO2003106462, 2003, 1-98.
    [10] Fukuda Y, Furuta H, Kusama Y, et al. Novel cyclopropapyrroloindole derivative (AT-3510) bearing methoxycarbonyl and trifluoromethyl groups. J. Med. Chem. 1999, 42: 1448-1458.
    [11] Fukuda Y, Furuta H, Shiga F, et al. Synthesis and antitumor activity of novel cyclopropapyrroloindole(CPI) derivatives bearing methoxycarbonyl and trifluoromethyl groups. Bioorg. Med. Chem. Lett. 1997, 7: 1683-1688.
    [12] Yoshida M, Yoshida T, Kobayashi M, et al. Perfluoroalkylations of nitrogen-containing heteroaromatic compounds with bis(perfluoroalkanoyl) peroxides. J. Chem. Soc. Perkin Trans. 1. 1989: 909-914.
    [13] Girard Y, Atkinson J G, Belanger P C, et al. Synthesis, chemistry, and photochemical substitutions of 6,11-dihydro-5h-pyrrolo[2,1-b][3]benzazepin-11-ones. J. Org. Chem. 1983, 48: 3220-3234.
    [14] Huang W Y. Perfluoroalkylation initiated with sodium dithionite and related reagent systems. J. Fluorine Chem. 1992, 58: 1-8.
    [15] Furstner A, Hupperts A. Carbonyl coupling reactions catalytic in titanium and the use of commercial titanium powder for organic-synthesis. J. Am. Chem. Soc. 1995, 117: 4468-4475.
    [16] Ueda Y, Watanabe H, Uemura J, et al. Photolysis of phenyltellurotrifluoro-acetimidates - a new approach to generation of alpha-trifluoroacetimidoyl radicals leading to the synthesis of indole-derivatives. Tetrahedron Lett. 1993, 34: 7933-7934.
    [17] Danoh Y, Matta H, Uemura J, et al. Generation and reactions of trifluoroacetimidoyl radicals. B. Chem. Soc. Jpn. 1995, 68: 1497-1507.
    [18] Muzalevskiy V M, Nenajdenko V G, Shastin A V, et al.α-Trifluoromethyl-β-aryl enamines in the synthesis of trifluoromethylated heterocycles by the Fischer and the Pictet-Spengler reactions. Tetrahedron 2009, 65: 7553-7561.
    [19] Konno T, Chae J, Ishihara T, et al. A facile regiocontrol in the palladium-catalyzedannulation of fluorine-containing internal alkynes with variously substituted 2-iodoanilines: A new regioselective synthesis of 2-or 3-fluoroalkylated indole derivatives. J. Org. Chem. 2004, 69: 8258-8265.
    [20] Ge F L, Wang Z X, Wan W, et al. Grignard cyclization reaction of fluorinated N-arylimidoyl chlorides: A novel and facile access to 2-fluoroalkyl indoles. Synlett 2007: 447-450.
    [21] Chen Y, Wang Y J, Sun Z M, et al. Elaboration of 2-(trifluoromethyl)indoles via a cascade coupling/condensation/deacylation process. Org. Lett. 2008, 10: 625-628.
    [22] Wu Y, Zhang M, Li Y. Facile synthesis of fluorinatedα-imino alkynes by the coupling reaction of imidoyl iodides with terminal alkynes. J. Fluorine Chem. 2006, 127: 218-222.
    [23] Ackermann L, Vicente R and Kapdi A R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew. Chem., Int. Ed. 2009, 48: 9792-9826.
    [24] Gerfaud T, Neuville L and Zhu J P. Palladium-catalyzed annulation of acyloximes with arynes (or alkynes) synthesis of phenanthridines and isoquinolines. Angew. Chem., Int. Ed. 2009, 48: 572-577.
    [25] Peng P, Tang B X, Pi S F, et al. Synthesis of (E)-3-(Isobenzofuran--3(1H)-ylidene)-indolin-2-ones by the palladium-catalyzed intramolecular C-H functionalization process. J. Org. Chem. 2009, 74: 3569-3572.
    [26] Pinto A, Neuville L and Zhu J P. Palladium-catalyzed three-component synthesis of 3-(diarylmethylene)oxindoles through a domino Sonagashira/ carbopalladation/C-H activation/C-C bond-forming sequence. Angew. Chem., Int. Ed. 2007, 46: 3291-3295.
