轴手性膦-噁唑啉配体应用于银(Ⅰ)催化的不对称vinylogous Mannich反应以及叔胺(膦)催化的一些活化烯烃反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称催化是不对称有机合成中非常重要的一个方面,在近几十年来它已经成为了一个相当活跃的研究领域。本论文的工作主要围绕:(1)轴手性膦-噁唑啉配体应用于金属银(Ⅰ)催化的不对称Mannich反应研究;(2)发展新的叔胺和叔膦催化的活化烯烃的反应,且这部分工作主要侧重于不对称催化方面的研究。本论文分为三个部分:
     第一部分:轴手性膦-噁唑啉配体应用于金属银(Ⅰ)催化的不对称Mannich反应研究。(1)从(S)-binol合成的轴手性膦-噁唑啉类配体I-I-L7成功地应用于银(Ⅰ)催化的氟代亚胺与三甲基硅氧基呋喃的不对称Mannich反应中,改反应以高达99%的产率,大于20:1的dr值以及最高81%的ee值得到相应加成产物。(2)基于第(1)部分的工作,我们在氟代亚胺上引入了一个手性辅基[(S)-1-苯乙基],研究了它们与三甲基硅氧基呋喃的不对称Mannich反应。采用10 mo1%的醋酸银和11 mo1%轴手性膦-嗯唑啉类配体I-II-L1配位催化该反应,能以高达99%的产率,大于20:1的dr值以及最高99%的ee值得到相应的氟化γ-丁烯羟酸内酯类衍生物。(3)从(R)-binol合成的轴手性膦-噁唑啉类配体I-III-L6成功地应用于银(Ⅰ)催化的N-Boc亚胺与三甲基硅氧基呋喃的不对称Mannich反应中,该反应能以高达97%的产率、7:1的dr值以及最高86%的ee值得到相应的主要加成产物。由于Boc保护基在一些酸性条件(如三氟乙酸和稀盐酸)下很容易脱去,因此这类反应的合成应用价值得到了进一步的延伸。
     第二部分:手性叔胺或叔膦催化缺电子联烯与活化烯烃(C=C)的反应。(1)发展了D-苏氨酸-L-叔亮氨酸衍生的双官能团膦催化的高对映选择性的马来酰亚胺与缺电子联烯的不对称[3+2]的成环反应,以良好到高的收率和ee值合成了具有两个叔碳手性中心的官能团化二并环戊烯类化合物。本节还进一步提出了该反应可能的反应机理以及考察了反应产物的转化。(2)首次考察了手性叔胺β-6’-羟基异辛可宁(β-ICD)催化的高对映选择性的马来酰亚胺与缺电子联烯以及联烯酮的不对称RC反应,以良好到高的收率以及良好到优秀的ee值合成了具有光学活性的高官能团化的联烯类衍生物。在过渡金属催化下,这些产物能够进一步以良好的收率转化合成手性的γ-羟基丁烯羟酸内酯以及呋喃衍生物。
     第三部分:叔胺催化缺电子联烯与活化羰基酮(C=O)的反应。(1)首次发展了β-6’-羟基异辛可宁(p-ICD)催化三氟甲基酮与联烯酸酯的不对称[2+2]环加成反应,该反应能够以中等到良好的收率以及良好到较高的非对映选择性和对映选择性,得到S构型的2-烯机取代的氧杂环丁烷类化合物。(2)考察了4-二甲氨基吡啶(DMAP)催化靛红与联烯酸酯的Morita-Baylis-Hillman反应,该反应能以良好到较高的收率以及中等的非对映选择性得到相应的加成产物。这是第一例缺电子联烯与活化羰基酮的Morita-Baylis-Hillman反应。
Asymmetric catalysis is an important aspect of asymmetric synthesis, and one that has seen tremendous activity over the past decades. This dissertation mainly focuses on:(1) axially chiral phosphine-oxazoline ligands in the silver(I)-catalyzed asymmetric Mannich reaction; (2) the discovery of some tertiary amine-or phosphine-catalyzed reactions of activated alkenes especially for their asymmetric versions. This dissertation contains three parts:
     Part I:Axially chiral phosphine-oxazoline ligands in the silver(I)-catalyzed asymmetric Mannich reaction. (1) Axially chiral phosphine-oxazoline ligand I-I-L7, prepared from (S)-binol, was found to be a fairly effective chiral ligand in silver(I)-catalyzed asymmetric Mannich reaction of fluorinated aldimines with trimethylsiloxyfuran to give the corresponding adducts in up to 99%yield, over 20:1 dr and 81%ee. (2) Based on the work of (1), a highly regio-and enantioselective asymmetric vinylogous Mannich reaction of readily available fluorinated aldimines bearing a chiral auxiliary [(S)-1-phenylethyl group] with siloxyfurans to afford chiral fluorine-containing y-butenolide derivatives in up to 99%yield along with over 20:1 dr and 99%ee has been developed in the presence of silver acetate (10 mol%) and axially chiral phosphine-oxazoline ligand I-I-L1 (11 mol%). (3) Axially chiral phosphine-oxazoline ligand I-I-L6 derived from (R)-binol was identified as a fairly effective chiral ligand in silver(I)-catalyzed asymmetric Mannich reaction of N-Boc aldimines with trimethylsiloxyfuran, giving the corresponding adducts in up to 97%yield,7:1 dr and 86%ee (major diastereoisomer). Since the N-protecting group (N-Boc) can be readily cleaved under several convenient acidic conditions(HCl or TFA), this reaction will be useful in organic synthesis.
