巴什拜羊生物学特性及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界养羊大国,新疆是我国主要绵羊生产基地,巴什拜羊是新疆乃至国内外不可多见的地方优良品种,具有特殊生物学特征和特性。近年来,虽然对巴什拜羊进行了本品种选育为主的多方面常规育种工作,但对巴什拜羊的生物学特性和遗传多样性方面分子水平的研究很少,未见从形态特征到分子遗传标记的系统研究报告。
     本文采用从形态标记、细胞遗传标记、生化标记到分子遗传标记的各项研究方法,比较系统的研究了巴什拜羊的生物学特性和遗传多样性,为今后肉羊生产中常规育种与分子育种相结合的研究、传统畜牧业的提升、区域经济的发展提供一些实践和理论依据。
     1.巴什拜羊生物学特性研究发现
     (1)巴什拜羊种质特性研究显示:巴什拜羊的外形呈方圆形,躯体各部位结构匀称,肉用型明显,遗传性稳定、属于结实性体质。毛属粗毛,毛色以宗红色毛为主,有黑色和白色毛。角形以公母羊都无角为主,有两角和多角形。
     巴什拜断奶公、母羔羊生长指标之间没有明显差异,生长指标的差异随着年龄的增加而加大,到成年差异最显著(P<0.01)。
     巴什拜羊从断奶到成年一直保持屠宰率、净肉率和骨肉比等主要产肉指标平均56%、45%和1:4kg以上的水平,放牧条件下春季到秋季抓膘性能达20—25%1
     巴什拜羊受胎率97%,繁殖力110%、羔羊成活率98%以上。
     巴什拜羊的基础生理指标在正常范围之内,血液生理生化指标中血清胆固醇含量低其它地方绵羊品种,其它成分属于正常范围之内。
     巴什拜公、母羊胆小,容易受惊,野性大,但合群性好,在正常情况下很难将牧群分开,具有良好的放牧特性,表现为采食快、爬山能力强,采食过程中的选择性不强,采食前进速度和采食速度较快。
     (2)巴什拜羊产肉性能研究显示:巴什拜羊在没有任何补给草料的自然放牧条件下,4.5月龄断奶羔羊平均屠宰率为56.00%、胴体重为19.0kg、净肉率为45.7%、骨肉比为1:4.00kg,周岁公、母羊和成年公、母羊同样的保持这个水平。以上四个主要产肉指标居全国首位,基本接近欧洲6月龄育肥羔羊的中等水平
     巴什拜羔羊眼肌面积15.60cm2,腰部肌厚和大腿肌厚各4 cm2,臀脂占活重的5%,总脂肪占活重的19.39%。肉色鲜红、肉嫩多汁,营养成分全面,蛋白质含量19.38%、脂肪含量10.1%,胆固醇含量42mg/100g,脂肪酸种类齐全,必需脂肪酸含量44.25%,必需氨基酸和鲜味氨基酸含量占总氨基酸含量的88.27%,微量元素含量丰富。
     (3)生长规律研究显示:巴什拜羊一出生就进入最高体重增长速度和强度,也是从初生到0-60日龄绝对增长速度最高,公羔393g-295g/d,母羔372g-275g/d,相对增长强度强,公羔80.38%-19.22%、母羔78.37%一18.92%,4月龄羔羊体重35.5kg,达到成年羊体重的一半以上,典型的早熟绵羊品种。
     (4)巴什拜羊与野生盘羊杂交结果分析显示:野生盘羊杂交三代(回交二代)羔羊的瘦肉重显著的高于纯巴什拜羊(P<0.05),而肌内脂肪和背部脂肪层厚度显著的低于纯巴什拜羔羊(P<0.05),脂臀重、总脂肪重、脂臀占活重率、总脂肪占活重率、腰部脂肪厚度等指标及显著的低于纯巴什拜羊(P<0.01)。
     回交二代羊其屠宰率、胴体重、净肉率和骨肉比与纯巴什拜羊的成绩相似,但总脂肪比纯巴什拜羊减少3910g,净肉重增多了15.0%,脂臀重减少了85.3%,腰部及大腿肌层各增厚0.5cm,腰部和背部脂肪层各减薄1.5cm和1.Ocm,总脂肪含量减少53.36%,尾脂肪、肌内脂肪、肾脂肪和大网膜(脂肪)都有减少的趋势。
     纯巴什拜羊和盘羊杂交后代羊肉的常规营养成分中,水分、蛋白质含量、钙、磷和胆固醇之间有一定的数值差异,但差异不显著(P>0.05),脂肪含量之间存在显著差异(P<0.05)。所有脂肪酸含量之间不存在显著差异(P>0.05)。
     纯巴什拜羊肉成分中钾的含量显著(P<0.05)的高于杂交后代羊,杂交后代羊肉中锌的含量级显著(P<0.01)的高于纯巴什拜羊,其它成分差异不显著(P>0.05)。
     纯巴什拜羊和盘羊杂交后代羊肉的每个氨基酸含量之间差异不显著,但必需氨基酸和鲜味氨基酸总合值之间存在显著差异(P<0.05)。巴什拜羊改良效果明显,有保留本身的优点,也吸收野生盘羊的优点,杂交后代出现双重效益的杂种优势。
     2.巴什拜羊多态性研究发现
     (1)形态标记研究证实:巴什拜羊的毛色有红、黑、白三种颜色,受三对有显性等级的复等位基因的控制,显性等级为红>黑>白,处于Hardy-Weinberg不平衡状态(P<0.05)。红毛基因的基因、基因型频率和产肉性能比其它毛色羊占优势,巴什拜羊的不同毛色可以作产肉性能的形态遗传标记参考。
     巴什拜羊角与其它的绵羊一样受三对复等位基因的控制和从性遗传的支配。但角形遗传比较特殊,有多角型,多角羊在公、母羊中都有,是特有的品种标志,有角巴什拜羊的屠宰率低于无角羊。巴什拜羊群体中角形基因处于Hardy-Weinberg不平衡状态(P<0.05)。这与实际育种工作方向相符。巴什拜羊的白脸性状受一对基因的控制,而且绝对显性的常染色体遗传。