    [27] Tsukamoto H, Ueno T and Kondo Y. Palladium(0)-catalyzed regioselective and multicomponent synthesis of 1,2,3-trisubstituted 1H-Indenes. Org. Lett. 2007, 9: 3033-3036.
    [28] Dong C G, Yeung P and Hu Q S. Two palladium-catalyzed domino reactions fromone set of substrates/reagents: Efficient synthesis of substituted indenes and cis-stilbenoid hydrocarbons from the same internal alkynes and hindered grignard reagents. Org. Lett. 2007, 9: 363-366.
    
    [1] Cho J H, Bernard D L, Sidwell R W, et al. Synthesis of cyclopentenyl carbocyclic nucleosides as potential antiviral agents against orthopoxviruses and SARS. J. Med. Chem. 2006, 49: 1140-1148.
    [2] Andrea Baier M B, Kopanska K, Najda A, et al. Synthesis and biological activity of 1H-benzotriazole and 1H-benzimidazole analogues– inhibitors of the NTPase/helicase of HCV and of some related flaviviridae. Antivir. Chem. Chemoth. 2005, 16: 315-326.
    [3] Biagi G, Giorgi I, Livi O, et al. New 1,2,3-triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. II. Eur. J. Med. Chem. 2002, 37: 565-571.
    [4] Huisgen R. 1,3-Dipolar cycloadditions. past and future. Angew. Chem., Int. Ed. 1963, 2: 565-598.
    [5] Torn?e C W, Christensen C and Meldal M. Peptidotriazoles on solid phase:? [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67: 3057-3064.
    [6] Rostovtsev V V, Green L G, Folkin V V, et al. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective“ligation”of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002, 41: 2596-2599.
    [7] Meldal M, Torn?e C W. Cu-catalyzed azide?alkyne cycloaddition. Chem. Rev. 2008, 108: 2952-3015.
    [8] Amblard F, Cho J H and Schinazi R F. Cu(I)-catalyzed Huisgen azide?alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009, 109: 4207-4220.
    [9] Palacios F, Ochoa de Retana A M, Pagalday J. Synthesis of diethyl 1,2,3-triazolealkylphosphonates through 1,3-dipolar cycloaddition of azides with acetylenes. Heterocycles, 1994, 38: 95-102.
    [10] Pearson W H, Bergmeier S C, Chytra J A. The synthesis of triazole analogues of antitumor dehydropyrrolizidine alkaloids. Synthesis 1990, 156-159.
    [11] Garanti L, Molten G, Zecchi G. Synthesis of [1,2,3]triazolo[1,5-a][4,1]-benzoxazepines via intramolecular azide cycloaddition. Heterocycles, 1994, 38: 291-296.
    [12] Zhang L, Chen X, Xue P, et al. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. 2005, 127: 15998-15999.
    [13] Boren B C, Narayan S, Rasmussen L K, et al. Ruthenium-catalyzed azide?alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc. 2008, 130: 8923-8930.
    [14] Majireck M M, Weinreb S M. A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. J. Org. Chem. 2006, 71: 8680-8683.
    [15] Zhu W, Ma D. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions. Chem. Commun. 2004, 888-889.
    [16] Feldman A K, Colasson B, Fokin V V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett. 2004, 6: 3897-3899.
    [17] Saha B, Sharma S, Sawant D, et al. Application of the Pictet-Spengler reaction to aryl amine substrates linked to deactivated aromatic heterosystems. Tetrahedron 2008, 64: 8676-8684.
    [18] Tanaka Y, Velen S R, Miller S I. Syntheses and properties of H-1,2,3-triazoles. Tetrahedron 1973, 29: 3271-3283.
    [19] Klapars A, Huang X and Buchwald S L. A general and efficient copper catalyst for the amidation of aryl halides. J. Am. Chem. Soc. 2002, 124: 7421-7428.
    [20] Son S U, Park I K, Park J, et al. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 2004, 778-779.
    [21] Ma H C, Jiang X Z. N-hydroxyimides as efficient ligands for the copper-catalyzed N-arylation of pyrrole, imidazole, and indole. J. Org. Chem. 2007, 72: 8943-8946.