     Part II:Chiral tertiary amine-or phosphine-catalyzed reactions of electron-deficient allenes with activated alkenes (C=C). (1) D-Threonine-L-tert-leucine-based bifunctional phosphine-catalyzed highly enantioselective [3+2] annulation of allenes with maleimides has been disclosed, affording the corresponding functionalized bicyclic cyclopentenes containing two tertiary stereogenic centers in good to high yields and with good to high enantioselectivities. The plausible reaction mechanism and the further transformation of cycloadducts have been also disclosed. (2) The first example ofβ-ICD catalyzed highly enantioselective intermolecular Rauhut-Currier reaction of maleimides with allenoates and penta-3,4-dien-2-one has been also disclosed, allowing the synthesis of optically active functionalized allene derivatives in good to high yields along with good to excellent enantioselectivities. These chiral functionalized allenic derivatives can be further transformed to the corresponding chiral y-butenolide derivatives and furan derivatives in good yields in the presence of transition metal catalysts.
     Part III:Tertiary amine-catalyzed reactions of electron-deficient allenes with activated ketones (C=O). (1) We have developed the first asymmetric organocatalytic formal [2+2] cycloaddition of trifluoromethylketones and allenoates using (3-isocupreidine (β-ICD) as a catalyst to afford S-configured 2-alkyleneoxetanes in moderate to good yields along with good to high diastereoselectivities and enantioselectivities. (2) We have disclosed a 4-(N,N-dimethylamino)pyridine (DMAP)-catalyzed Morita-Baylis-Hillman reaction of isatins with allenoates, affording the corresponding adducts in good to high yields with moderate diastereoselectivities. This is the first example on the Morita-Baylis-Hillman reaction of the carbonyl group in activated ketone with electron-deficient allenic ester.
引文
[1](a)林国强,陈耀全,陈新滋,李月明,《手性合成—不对称反应及其应用》,科学出版社,2000,p.1-5;(b)Berkessel,A和Groger, H著,赵刚译,《不对称有机催化》,华东理工大学出版社,2006.
    [2]Nozaki, H.; Moriuti, S.; Takaya. H.; Noyori. R. Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate. Tetrahedron Lett.1966, 5239-5244.
    [3](a) Noyori, R. Chiral metal complexes as discriminating molecular catalysts. Science, 1990,248,1194-1199; (b) Akutagawa, S. Enantioselective isomerization of allylamine to enamine:practical asymmetric synthesis of (-)-menthol by Rh-BINAP catalysts. Top. Catal.1974,4,271-272; (c) Noyori. R.; Takaya, H. BINAP:an efficient chiral element for asymmetric catalysis. Acc. Chem. Res.1990,23,345-350; (d) Blaser, H.-U.; Spinder, F. Enantioselective catalysis for agrochemicals. The case histories of (S)-metolachlor, (R)-metalaxyl and clozylacon. Top. Catal.1997,4,275-282; (e) Togni, A. Planar-chiral ferrocenes:synthetic methods and applications. Angew. Chem. Int. Ed.1996,35, 1475-1477; (f) Tokunawa, M.; Larrow, J. F.; Jacobsen, E. N. Asymmetric catalysis with water:efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 1997,277,936-938; (g)吕士杰、殷元骐,《不对称催化反应进展》,2000,科学出版社。
    [4](a) Noyori, R. Asymmetric catalysis in organic synthesis. Wiley:New York,1994. (b) Ojima, I. Ed. Catalytic asymmetric synthesis. VCH Publisher:New York,1993.
    [5]Negent, W. A.; Rajanbabn. T. V.; Burk, M. J. Beyond nature's chiral pool! Enantioselective catalysis in industry [J]. Science.1993,259,479-483.
    [6]Reetz, M. T. Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew. Chem. Int. Ed. Engl.2001,40,284-310.
    [7](a) Hayashi, T.; Kumada, M. Asymmetric synthesis catalyzed by transition-metal complexs with functionalized chiral ferrocenylphosphine ligands. Acc. Chem. Res.1982, 15,395-401; (b) Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res.1983,16, 106-112; (c) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, O. J. Asymmetric hydrogenation:Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc.1977,99,5946-5952; (d) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T. Sayo, N.; Miura, T.; Kumobayashi, H. New chiral diphosphine ligands designed to have a narrow dihedral angle in the biaryl backbone. Adv. Synth. Catal.2001,343,264-267; (e) Burk, M. J.; Feaster, J. E.; Harlow. R. L. New chiral C3-symmetric tripodal phosphanes. Angew. Chem., Int. Ed. Engl.1990.29.1462-1464.
    [8](a) Togni, A.; Breutel, C; Schnyder. A.:Spindler, F.; Landert, H.; Tijani, A. A novel easily accessible chiral ferrocenyldiphosphine for highly enantioselective hydrogenation, allylic alkylation. and hydroboration reactions. J. Am. Chem. Soc.1994.116,4062-4066; (b) Sawamura, M.; Hamashima, H.; Sugawara, M.; Kuwano, N.; Ito, Y. Synthesis and structures of trans-chelating chiral diphosphine ligands bearing aromatic P-substituents, (S,S)-(R,R)-and (R,R)-(S,S)-2,2'-bis[1-(diarylphosphino) ethyl]-1,1'-biferrocene (ArylTRAPS)] and their transition metal complexes. Organometallics 1995.14. 4549-4558; (c) Ireland. T.; Grossheimann, G.; Wieser-Jeunesse, C.; Knoxhwl. P. Ferrocenyl ligands with two phosphanyl substituents in the α,ξ-positions for the transition metal catalyzed asymmetric hydrogenation of functionalized double bonds. Angew. Chem. Int. Ed.1999.38.3212-3215; (d) Lotz, M.; Polborn, K.; Knochel, P. New ferrocenyl ligands with broad applications in asymmetric catalyis. Angew. Chem. Int. Ed.2002,41, 4708-4711; (e) Maienza, F.; Worle, M.; Steffanut, P.; Mezzetti, A. Ferrocenyl diphosphines containing stereogenic phosphorus atoms. Synthesis and application in the Rhodium-catalyzed asymmetric hydrogenation. Organometallics 1999,18,1041-1049; (f) Sturm T.; Weissensteiner. W.; Spindler, F. A novel class of ferrocenyl-aryl-based diphosphine ligands for Rh-and Ru-catalysed enantioselective hydrogenation. Adv. Synth. Catal.2003.345,160-164.