     (2)细胞遗传标记研究显示:巴什拜羊正常体细胞的染色体数为2n=54,性染色体构成为,雄性XY;雌性XX。正常体细胞(2n=54)占总观察细胞数的比率为90.42%,而2n≠54的细胞频率为9.58%。发现部分染色体的结构和数量变异,可能属于正常范围内,也可能是试验失误。
     (3)生化遗传标记证实:巴什拜羊LDH同工酶含量顺序为LDH1> LDH3> LDH2 > LDH5> LDH4;与其它品种之间存在多态性。
     LDH同工酶中LDH1和LDH3与巴什拜羊的体重有着级显著(P<0.001)的正相关,LDH2、LDH4和LDH5与巴什拜羊的体重呈负相关,而且LDH2和LDH4呈级显著(P<0.001)的负相关。LDH1和LDH3可以作巴什拜羊产肉性状早期选种的辅助遗传标记参考。
     Es同工酶中除了Es5与巴什拜羊的体重呈极显著(P<0.001)的正相关外,其余的全部呈负相关,而且Es1、Es3、Es4呈级显著(P<0.01)的负相关,表明,Es同工酶中只有Es5可以作巴什拜羊产肉性状的早期选中辅助遗传标记参考。
     Tf基因座的七个等位基因中Tfa和Tfp为优势基因,基因频率分别为0.3750和0.2292。Hb基因座具有A、B两个等位基因,各基因频率为0.5208和0.4792。发现巴什拜羊的HbAB介于高原型与平原型之间,海拔适应范围比较广,可作为早期选择的遗传标记参考。HbAB基因型各类群的各座位均处于Hardy-Weinderg平衡状态(P>0.05),比较适合于公羊的早期种选择。
     (4)微卫星遗传标记研究证实:①在10个微卫星位点中,共检测到110个等位基因,平均每个座位等位基因数11个。
     ②巴什拜羊红毛品系、黑毛品系、白毛品系和瘦肉型新品系的平均多态信息含量(PIC)分别为0.7926、0.7690、0.7721和0.8320,平均杂合度(H)分别为0.8174、0.7985、0.7921和0.8468,遗传多样性丰富。
     ③巴什拜羊群体的总近交系数为-0.1782,群体内近交系数为-0.2112,群体间基因分化系数为0.0237,巴什拜羊2.37%的遗传变异来自群体间,而97.63%的遗传变异是由个体间的差异引起的;基因流Nm平均值为8.9167,没有遗传分化现象。聚类分析发现,红毛品系与黑毛品系亲缘关系较近,之后与白毛品系相聚,最后与瘦肉型新品系聚在一起,聚类结果与品系育成史基本一致。
     ④微卫星座位BM143、OARJMP8、BL1038、OARHH35、ILSTS018、BMS648 BM143、BM4311八个标记对巴什拜羊红毛、黑毛、白毛三个品系的体重体尺都有不同程度的显著性相关,但与野生盘羊杂交的瘦肉型品系没有任何显著性相关。其中BMS648对红毛品系的所有生长指标都呈级显著的相关(P<0.01),BL1038对体长、胸围、管围有极显著相关(P<0.01),体高和体重有显著相关(P<0.05),BM143对胸围、管围体重有极显著相关(P<0.01),对体长有显著相关(P<0.05), ILSTS018对体长、管围、体重有极显著相关(P<0.01),对胸围有显著相关(P<0.05),其他座位没有相关或相关性不大。OARHH35对黑毛品系的体重有极显著相关(P<0.01),对体长和胸围有极显著相关(P<0.05),其他座位没有相关或相关性不大。BMS648座位对白毛品系的体高和体长有极显著相关(P<0.01),对胸围和体重有显著相关(P<0.05),其他座位没有相关或相关性不大。
     对差异显著的座位不同基因型进行多重比较显示:同一座位不同基因型对不同品系生长指标产生正、负效应。
     (5)巴什拜羊Callipyge基因和Leptin检测发现
     采用PCR-SSCP技术分析巴什拜羊双肌臀(CLPG)基因和瘦素(LEPTIN)基因SNPs,发现CLPG基因和LEPTIN基因的SNPs在巴什拜羊群体中存在多态性,在CLPGD和CLPGE引物扩增区域四个群体都发现了AA、AB和BB三种基因型,但没有发现A→G碱基突变。
     LA、LB引物扩增区域发现AA、AB基因型,LC引物扩增区域发现、BB两个纯合基因型。
China is one of the largest sheep producing country in the world. Xinjiang Provinces is its major production base for sheep. Bashibai sheep is a best breed in found in mainly in Xinjiang its other provinces and also in few other countries. Bashibai sheep possess special biological features and characteristics. Recently, conventional breeding of Bashibai sheep was performed, with little research about biological characteristics and genetic diversity at the molecular level and no research has been carried out from morphological characteristics to the systematic study with molecular genetic markers.