    [22] Xu H H, Wolf C. Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides. Chem. Commun. 2009, 1715-1717.
    [1] David O H. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat. Prod. Rep. 2000, 17: 435-446.
    [2] Balasubramanian M, Keay J G. In Comprehensive Heterocyclic Chemistry II, Vol. 5; Oxford: Pergamon, 1996, p 245.
    [3] McAteer C H, Balasubramanian M, Murugan R. Comprehensive heterocyclic chemistry III : V.7: Six-membered rings with one heteroatoms, and their fused carbocyclic derivatives (Pyridines and their Benzo Derivatives: Applications). Amsterdam: Elsevier, 2008, 309.
    [4] Carroll F I, Ma W, Yokota Y, et al. Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 30-substituted deschloroepibatidine analogues. Novel nicotinic antagonists. J. Med. Chem. 2005, 48: 1221–1228.
    [5] Dehmlow E V, Schulz H J. Synthesis of orellanine. The lethal poison of a toadstool. Tetrahedron Lett. 1985, 26: 4903–4906.
    [6] Dolbier W R, Xu Y L. New synthesis of 3-fluoropyridine derivatives. J. Fluorine Chem. 2003, 123: 71-73.
    [7] Pews R G, Lysenko Z. Synthesis of halogenated pyridines via the copper(I) chloride-catalyzed addition of polyhaloacetonitriles to olefins. J. Org. Chem. 1985, 50: 5115-5119.
    [8] Yoshida M, Yoshida T, Kobayashi M, et al. Perfluoroalkylations of nitrogen-containing heteroaromatic compounds with bis(perfluoroalkanoyl) peroxides.J. Chem. Soc. Perkin Trans. 1. 1989, 909-914.
    [9] Cowell A B, Tamborski C. Fluoroalkylation of aromatic compounds. J. Fluorine Chem. 1981, 17: 345-356.
    [10] Umemoto T, Harasawa K, Tomizawa G, et al. Syntheses and properties of N-fluoropyridinium salts. Bull. Chem. Soc. Jpn. 1991, 64: 1081–1092.
    [11] Raasch M S. The chemistry of sulfur tetrafluoride. IX. Reaction with amino acids in hydrogen fluoride. J. Org. Chem. 1962, 27: 1406-1409.
    [12] Nishiyama R, Fujikawa K, Yokomichi I, et al. Process for producing trifluoromethylpyridines. EP42696, 1981, 1-20.
    [13] Cottet F, Schlosser M. Trifluoromethyl-substituted pyridines through displacement of iodine by in situ generated (trifluoromethyl)copper. Eur. J. Org. Chem. 2002, 2002: 327-330.
    [14] Rovnyak G C, Kimball S D, Beyer B, et al. Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem. 1995, 38: 119-129.
    [15] Bannwarth P, Valleix A, Gre e D, et al. Flexible synthesis of pyrimidines with chiral monofluorinated and difluoromethyl side chains. J. Org. Chem. 2009, 74: 4646-4649.
    [16] Yang X, Zhang L, Liu J. A straightforward preparation of fluorine-containing 1,2-dihydropyrimidines and pyrimidines with 2,2-dihydropolyfluoroalkylaldehydes. Tetrahedron 2007, 63: 5643-5648.
    [17] Amii H, Uneyama K. C-F bond activation in organic synthesis. Chem. Rev. 2009, 109: 2119-2183.
    [18] Kiselyov A S, Piatnitski E L, Doody J. Synthesis of polysubstituted 4-fluoroquinolinones. Org. Lett. 2004, 6: 4061-4063.
    [19] Ichikawa J, Wada Y, Miyazaki H, et al. Ring-fluorinated isoquinoline and quinoline synthesis: intramolecular cyclization of o-cyano- and o-isocyano-β,β-difluorostyrenes. Org. Lett. 2003, 5: 1455-1458.
    [20] Kobayashi T, Nakagawa T, Amii H, et al. Mg-promoted double silylation of trifluoroacetimidoyl chlorides. A new entry to the fluorinated dianion equivalents. Org. Lett. 2003, 5: 4297-4300.
    [21] Amii H, Kobayashi T, Terasawa H, et al. Difluorinated danishefsky's diene: A versatile C4 building block for the fluorinated six-membered rings. Org. Lett. 2001, 3: 3103-3105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700