    [9](a) RajanBabu, T. V.; Ayers, T. A.; Casalnuovo, A. L. Electronic amplification of selectivity in Rh-catalyzed hydrogenations:D-glucose-derived ligands for the synthesis of D-or L-amino acids. J. Am. Chem. Soc.1994,116,4101-4102; (b) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. A new planar chiral bisphosphine ligands for asymmetric catalysis:highly enantioselective hydrogenations under mild conditions. J. Am. Chem. Soc.1997,119,6207-6208; (c) Reetz, M. T.; Mehler, G. Highly enantioselective Rh-catalyzed hydrogenation reaction based on chiral monophosphite ligands. Angew. Chem. Int. Ed.2000,39,3889-3890; (d) Tang, W.; Zhang, X. A chiral 1,2-bisphospholane ligand with a novel structural motif:applications in highly enantioselective Rh-catalyzed hydrogenations. Angew. Chem. Int. Ed.2002,41, 1612-1614.
    [10](a) Johnson, J. C.; Evans, D. A.; Chiral bis-(oxazoline) copper(II) complexes:versatile catalysts for enantioselective cycloaddition, Aldol, Michael, and carbonyl-ene reactions. Acc. Chem. Res.2000,33,325-335; (b) Evans, D. A.; Tregray, S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky. T. Cysymmetric copper(II) complexes as chiral Lewis acids. Catalytic enantioselective carbonyl-ene reactions with glyoxylate and pyruvate esters. J. Am. Chem. Soc.2000,122,7936-7943; (c) Evans, D. A.; Johnson, J. C; Olhava, E. J. Enantioselective synthesis of dihydropyrans. Catalysis of hetero-Diels-Alder reactions by bis(oxazoline) copper(II) complexes.J. Am. Chem. Soc.2000,122,1635-1649.
    [11]Matt, P. V.; Pfaltz, A. Chiral phosphinoaryl dihydrooxazoles as ligands in asymmetric catalysis:Pd-catalyzed allylic substitution. Angew. Chem. Int. Ed.1993,32,566-568.
    [12](a) Trost, B. M.; Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev.1996.96,395-422; (b) Trost, B. M. Designing a receptor for molecular recognition in a catalytic synthetic reaction:allylic alkylation. Acc. Chem. Res. 1996.29.355-364.
    [13](a) Gladiali. S.:Dore. A.; Fabbri, D. Novel hetero bidentate ligands for asymmetric catalysis:Synthesis and Rhodium-catalysed reactions of (S)-alkyl (R)-2-diphenylphosphino-1,1'-binaphthyl-2'-thiol. Tetrahedron:Asymmetry 1994,5, 1143-1146; (b) Sasai. H.; Suzuki. T.; Arai. S.; Arai, T.; Shibasaki, M. Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond forming reactions and catalytic asymmetric nitroaldol reactions. J. Am. Chem. Soc.1992,114,4418-4420; (c) Mikami, K.; Narisawa, S.; Shimizu, M.; Terada, M. Asymmetric desymmetrization by enantioselective catalysis of carbonyl-ene reaction:remote internal asymmetric induction. J. Am. Chem. Soc.1992,114.6566-6568; (d)中国科学院上海有机化学研究所理学博士论文,管小阳,2011.
    [14]Martin S. F. Evolution of the vinylogous Mannich reaction as a key construction for lkaloid synthesis. Acc. Chem. Res.2002,35,895-904.
    [15](a) Kleinmann. E. F.; Trost, B. M.; Flemming, I.; Eds. In Comprehensive Organic Synthesis; Pergamon Press:New York.1991, Vol.2, Chapter 4.1; (b) Denmark, S.; Nicaise, O.; Jacobsen, E.; Pfaltz, A.; Yamomoto, H.; Eds. In Comprehensive Asymmetric Catalysis; Springer:Berlin,1999, Vol.2, p 93; (c) Arend, M.; Westerman, B.; Risch, N. Modern variants of the Mannich reaction. Angew. Chem. Int. Ed.1998,37,1044-1070. The first example of the application of the Mannich reaction to natural product synthesis is:(d) Robinson, R. Synthesis of tropinone. J. Chem. Soc.1917,762-768.
    [16](a) Hart, D.; Ha, D. The ester enolate-imine condensation route to.beta.-lactams. Chem. Rev.1989,89,1447-1465; (b) Kobayashi, S.; Ishitani, H. Catalytic enantioselective addition to imines. Chem. Rev.1999,99,1069-1094; (c) Cordova, A. The direct catalytic asymmetric mannich reaction. Acc. Chem. Res.2004,37,102-112; (d) Friestad, G.; Mathies, A. Recent developments in asymmetric catalytic addition to C=N bonds. Tetrahedron 2007.63,2541-2569.