     In this study, we have used various research methods as morphological marker, cell genetic markers, biochemical markers of molecular genetic markers, the biological characteristics and genetic diversity of Bashibai sheep was more systematic studied, sheep production in the future by the conventional and molecular breeding of systematic breeding methods, the improvement of modern animal husbandry, development of regional economy to provide some practical and theoretical basis.
     1. Biological characteristics studied are:
     (1) Bashibai sheep germplasm characteristics
     Bashibai sheep showed a square-round shape, the body symmetry of all parts of the structure, apparently the meat-type with genetic stability and strong body. Coarse hair, mainly coat with red hair, also black and white hair, absences/presences of horn and polygons.
     There was no significant difference at weaning between male and female lambs by growth parameters, growth index differences increase with age, the most significant difference for the adult sheep was (P<0.01).
     Dressing percentage, meat percentage and meat-bone ratio from weaning to adult was found with an average of 56%,45% and 4:1. Performance from spring to autumn fatten up to 20-25% wtih grazing conditions.
     Pregnancy rate, fertility rate and lamb survival rate was 97%,110% and 98% respectively.
     Bashibai sheep was common in the normal physiological range, physiological and biochemical indicators of blood serum cholesterol were recorded low in comparison of other indigenous sheep breeds while other components are within the normal range.
     Bashibai sheep was timid, easily frightened, good gregarious, difficult to separate the herd in normal circumstances, with good grazing characteristics, showed faster feeding, climbing ability, the choice of feeding process is not strong, feeding rate and feed forward faster.
     (2) Meat production performance of Bashibai sheep
     Bashibai sheep in the natural grazing conditions with absence of any forage supply, the average dressing percentage of 4.5 months old weaned lambs was 56.00%,19.0kg carcass weight,45.7% meat percentage, meat-bone ratio of 4:1, aged and adult male, ewes also maintain this level. These four major meat production index ranks first in China, which is close to the middle level of 6 months old lamb in Europe.
     Bashibai sheep loin eye area 15.60 cm2, waist thick and big thigh muscle thick 4 cm, hip fat and total fat each accounted for 5% and 19.39% of live weight.
     Bashibai sheep with flesh red, tender and juicy, full nutrition, trace elements abundant, protein content 19.38%, fat content 10.1%, cholesterol content 42mg/100g, essential fatty acid content 44.25%, essential amino acids and delicious amino acids accounting for 88.27% ototal amino acid.
     (3) Growth pattern of Bashibai sheep
     Bashibai sheep was typically premature sheep breeds, the highest absolute growth rate and intensity of weight gain is 0-60 days from birth, male lambs 393g-295g/d, female lambs 372g-275g/d.High relative growth intensity,80.38%-19.22% for male lambs, 78.37%-18.92% for female lambs, four-month old lamb weight 35.5kg, more than half of adult sheep weight.
     (4) Bashibai sheep hybrid with Ovis Argali (wild sheep) analysis
     Hybridization of three generations (backcross generation) lean meat weight was significantly higher than pure Bashibai sheep (P<0.05), and intramuscular fat and back fat thickness was significantly lower than pure Bashibai sheep (P<0.05), hip fat weight and total fat weight, fat hip and live weight ratio, total fat and live weight ratio, waist fat thickness were measured and found significantly lower than pure Bashibai sheep (P<0.01).
     The rate of the dressing percentage, lean meat weight, meat percentage and meat-bone ratio of backcross generation were similar with pure Bashibai sheep, but total fat 3910g less than pure Bashibai sheep, lean meat weight increased 15.0%, lipid hip decreased 85.3%, waist and thigh muscle thick added 0.5 cm, waist and back fat layer thinning of 1.5cm and 1.0cm, total fat content decreased 53.36%. Tail fat, intramuscular fat, kidney fat and large networks membrane fat were decreased.
     Conventional meat nutrients, as moisture, protein, calcium, phosphorus and cholesterol level showed some differences, but not significant (P> 0.05), fat content is significant (P<0.05).
     Hybrid progeny and pure Bashibai sheep, no significant difference (P>0.05) was recorded between the fatty acids
     Pure Bashibai sheep components of meat potassium were significantly (P<0.05) higher than hybrid progeny, zinc level was significantly (P<0.01) lower, other components are not significant difference (P>0.05).