    [17]Corey, E.; Decicco, C.; Newbold, R. Highly enantioselective and diastereoselective synthesis of β-amino acid esters and β-lactams from achiral esters and imines. Tetrahedron Lett.1991,32.5287-5290.
    [18](a) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. The vinylogous aldol reaction:a valuable, yet understated carbon-carbon bond-forming maneuver. Chem. Rev. 2000,100,1929-1972; (b) Bur. S.; Martin, S. F. Vinylogous Mannich reactions: selectivity and synthetic utility. Tetrahedron 2001,57,3221-3242.
    [19]Martin, S. F.; Lopez, O. Vinylogous Mannich reactions. Catalytic asymmetric additions of triisopropylsilyloxyfurans to aldimines. Tetrahedron Lett.1999,40,8949-8953.
    [20]Akiyama, T.; Honma, Y.; Itoh, J.; Fuchibe, K. Vinylogous Mannich-type reaction catalyzed by an iodine-substituted chiral phosphoric acid. Adv. Synth. Catal.2008,350, 399-402.
    [21](a) Sichert. M.; Schneider. C. The enantioselective Br(?)nsted acid catalyzed vinylogous Mannich reaction. Angew. Chem.. Int. Ed.2008,47,3631-3634; (b) Giera. D. S.; Sichert. M.; Schneider. C. Br(?)nsted acid catalyzed enantioselective vinylogous Mannich reaction of vinylketene silyl N,O-acetals. Org. Lett.2008.10.4259-4262.
    [22]Reviews for the silver-catalyzed asymmetric reactions, please see:(a) Yanagisawa. A.; Arai, T. Recent advances in chiral phosphine-silver(I) comples-catalyzed asymmetric reactions. Chem. Commun.2008,1165-1172; (b) Naodovic, M.; Yamamoto. H. Asymmetric silver-catalyzed reactions. Chem. Rev.2008,108,3132-3148.
    [23](a) Mandai. H.; Mandai. K.; Snapper, M; Hoveyda, A. Three-component Ag-catalyzed enantioselective vinylogous Mannich and aza-Diels-Alder reactions with alkyl-substituted aldehydes. J. Am. Chem. Soc.2008,130,17961-17969; (b) Carswell. E.; Snapper, M.; Hoveyda, A.; Tang, J. A Highly efficient and practical method for catalytic asymmetric vinylogous Mannich (AVM) reactions. Angew. Chem., Int. Ed.2006,45, 7230-7233.
    [24]Gonzalez, A.; Arrayas, R.; Rivero, M; Carretero, J. Catalytic asymmetric vinylogous Mannich reaction of N-(2-thienyl)sulfonylimines. Org. Lett.2008,10,4335-4337.
    [25]Yuan. Z.-L.; Jiang, J.-J.; Shi, M. The application of chiral phosphine-Schiff base type ligands in silver(Ⅰ)-catalyzed asymmetric vinylogous Mannich reaction of aldimines with trimethylsiloxyfuran. Tetrahedron 2009,65,6001-6007.
    [26]Deng. H.-P.; Wei, Y.; Shi, M. Axially chiral phosphine-oxazoline ligands in Silver(Ⅰ)-catalyzed asymmetric Mannich reaction of aldimines with trimethylsiloxyfuran. Adv. Synth. Catal.2009,351,2897-2902.
    [27](a) Zhang, C; Lu, X. Phosphine-catalyzed cycloaddition of 2,3-butadienoates or 2-butynoates with electron-deficient olefins. A novel [3+2] annulation approach to cyclopentenes. J. Org. Chem.1995,60,2906-2908.
    [28]For examples:(a) Pyne, S. G.; Schafer, K.; Skelton, B. W.; White, A. H. Synthesis of novel conformationally restricted L-glutamate analogues. Chem. Commun.1997, 2267-2268; (b) Ung, A. T.; Schafer, K.; Lindsay, K. B.; Pyne, S. G.; Amornraska, K. Wouters, R.; Linden, I. V. d.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White, A. H. Synthesis and biological activities of conformationally restricted cyclopentenyl-glutamate analogues. J. Org. Chem.2002,67,227-233; (c) Pham, T. Q.; Pyne, S. G.; Skelton, B. W.; White, A. H. Regioselective and diastereoselective phosphine-catalysed [3+2] cycloadditions to 5-methylenehydantoins:reversal of regioselectivity using chiral N-2-butynoyl-(4S)-benzyloxazolidinone. Tetrahedron Lett.2002,43,5953-5956; (d) Wang, J.-C.; Ng, S.-S.; Krische, M. J. Catalytic diastereoselective synthesis of diquinanes from acyclic precursors.J. Am. Chem. Soc.2003,125,3682-3683; (e) Wang, J.-C. Krische, M. J. Intramolecular organocatalytic [3+2] dipolar cycloaddition:stereospecific cycloaddition and the total synthesis of (±)-Hirsutene. Angew. Chem. Int. Ed.2003,42, 5855-5857; (f) Dudding, T.; Kwon, O.; Mercier, E. Theoretical rationale for regioselection in phosphine-catalyzed allenoate additions to acrylates, imines, and aldehydes. Org. Lett.2006,5,3643-3647; (g) Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Novel synthesis of highly functionalized pyrazolines and pyrazoles by triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with allenic esters. Org. Lett.2006,8,2213-2216; (h) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F. Liu, S.; Li, Y.; Yu, Z.-X. An unexpected role of a trace amount of water in catalyzing proton transfer in phosphine-catalyzed [3+2] cycloaddition of allenoates and alkenes. J. Am. Chem. Soc.2007,129,3470-3471; (i) Mercier, E.; Fonovic, B.; Henry, C; Kwon, O.; Dudding, T. Phosphine triggered [3+2] allenoate-acrylate annulation:a mechanistic enlightenment. Tetrahedron Lett.2007,48,3617-3620; (j) Wallace, D. J.; Sidda, R. L. Reamer, R. A. Phosphine-catalyzed cycloadditions of allenic ketones:new substrates for nucleophilic catalysis.J. Org. Chem.2007,72,1051-1054.
    [29]Zhao. Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Development of asymmetric phosphine-promoted annulations of allenes with electron-deficient olefins and imines. Chem. Commun.2012,48,1724-1732.
    [30](a) Zhu, G; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. Asymmetric [3+2] cycloaddition of 2,3-butadienoates with electron-deficient olefins catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]heptanes. J. Am. Chem. Soc.1997, 119,3836-3837:(b) Wilson, J. E.; Fu, G. C. Synthesis of functionalized cyclopentenes through catalytic asymmetric [3+2] cycloadditions of allenes with enones. Angew. Chem. Int. Ed.2006,45.1426-1429; (c) Cowen, B. J.; Miller, S. J. Enantioselective [3+2]-cycloadditions catalyzed by a protected, multifunctional phosphine-containing a-amino acid. J. Am. Chem. Soc.2007,129,10988-10989; (d) Fang, Y.-Q.; Jacobsen, E. N. Cooperative, highly enantioselective phosphinothiourea catalysis of imine-allene [3+2] cycloadditions. J. Am. Chem. Soc.2008,130,5660-5661; (e) Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang. Y.-Q.; Liu, W.; Zhang, J.-K.; Zhao, G. Asymmetric [3+2] cycloadditions of allenoates and dual activated olefins catalyzed by simple bifunctional N-Acyl aminophosphines. Angew. Chem. Int. Ed.2010,49,4467-4470; (f) Han, X.-Y; Wang, Y.-Q.; Zhong, F.-R.; Lu, Y.-X. Enantioselective [3+2] cycloaddition of allenes to acrylates catalyzed by dipeptide-derived phosphines:facile creation of functionalized cyclopentenes containing quaternary stereogenic centers. J. Am. Chem. Soc.2011,133, 1726-1729.
    [31](a) Jean. L.; Marinetti, A. Phosphine-catalyzed enantioselective [3+2] annulations of 2,3-butadienoates with imines. Tetrahedron Lett.2006,47,2141-2145; (b) Fleury-Bregeot, N.; Jean, L.; Retailleau, P.; Marinetti, A. Screening of chiral phosphines as catalysts for the enantioselective [3+2] annulations of N-tosylimines with allenic esters. Tetrahedron 2007,63,11920-11927; (c) Panossian, A.; Fleury-Bregeot, N.; Marinetti, A. Use of allenylphosphonates as new substrates for phosphane-catalyzed [3+2] and [4+2] annulations. Eur. J. Org. Chem.2008,3826-3833; (d) Voituriez, A.; Panossian, A. Fleury-Bregeot, N.; Retailleau, P.; Marinetti, A.2-Phospha[3]ferrocenophanes with planar chirality:synthesis and use in enantioselective organocatalytic [3+2] cyclizations. J. Am. Chem. Soc.2008,130,14030-14031; (e) Voituriez, A.; Panossian, A.; Fleury-Bregeot, N.; Retailleau, P.; Marinetti, A. Synthesis of chiral 2-phospha[3]ferrocenophanes and their behaviour as organocatalysts in [3+2] cyclization reactions. Adv. Synth. Catal.2009,351,1968-1976; (f) Pinto. N.; Neel, M; Panossian. A.; Retailleau. P.; Frison. G; Voituriez, A.; Marinetti, A. Expanding the scope of enantioselective ferroPHANE-promoted [3+2] annulations with, β-unsaturated ketones. Chem. Eur. J.2010,16,1033-1045.
    [32](a) Zhu, X.; Lan, J.; Kwon, O. An expedient phosphine-catalyzed [4+2] annulation: synthesis of highly functionalized tetrahydropyridines. J. Am. Chem. Soc.2003,125, 4716-4717; (b) Tran, Y. S.; Kwon, O. An application of the phosphine-catalyzed [4+2] annulation in indole alkaloid synthesis:formal syntheses of (±)-Alstonerine and (±)-Macroline. Org. Lett.2005,7,4289-4291; (c) Castellano, S.; Fiji. H. D. G.; Kinderman, S. S.; Watanabe, M.; de Leon, P.; Tamanoi, F.; Kwon, O. Small-molecule inhibitors of protein geranylgeranyltransferase type Ⅰ.J. Am. Chem. Soc.2007,129, 5843-5845; (d) Tran, Y. S.; Kwon, O. Phosphine-catalyzed [4+2] annulation:synthesis of cyclohexenes.J. Am. Chem. Soc.2007,129,12632-12633; (e) Guo, H.-C.; Xu, Q.-H.; Kwon, O. Phosphine-promoted [3+3] annulations of aziridines with allenoates:facile entry into highly functionalized tetrahydropyridines. J. Am. Chem. Soc.2009,131, 6318-6319.
    [33]Wurz, R. P.; Fu, G. C. Catalytic asymmetric synthesis of piperidine derivatives through the [4+2] annulation of imines with allenes. J. Am. Chem. Soc.2005,127,12234-12235.
    [34]Zhao. G.-L.; Huang, J.-W.; Shi, M. Abnormal aza-Baylis-Hillman reaction of N-tosylated imines with ethyl 2,3-butadienoate and penta-3,4-dien-2-one. Org. Lett.2003, 5.4737-4739.