     Hybrid progeny and pure Bashibai sheep between each amino acid is not significantly different, but the essential amino acids and delicious amino acids combined significant difference (P<0.05).
     Hybrid progeny improved significantly, have retained Bashibai sheep's own advantages, also absorb the advantages of Ovis Argali, double-efficient hybrids heterosis. 2. Polymorphism study of Bashibai sheep
     (1) Morphological markers
     Bashibai sheep hair with red, black, white, is affected by three levels dominant control of multiple alleles, rating of the red> black> white, in the Hardy-Weinberg disequilibrium (P>0.05). Red-gene's gene, genotype frequency and meat productivity advantage over others hair color of sheep, the different hair color can be used for meat production performance of morphological genetic markers.
     Bashibai sheep angular genetic rather special, with polygonal, polygonal in the male and female sheep, a unique species mark. The angular affected by three pairs of alleles from the genetic control and domination. The dressing percentage of horn sheep was lower than non-horn sheep, which features in the same group, same age, same sex and live weight sheep showed more prominent. The angular gene in Hardy-Weinberg genetic imbalance is (P> 0.05). This is consistent with the direction of actual breeding. Bashibai sheep white face traits controlled by a pair of genes, and certainly autosomal dominant genetic.
     (2) Cell genetic markers
     Bashibai sheep normal body cells of chromosome number 2n=54, sex chromosome constitute the male XY,female XX. Normal somatic cells (2n=54) of the total observed number of cells was 90.42%, while the 2n≠54 cell frequency of 9.58%. Some chromosome structure and number of variations may fall within the normal range.
     (3) Biochemical genetic markers
     Bashibai sheep LDH isoenzyme levels LDH1> LDH3> LDH2> LDH5> LDH4; with polymorphisms among other species.
     LDH1 and LDH3 has a significant (P<0.01) positive correlation to the sheep's weight. LDH2, LDH4 and LDH5 was negatively correlated with body weight, LDH2 and LDH4 significantly (P<0.01) negative correlation. LDH1 and LDH3 could be the early selection of sheep meat production traits subsidies genetic markers.
     Es isozymes in addition to Es5 was significantly (P<0.01) positive correlation with body weight, the rest of all was negative correlation, and Esl, Es3, Es4 was significantly (P<0.01) negative. So only Es5 can be used for Bashibai sheep meat production characteristics to the early genetic markers.
     Tfa and Tfp was the dominant gene of the seven alleles of Tf loci, gene frequencies were 0.3750 and 0.2292. Hb locus A, B alleles, the gene frequency of 0.5208 and 0.4792. We found that HbAB between plateau and the plain, with wide range of altitude adaptation, can be used as early selection of genetic markers. HbAB genotype of each group of the seats are in Hardy-Weinderg equilibrium (P> 0.05), more appropriate for male sheep's early selection.
     (4)Microsatellite markers
     a. In 10 microsatellite loci, a total of 110 alleles were detected, the average number of alleles per locus 11.
     b. The average of Bashibai sheep red hair strain, black hair strain, white hair strain and new lean strain polymorphism information content (PIC) was 0.7926,0.7690,0.7721 and 0.8320, heterozygosity (H) were 0.8174,0.7985,0.7921 and 0.8468, genetic diversity.
     c. The global heterozygote deficit across all populations was-0.1782, inbreeding as-0.2112, coefficient of genetic differentiation was 0.0237, It was indicated that 2.37% of the total genetic variation could be explained by breed differences and remaining 97.63% by differences among individuals for each population. The average gene flow was 8.9167. The cluster analysis showed that the genetic relationship between red hair strain and black hair strain was nearer, and then got together with white hair strain, and at last got together with new lean sheep. The cluster analysis was generally in accordance with their breeding history.
     d. Microsatellite loci of BM143, OARJMP8, BL1038, OARHH35, ILSTS018, BMS648 BM143, BM4311 eight markers have different significantly correlated with body size and weight on three strains of red hair, black hair, and white hair. However, the lean strains have no significant correlation. BMS648 for all growth parameters were significantly correlated (P<0.01) on red hair strait. BL1038 has significant correlation (P<0.01) with body length, chest and tibia circumference, body height and weight were significantly correlated (P<0.05). BM143 has significant correlation (P<0.01) with chest and tibia circumference, body weight and length was significantly correlated (P<0.05). ILSTS018 has significant correlation (P<0.01) with body length, tibia circumference and body weight, chest circumference was significantly correlated (P<0.05). Others loci were not relevant. OARHH35 has significant correlation (P<0.01) with body weight on black hair strait, and body length and chest circumference were significantly correlated (P<0.05). Others loci were not relevant. BMS648 has significant correlation (P<0.01) with body height and weight on white hair strait, chest circumference and body weight were significantly correlated (P<0.05). Others loci were not relevant.
     Significant difference between the loci of the different genotypes of multiple comparisons showed that: the same loci on different strains of different genotypes have positive and negative effects on growth index.
     (5) Callipyge and Leptin gene
     The double muscled gene (CLPG) and leptin gene (LEPTIN) SNPs of Bashibai sheep detected by PCR-SSCP, found CLPG and LEPTIN SNPs polymorphism.