    [35]Denis. J.-B.; Masson, G.; Retailleau, P.; Zhu, J. Cinchona alkaloid amide catalyzed enantioselective formal [2+2] cycloadditions of allenoates and imines:synthesis of 2,4-disubstituted azetidines. Angew. Chem., Int. Ed.2011,50,5356-5360.
    [36]Wang, X.; Fang, T.; Tong, X. Enantioselective amine-catalyzed [4+2] annulations of allenoates and oxo-dienes:an asymmetric synthesis of dihydropyrans. Angew. Chem., Int. Ed.,2011,50,5361-5364.
    [37]Ashtekar, K. D.; Staples, R. J.; Borhan, B. Development of a formal catalytic asymmetric [4+2] addition of ethyl-2,3-butadienoate with acyclic enones. Org. Lett.,2011, 13.5732-5735.
    [38]For reviews on MBH or aza-MBH reactions, see:(a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev.2003,103,811-892; (b) Basavaiah, D.; Rao, K. V.; Reddy, R. J. The Baylis-Hillman reaction:a novel source of attraction, opportunities, and challenges in synthetic chemistry. Chem. Soc. Rev.2007,36,1581-1588. (j) Declerck, V.; Martinez, J.; Lamaty, F. Aza-Baylis-Hillman reaction. Chem. Rev.2009,109,1-43; (c) Basavaiah, D.; Reddy, R. J.; Badsara, S. S. Recent contributions from the Baylis-Hillman reaction to organic chemistry. Chem. Rev.2010,110,5447-5674.
    [39](a) Hoffmann, H. M. R.; Rabe, J. Preparation of 2-(1-hydroxyalkyl)acrylic esters; simple three-step synthesis of mikanecic acid. Angew. Chem. Int. Ed.1983,22,795-796; (b) Hill. J. S.; Isaacs, N. S. Mechanism of a-substitution reactions of acrylic derivatives. J. Phys. Org. Chem.1990,3,285-288; (c) Bode. M. L.; Kaye, P. T. A kinetic and mechanistic study of the Baylis-Hillman reaction. Tetrahedron Lett.1991.32,5611-5614; (d) Fort. Y.; Berthe. M. C.; Caubere, P. The'Baylis-Hillman Reaction'mechanism and applications revisited. Tetrahedron 1992,48,6371-6384.
    [40]For examples, see:(a) Basavaiah, D.; Satyanarayana, T. A novel, tandem construction of C-N and C-C bonds:facile and one-pot transformation of the Baylis-Hillman adducts into 2-benzazepines. Chem. Commun.2004,32-33; (b) Navarre. L.; Darses. S.; Genet, J.-P. Baylis-Hillman adducts in rhodium-catalyzed 1.4-additions:unusual reactivity. Chem. Commun.2004,1108-1109; (c) Lee, M. J.; Lee, K. Y.; Lee. J. Y; Kim. J. N. Experimental and theoretical study on the olefin metathesis of alkenyl Baylis-Hillman adducts using second-generation Grubbs catalyst. Org. Lett.2004,6,3313-3316; (d) Das, B.;Banerjee, J.; Mahender, G.; Majhi, A. Organic Reactions in Water:An efficient zinc-mediated stereoselective synthesis of (E)-and (Z)-trisubstituted alkenes using unactivated alkyl Halides. Org. Lett.2004,6,3349-3352; (e) Cho, C.-W.; Krisch. M. J. Regio-and stereoselective construction of γ-butenolides through phosphine-catalyzed substitution of Morita-Baylis-Hillman acetates:an organocatalytic allylic alkylation. Angew. Chem. Int. Ed.2004,43,6689-6691; (f) Deklerck, V.; Ribiere, P.; Martinez, J.; Lamaty, F. Sequential aza-Baylis-Hillman/ring vlosing metathesis/aromatization as a novel route for the synthesis of substituted pyrroles. J. Org. Chem.2004,69,8372-8381; (g) Lindner, C.; Tandon, R.; Liu, Y.; Maryasin, B.; Zipse. H. The aza-Morita-Baylis-Hillman reaction of electronically and sterically deactivated substrates. Org. Biomol. Chem.2012,10,3210-3218.
    [41]Aroyan, C. E.; Dermenci, A.; Miller, S. J. The Rauhut-Currier reaction:a history and its synthetic application. Tetrahedron 2009,65,4069-4084.
    [42]Aroyan, C. E.; Miller, S. J. Enantioselective Rauhut-Currier reactions promoted by protected cysteine. J. Am. Chem. Soc.2007,129,256-257.
    [43]Seidel, F.; Gladysz, J. A. Enantioselective catalysis of intramolecular Morita-Baylis-Hillman and related reactions by chiral rhenium-containing phosphines of the formula (η5-C5H5)Re(NO)(PPh3)(CH2PAr2). Synlett 2007,986-988.
    [44]Reynolds, T. E.; Binkley, M. S.; Scheidt, K. A. Lewis acid-catalyzed conjugate additions of silyloxyallenes:a selective solution to the intermolecular Rauhut-Currier problem. Org. Lett.2008,10,2449-2452.
    [45]Wang, J.; Xie, H.; Zu, L.; Wang, W. A highly stereoselective hydrogen-bond-mediated Michael-Michael cascade process through dynamic kinetic resolution. Angew. Chem., Int. Ed.2008,47,4177-4179.
    [46](a) Ojima, I.; Eds. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell:West Sussex,2008; pp 1-624; (b) Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications; Wiley-VCH:New York.2004; pp 1-308.