     CLPG1 and CLPG2 primer amplification regions found AA, AB and BB genotypes in the four groups but did not find mutation A→G. L1, L2 regions found AA, AB genotype, L3 regions found AA, BB homozygous genotype.
引文
[1]《中国畜禽遗传资源》编委会编写.中国畜禽遗传资源状况[M],北京:中国农业出版社,2004.1。
    [2]李跃等.畜禽地方品种资源保护及其利用[J].黑龙江畜牧兽医,2006.6:43。
    [3]吴常信,畜禽遗传资源保存的学术思想与技术[J].中国畜禽,2000,22(7)。
    [4]赵智杰,保护我国畜禽品种资源的多样性[J].家畜生态,2002,23(2):68。
    [5]季维智宿兵.遗传多样性研究的原理与方法.浙江科学技术出版社,1999
    [6]张恒庆,《保护生物学》[M].科学出版社,2005。
    [7]闫景娟.中国新疆八个绵羊群体微卫星DNA的遗传多样性研究[D].内蒙古农业大学硕士学位论文,2004。
    [8]周延清,杨清香,张改娜主编.生物遗传标记与应用[M],生物医药出版社,2008。
    [9]Geist,V., On the taxsonomy of giant sheep. Canadian Journal of Zoology,1990.69:706-723.
    [10]Ryder,M.L., Sheep and man,1983,London:Duckworth.ix.846.
    [11]Piper,L.and A.Ruvinsky, The Genetics of Sheep.1997, Wallingfort:CABI Publishing.626.
    [12]Ryder,M.L., Sheep.In:Mason,I.L, (ed)Evolutian of domesticanimals.1984, London.Longman.
    [13]Ryder,M.L.,Domasticatian history and breed evolution in sheep.In:Genetic resourics of pig,sheep and goat.1991, Elsevier science.365-375.
    [14]陈文华,张忠宽,中国农业考古资料索引。农业考古,1990(1):425-427。
    [15]谢崇安,中国原始畜牧业的起源和发展。农业考古,1985(1):282-290.
    [16]陈文华,中国农业考古图录.1993:江西科学技术出版社。
    [17]Hiendleder, S., et al. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources:no evidence for contributions from urial and argali sheep. J Hered,1998,89(2):113-120
    [18]中国羊品种志编写组,中国羊品种志.1988:上海科技出版社
    [19]谢成侠,中国养牛羊史(附养鹿简史).1985,北京:农业出版社
    [20]冯维祺,我国古代绵羊品种形成初考.农业考古,1991(3):338-345
    [21]Hiendleder, S., et al. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc RSoc Lond B Biol Sci, 2002.269(1494):893-904
    [22]罗玉柱,成述儒,用mtDNA D环序列探讨蒙古和中国绵羊的起源及遗传多样性.遗传学报,2005,32(12):1256-1265
    [23]Guo, J., et al. A novel maternal lineage.revealed in sheep (Ovis aries). Anim Genet,2005,36(4): 331-336
    [24]郭军.中国绵羊主要类群进化关系分析[D].中国农业科学院博士学位论文,2007.
    [25]李鸿浩,岳文斌.DNA多态性与绵羊遗传育种的研究进展[J].草食家畜,2005,127(2):25-29
    [26]钱新岚,田烽,卫新璞,等.新疆畜禽品种资源保护的现状与对策[J].草食家畜,2003,119(2):16-17。
    [27]Clouscard C, Budowle B, Penmberton M, et al. RAPD mark-ers for the characterization of ovine dreeds [J]. Animal Ge-netics,1994,25 (1):36-38.
    [28]兰蓉.云南绵羊线粒体DNA遗传多态性研究[J].遗传.1998,20(1):20-23.
    [29]代江生,等.五个绵羊品种的RAPD初步分析[J].草食家畜,1998,3(1):11--13.
    [30]杨章平,等.绵羊和山羊基于两种标记的遗传分化初步研究[J].扬州大学学报,2003,24(4):27—31.
    [31]曹顶国,等。4个绵羊品种随机扩增多态DNA分析。.中国畜牧杂志,2002.2。
    [32]崔建东,等.用银染mRNA差异显示技术寻找不同生长阶段绵羊皮肤中差异表达基因[J].中国草食动物,2004,24(3):11-14.
    [33]于洪川,等.滩羊体大品系遗传标记的研究[J].宁夏大学学报,2002,23(4):370-373.
    [34]刘守仁,高建峰.中国美利奴羊不同品系随机扩增多态性DNA (RAPD)分析[J].草食家畜,1998,12(4)
    [35]吴常信,畜禽主要经济性状(肉、蛋、奶)的遗传改进与育种新技术,第九次全国动物遗传学术讨论会论文集[C],1997,1—6.