    [47](a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneuer. V. Fluorine in medicinal chemistry. Chem. Soc. Rev.2008.37,320-330; (b) Georgii. G. F. Fluorine-Containing Heterocycles. Part Ⅰ. Synthesis by Intramolecular Cyclization. Katritzky. A. R.:Ed. In Advances in Heterocyclic Chemistry. Elsevier:Amsterdam,2004; Vol.86, pp 129-224.
    [48]Spanedda, M. V.; Ourevitch, M.; Crousse, B.; Begue, J. P.; Bonnet-Delpon, D. Vinylogous Mannich reactions. Additions of trimethylsilyloxyfuran to fluorinated aldimines. Tetrahedron Lett.2004,45,5023-5025.
    [49]For a review, please see:Vogl, E. M.; Groger, H.; Shibasaki, M. Towards perfect asymmetric catalysis:additives and cocatalysts. Angew. Chem. Int. Ed.1999,38, 1570-1577;
    [50](a) Noritake, S.; Shibata, N.; Nomura, Y.; Huang, Y.-Y.; Matsnev, A.; Nakamura, S.; Toru, T.; Cahard, D. Enantioselective electrophilic trifluoromethylation of beta-keto esters with Umemoto reagents induced by chiral nonracemic guanidines. Org. Biomol. Chem.2009,7,3599-3604; (b) Kawai, H.; Kusuda, A.; Nakamura, S.; Shiro, M; Shibata, N. Catalytic enantioselective trifluoromethylation of azomethine imines with trimethyl(trifluoromethyl)silane. Angew. Chem., Int. Ed.2009,48.6324-6327; (c) Ogawa, S.; Shibata, N.; Inagaki, J.; Nakamura, S.; Toru, T.; Shiro, M. Cinchona-alkaloid-catalyzed enantioselective direct Aldol-type reaction of oxindoles with ethyl trifluoropyruvate. Angew. Chem., Int. Ed.2007,46,8666-8669; (d) Mizuta, S.; Shibata, N.; Ogawa, S.; Fujimoto, H.; Nakamura, S.; Toru, T. Lewis acid-catalyzed tri-and difluoromethylation reactions of aldehydes. Chem. Commun.2006,2575-2576; (e) Nie, J.; Zhang, G.-W.; Wang, L.; Fu, A.-P; Zheng, Y.; Ma, J.-A. A perfect double role of CF3 groups in activating substrates and stabilizing adducts:the chiral Br(?)nsted acid-catalyzed direct arylation of trifluoromethyl ketones. Chem. Commun.2009, 2356-2358; (f) Nakamura, S.; Hyodo, K.; Nakamura, Y.; Shibata, N.; Toru, T. Novel enantiocomplementary C2-symmetric chiral bis(imidazoline) ligands:highly enantioselective Friedel-Crafts alkylation of indoles with ethyl 3,3,3-trifluoropyruvate. Adv. Synth. Catal.2008,350,1443-1448.
    [51]For example:(a) Kaur, P.; Nguyen, T; Li, G. Chiral N-phosphonylimine chemistry: asymmetric synthesis of N-phosphonyl β-amino Weinreb amides. Eur. J. Org. Chem. 2009,912-916; (b) Han, J.-L.; Ai, T.; Li, G. Chiral N-phosphonyl imine chemistry: asymmetric addition of ketone-derived enolates for the synthesis of β-amino ketones. Synthesis 2008,2519-2526; (c) Almansa, R.; Collados, J. F.; Guijarro, D.; Yus, M. Asymmetric synthesis of a-and β-amino acids by diastereoselective addition of triorganozincates to N-(tert-butanesulfinyl)imines. Tetrahedron:Asymmetry 2010,21, 1421-1431; (d) Meyer, L.; Poirier, J.-M.; Duhamel, P.; Duhamel, L. Chiral auxiliaries with a switching center:new tools in asymmetric synthesis. Application to the synthesis of enantiomerically pure (R)-and (S)-a-amino acids. J. Org. Chem.1998,63,8094-8095.
    [52]E. L. Carswell, M. L. Snapper, A. H. Hoveyda, J. Tang, A highly efficient and practical method for catalytic asymmetric vinylogous Mannich (AVM) reactions. Angew. Chem. Int. Ed.2006,45,7230-7233.
    [53](a) Greene, T. W.; Wuts, P. G. Protective Groups in Organic Synthesis. John Wiley& Sons:NY,1999, pp 518-525; (b) The use of α-carbamoyl sulfones for the in situ generation of N-Boc imines, see:Petrini, M. Alpha-amido sulfones as stable precursors of reactive N-acylimino derivatives. Chem. Rev.2005,105.3949-3977; (c) Liu. Z.; Shi, M. Catalytic asymmetric addition of arylboronic acids to N-Boc imines generated in situ using C2-symmetric cationic N-heterocyclic carbenes (NHCs) Pd2+diaquo complexes. Tetrahedron 2010,66,2619-2623.
    [54]Kohler, V.; Bailey, K. R.; Znabet, A.; Raftery. J.; Helliwell, M.; Turner, N. J. Enantioselective biocatalytic oxidative desymmetrization of substituted pyrrolidines. Angew. Chem. Int. Ed.2010,49,2182-2184.