    [36]万红玲等。微卫星标记MCM218和MCM38在三个肉羊品种中的多态性分析。甘肃畜牧兽医,2006.1
    [37]李祥龙等。我国六个绵羊品种微卫星DNA多态性研究。遗传学报,2004.11
    [38]贾斌、陈杰等。新疆八个绵羊品种遗传多样性和系统发生关系的微卫星分析。遗传学报,2003,9
    [39]吕慎金等。中国西部七个地方绵羊群体微卫星DNA的遗传多样性研究。家畜生态学报,2006.4
    [40]孙永锋等。利用微卫星标记分析三个绵羊品种及杂交后代遗传多样性。中国草食动物,2007.3
    [41]刘长国,罗军,杨公社.DNA标记技术研究进展[J].黄牛杂志,2001,27(6):41-45
    [42]王军,谢皓,郭二虎.DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报,2005,20(1):76-80
    [43]王晓梅,杨秀荣.DNA分子标记研究进展[J].天津农学院学报,2000,7(1):21-24
    [44]Brown W M. Mechanism of evolution in animal mitochondrial DNA[J]. Ann N.Y.A cad, Sci,1981, 361:119-134
    [45]邓务国.物种遗传多态性研究方法的发展[J].生物学通报,1994,29(1):7-9
    [46]王文,等.银额果蝇自然群体中的mt DNA多态性研究[J].遗传学报,1994,21(4):263-274
    [47]王军,谢皓,郭二虎,等.DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报,2005,20(1):76-80
    [48]Beckmann JS, Weber J L. Survey of human and rat microsatelites. Genomics,1992(12): 627-631
    [49]张玲.微卫星DNA标记研究进展及应用[J].安徽农业科学,2007,35(4):972-975
    [50]孙伟.微卫星DNA的研究与应用[J].黑龙江畜牧兽医,2001(3):10-12
    [51]吴登俊,马丁·费尔斯特.家畜基因组遗传多态标记-微卫星标记研究进展[J].国外畜牧科技,1999,26(2):37-40
    [52]Moore. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species [J].Genetics,1991,10:654-670
    [53]Arevalo E, D holder and J derr. Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP-1,SR-CRSP-2, SR-SRSP-3, SR-CRSP-4 and SR-CRSP-5LOCI.Anim Gennt.1994,25: 645-650
    [54]候建国,李加琪,陈瑶生,等.微卫星DNA标记与猪肉质性状的相关分析[J].华南农业大学学报,2003,24(2):63-66
    [55]Crawford A M, Dodds K G, Ede A J, et al. Anauto somal genetic linkage map of the sheep genome [J].Genetics,1995,140:703-724
    [56]郭晓红。储明星.绵羊基因组研究进展[J].遗传,2004,26(1):103-108
    [57]Haly C M. Microsatellites for linkage analysis of genetic traits[J]. Trend in Genetics,1992,8: 288-293
    [58]王得前,卢立志.微卫星DNA的研究进展[J].浙江农业科学,2005(1):1-4
    [59]曹红鹤.肉牛主要生产性状的生化和分子遗传标记的研究[D].中国农业大学,2000
    [60]陈冰.河南地方山羊品种遗传多样性的微卫星标记分析及与体尺性状的关系[D].河南农业大学,2008
    [61]Ellegren H, Johansson M, Sandberg K, et al. Cloning of highly polymorphic microsatellites in the horse [J]. Anim. Genet,1992,23:133-142
    [62]刘迎春,张润梧,尹俊,等.微卫星DNA标记在绒山羊群体中的初步研究[D].生物技术,2004,14(6):8-9
    [63]张英杰,刘月琴,孙洪新,孙少华,李玉.利用微卫星DNA多态性预测引进肉用绵羊品种杂种优势[J].中国农业科学,2006,39(5):1076-1082
    [64]吴江鸿,刘国平,张文广,李虎山,王文义,李金泉.微卫星技术在绵羊品种级进杂交育种中的应用[J].黑龙江农业科学,2008(1):79-81
    [65]吕点点,吴登俊.草食家畜双肌基因研究进展[J].畜禽业,2003,5(157):26-27
    [66]Leymaster KA,Freking BA,Genetic variations and associations for improving meat production and meat qualities in sheep and goats[J]..6th World Congress Genet Applied Livestock Production,1998,24:109-116.
    [67]Cockett NE,Jackson SP,Shay TL,et al.Chromosomal localization of the callipyge gene in sheep(Ovisaries) using bovine DNA markers[J].. ProcNatl Acad.Sci USA,1994,91:3019-3023.
    [68]Snowder G D,Cockett N E,Busboom J R,et al.The influence of the Callipyge gene on carcass characteristics of whitefaced and blackfaced[J]. lambs. Proceedings of the fifth world congress on genetics applied to livestock Production.1994,18:51-54.
    [69]Cockett NE, Jackson SP, Shay TL, et al. Polar overdominance at the ovine callipyge locus[J]. Science 1996.273:236-238.
    [70]Segers, K. Construction and characterization of an ovine BAC contig spanning the callipyge locus[J]. Anim. Genet.2000,31:352-59.
    [71]Shay.T. Fine-mapping and construction of a bovine contig spanning a 4.6 centimorgan intervalcontaining the CLPG locus[J]. Mamm. Genome,2001,12:141-149.
    [72]Charlier C, Segers K, Wagenaar, D, et al. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the Callipyge(CLPG) locus and identification of six imprinted transcripts:DLKI, DAT, GTL2,PEGI1, antiPEGII,and MEG8[J]. Genome Res.2001 b.11:850-862.
    [73]Smit M.A, et al. Long-range transcriptional regulation at the ovine callipyge imprinted gene cluster[J]. Ph.D. Dissertation, Utah State University, Department of Animal, Dairy Vet. Sci,2004.
    [74]Schmidt J, Matteson P.G, Jones B.K, et al.The Dlkl and Gt12 genes are linked and reciprocallyimprinted[J]. Genes Dev,2000(14):1997-2002.
    [75]Hernandez A, Fiering S, Martinez E, et al. The gene locus encoding iodothyronine deiodinase type3 (Dio3) is imprinted in the fetusand expresses antisense transcripts. [J] Endocrinology, 2002(143):4483-4486.
    [76]Seitz H., Youngson N, Lin S-P, et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene[J]. Nat. Genet,2003(34):261-262.
    [77]Deguchi M, Hata Y, Takeuchi M, et al. BEGAIN (brain-enriched gyanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein[J]. Biol. Chem,1998,273:26-29.
    [78]Laborda, J. The role of epidermal growth factor-like protein DLK in cell differentiation[J]. Histopathol,2000,15,119-129.
    [79]Schuster-Gossler K., Simon D, Guenet J. L, et al. GTL2 lacz, an insertional mutation on mouse chromosome 12 with parental origin dependent phenotype[J]. Mamm. Genome,1996,7:20.
    [80]Miyoshi N, Wagatsuma H, Wakana S, et al. Identification of an imprinted gene, Meg3/Gt12 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q[J]. Genes Cells,2000,5:211.
    [81]Cavaille J, Seitz H., Paulsen M. et al. Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. [J] Hum. Mol. Genet.2002,11:1527.
    [82]Seitz H, Royo H, Bortolin M.-L, et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gt12 domain[J]. Genome Res,2004,14:1741.
    [83]St. Germain D.L.Galton V.A..The deiodinase family of selenoproteins[J]. Thyroid 1997,7:655.
    [84]Lyle R, Watanabe D, te Vruchte D, et al. The imprinted antisense RNA at the Igf2r locus overlapsbut does not imprint Mas1[J]. Nat. Genet,2000,25:19.
    [85]Freking B.A, Murphy S.K, Wylie A.A., et al. Identification of the single base change causing thecallipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals[J]. Genome Res.2002,12:1496-1506.
    [86]Bidwell C.A, Shay T.L, Georges M, et al. Differential expression of the GTL2 gene within thecallipyge region of ovine chromosome 18[J]. Anim. Genet.2001(32):248-256.
    [87]Charlier C, Segers K, Karim L, et al.The callipyge(CLPG) mutation enhances the expression ofcoregulated imprinted genes in cis without affecting their imprinting status[J]. Nat. Genet.2001(27):367-369.
    [88]Davis E, Harken-Jensen C, Charlier C, Kleim A, et al. Extensive DLK1 expression profiling substantiatesthe callipyge polar overdominance model in sheep implicating a trans effect ofcoregulated imprinted genes in producing the callipyge phenotype[J]. in:Proceedingsfrom the 28thConference of the International Society of AnimalGenetics.2002,8:11-15.
    [89]Bidwell C.A, Shay T.L, Charlier C, et al. Expression of PEG 11 transcripts in the muscles of normal and callipyge lambs(Ovis aries)[J]. in:Proceedings from the 28th Conference of the International Society of Animal Genetics,2002,8:11-15.
    [90]Snowder G D, Cockett N E, Busboom JR,et al.The influence of the Callipyge gene on carcasscharacteristics of whitefaced and blackfaced lambs[J]. Proceedings of the fifth world congress ongenetics applied to livestock Production.1994,18:51-54.
    [91]Koohmaraie M,Shackelford S D,Wheeler T L,et al. A muscle hypertrophy condition in lamb (callipyge):Characterization of effects on muscle growth and meat quality traits[J]. Anim Sci1995,73:3596-3607.
    [92]Jackson S P, Green R D, Miller M F.Phenotypic characterization of Rambouillet sheep expressingthe callipyge gene:I Inheritance of the condition and production characteristics[J]. Anim, Sci,1997,75:14-18.
    [93]Freking B A, Keele J W, Nielsen M K, et al. Evaluation of the ovine callipyge locus:Ⅱ. Genotypiceffects on growth, slaughter, andcarcass traits[J]. Anim Sci 1998,76:2549-2559.
    [94]Busboom J R, Hendrix W F, Gaskins, et al. Cutability fatty acid profiles and palatability of Callipyge and Normal lambs[J]. Anim. Sci.1994,72:61.
    [95]Jackson S P, Miller M F, Green R.D., Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: Ⅲ. Muscle weights and muscle weight distribution, J. Anim. Sci.1997,75:133-138.
    [96]Meyer H H, Haribaskar S A,bdulkhaliq A M,et al. Callipyge gene effects on lamb growth, carcasstraits, muscle weights and meatcharacteristics[J].6thWorld Congr Genet Appl. Livest Prod,1998,25:161-164.