    [55]For reviews on phosphine catalysis, see:(a) Lu, X.; Zhang, C.;Xu, Z. Reactions of electron-deficient alkynes and allenes under phosphine catalysis. Acc. Chem. Res.2001, 34.535-544; (b) Ye, L.-W.; Zhou, J.; Tang, Y. Phosphine-triggered synthesis of functionalized cyclic compounds. Chem. Soc. Rev.2008,37,1140-1152; (c) Cowen, B. J.; Miller, S. J. Enantioselective catalysis and complexity generation from allenoates. Chem. Soc. Rev.2009,38,3102-3116; (d) Wei, Y.; Shi, M. Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita-Baylis-Hillman and related reactions. Acc. Chem. Res.2010,43,1005-1018.
    [56]Du, Y.; Lu, X.; Yu, Y. Highly regioselective construction of spirocycles via phosphine-catalyzed [3+2]-cycloaddition. J. Org. Chem.2002,67,8901-8905.
    [57]Evans, C. A.; Miller, S. J. Amine-catalyzed coupling of allenic esters to alpha, beta-unsaturated carbonyls. J. Am. Chem. Soc.2003,125,12394-12395.
    [58]Chen, B.; Ma, S.-M. Organic iron for the PdCl2/FeCl3-cocatalyzed coupling cyclization of 2,3-allenoates in the presence of allylic bromides. Chem. Eur. J.2011,17,754-757'.
    [59]Hashmi, A. S. K. Transition metal catalyzed dimerization of allenyl ketones. Angew. Chem., Int. Ed.1995,34,1581-1583.
    [60]F.-R. Zhong, G.-Y. Chen, Y.-X. Lu, Enantioselective Morita-Baylis-Hillman reaction of isatins with acrylates:facile creation of 3-hydroxy-2-oxindoles. Org. Lett.2011,13, 82-85.
    [61]Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Oxetanes as versatile elements in drug discovery and synthesis. Angew. Chem. Int. Ed.2010,49, 9052-9067.
    [62](a) Soai, K.; Niwa, S.; Yamanoi, T.; Hikima, H.; Ishizaki, M. Asymmetric synthesis of 2-aryl substituted oxetanes by enantioselective reduction of β-halo ketones using lithium borohydride modified with N,N'-dibenzoylcystine. J. Chem. Soc. Chem. Commun.1986, 1018-1019; (b) Sone, T.; Lu, G.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric synthesis of 2,2-disubstituted oxetanes from ketones by using a one-pot sequential addition of sulfur ylide. Angew. Chem. Int. Ed.2009,48,1677-1680; (c) Mikami, K. Aikawa, K.; Aida, J. Fragment-based reaction discovery of non-ene-type carbon-carbon bond-forming reactions:catalytic asymmetric oxetane synthesis by screening olefinic reactants without allylic hydrogen. Synlett 2011.2719-2724; (d) Aikawa. K.; Hioki, Y. Shimizu. N.; Mikami, K. Catalytic asymmetric synthesis of stable oxetenes via Lewis acid-promoted [2+2] cycloaddition. J. Am. Chem. Soc.2011,133,20092-20095.
    [63]Wang, T.; Chen, X.-Y.; Ye, S. DABCO-catalyzed [2+2] cycloaddition reactions of allenoates and trifluoromethylketones:synthesis of 2-alkyleneoxetanes. Tetrahedron Lett. 2011,52,5488-5490.
    [64]Saunders, L. B.; Miller, S. J. Divergent reactivity in amine-and phosphine-catalyzed C-C bond-forming reactions of allenoates with 2.2.2-Trifluoroacetophenones. ACS Catal. 2011,1,1347-1350.
    [65]Yin, L.; Kanai, M.; Shibasaki, M. A facile pathway to enantiomerically enriched 3-hydroxy-2-oxindoles:asymmetric intramolecular arylation of a-Keto amides catalyzed by a palladium-difluorPhos complex. Angew. Chem. Int. Ed.2011,50,7620-7623.
    [66]Liu, L.; Zhang, S.; Xue, F.; Lou, G.; Zhang, H.; Ma, S.; Duan, W.; Wang, W. Catalytic enantioselective Henry reactions of isatins:application in the concise synthesis of (S)-(-)-spirobrassinin. Chem. Eur. J.2011,17,7791-7795.
    [67]For selected examples, see:(a) Lee, S.; Hartwig, J. F. Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. Rate acceleration, use of aryl chloride substrates, and a new carbene ligand for asymmetric transformations. J. Org. Chem.2001,66,3402-3415; (b) Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, M. M. Catalytic asymmetric synthesis of quaternary carbons bearing two aryl substituents. Enantioselective synthesis of 3-alkyl-3-aryl oxindoles by catalytic asymmetric intramolecular heck reactions. J. Am. Chem. Soc.2003,125,6261-6271; (c) Hills, I. D.; Fu, G. C. Catalytic enantioselective synthesis of oxindoles and benzofuranones that bear a quaternary stereocenter. Angew. Chem., Int. Ed.2003,42,3921-3924; (d) Trost, B. M.; Frederiksen, M. U. Palladium-catalyzed asymmetric allylation of prochiral nucleophiles:synthesis of 3-allyl-3-aryl oxindoles. Angew. Chem., Int. Ed.2005,44,308-310; (e) Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.; Kundig, E. P. Chiral N-heterocyclic carbene ligands for asymmetric catalytic oxindole synthesis. Chem. Commun.2008, 4040-4042; (f) Jia, Y.-X.; Kundig, E. P. Oxindole synthesis by direct coupling of Csp2-H and Csp3-H centers. Angew. Chem., Int. Ed.2009,48,1636-1639.
    [68]Zhao, G.-L.; Shi, M. Baylis-Hillman reactions of N-tosyl aldimines and aryl aldehydes with 3-methylpenta-3,4-dien-2-one. Org. Biomol. Chem.2005,3,3686-3694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700