    [97]Carpenter C E, Rice O D, Cockett N E, et al. Histology and composi tion of muscles from normal and callipyge lambs[J].animSci,1996,74:388-393.
    [98]Fahmy M H, Gariepy C, Fortin, J.Carcass et al. quality of crossbred lambs expressing the callipyge phenotype born to Romanov purebred and crossbred ewes[J]. Anim. Sci,1999,69:525-533.
    [99]徐君.猪Callipyge基因的克隆、分析与定位[D].硕士学位论文,中国农业大学,2004
    [100]Coleman DL.Obese and diatbetes:two mutant genes causing diabecles-obesity syndrome in mic. Diabetoloeia.1978; 14:141-148.
    [101]Zhan Y,Proenca R,Maffei M,et al. Positional cloning of the mouse obese gene and its humanhomologous. Naturc,1994; 372:425—432
    [102]Zhang Y.Proenca R,Maffei M,et al.Positional cloning of the mouse obese gene and its humanhomologue (Erratum Nature 1995,374:479),Nature,1994,372:425-432.
    [103]Green ED, Maffei M,Braden VV. The human obese (OB) gene:RNA expression pattern andmapping on the physical,cytogenetic, and genetic maps of chromosome 7.Genome Res.1995 Aug,5 (1):5-12.
    [104]Cohen SL, Halaas JL, Friedman JM, et al. Human Leptin characterization. Nature,1996,382:589
    [105]Song WC,Moore R,et al.Molecular characterization of a testis-specific estrogen sulfotransferase and aberrant liver expression in obese and diabetogenic C57BL/KsJ- db/ db mice. Endocrin,1995,136 (6):2477-2484.
    [106]Bado A, Levasseur S, Attoub S, et al.The stomach is a source of Leptin.Nature,1998, 394:790-793.
    [107]Henson MC, Swan KF, O'Neil,JS.Expression of placental Leptin and Leptin receptor transcripts in early pregnancy and at term. Obstet Gynecol 1998,92:1020-1028.
    [108]Umemoto Y, Tsuji K, Yang FC, et al. Leptin stimulates the proliferation of murine myelocytic and primitive hematopoietic progenitor cells.Blood,1997,90:3438 — 43.
    [109]Estienne MJ, Harper AF, Barb CR, et al.Concentrations of Leptin in serum and milk collected fromlactating sows differing in body condition.Domestic Animal Endocrinology,2000,19:275-280.
    [110]Bidwell CA, Ji S, Frank GR, et al.Cloning and expression of the porcine obese gene. Animal Biotechnology,1997,8 (2),191 — 206
    [111]Lopez-Soriano J, Carbo N, Lopez Soriano F. J. et al.,Leptin levels and gene expression duing the perinatal phase in the rat. Eur J obesity Gynecol Reprod Biol,1998,81(1):95-100
    [112]Campfield LA, Smith FJ, Guisez Y, et al.Recombinant mouse OB protein:Evidence for a peripheral signal linking adiposity and central neural networks. Science,1995,269:546-549.
    [113]Maffei M, Halaas J, Ravussin E,et al. Leptin levels in human and rodent: measurement of plasma Leptin and ob RNA in obese and weight — reduced subjects. Nature Med,1995,1:1155-1161.
    [114]Frederich RC, Hamann A, Anderson S, et al. Leptin levels reflect body lipid content in mice: Evidence for diet — induced resistance to Leptin action, Nature Med,1995a,1:1311 — 1314.
    [115]Considine RV, Sinha MK, Heiman ML, et al.Serum immunoreactive-Leptin concentration in normal-weight and obese humans. N Engl J Med,1996b,334:292—95.
    [116]Houseknecht KL, Flier SN,Frederich RC, et al.Secretion of Leptin and TNF- a by the adipocyte vitro:Regulation with genetic and dietary induced obesity (Abstr.) J.Anim. Sci.1996a,74 (Suppl.l):81.
    [117]Moinat M, Deng C, Muzzin P, et al.Modulation of obese gene expression in rat brown and white adipose tissues. FEBS Lett,1995,373:131 — 134.
    [118]Cusin I et al.The ob gene and insulin A relationship leading to clues to the understanding of obesity.Diabetes,1995,44:1467-1470
    [119]Frederich RC, Lollmann B, Napolitano-Rosen A, et al. Expression of ob mRNA and its encoded protein in rodents, Impact of nutrition and obesity. J. Clin. Invest,1995b,96:1658-1663.
    [120]Trayhurn P,Thomas MEA, Duncan JS, et al.Effects of fasting and refeeding on ob gene expression in white adipose tissue of lean and obese mice. FEBS Lett,1995,368:488-490.
    [121]Kolaczynski JW, Considine RV, Ohannesian J, et al. Responses to Leptin in short — term fasting and refeeding in humans:a link with ketogenesis but not ketones themselves. Diabetes 1996a,45:1511 —1515.
    [122]Spinedi E, Gaillard RC. A regulatory loop between the hypothalamo-pituitary-adrena (1HPA) axis and circulating Leptin:a physiological role of ACTH. Endocrinology,1998,139:4016-4020.
    [123]Stephens T. W.,M. Basinski,P. K. Bristow, et al. The role of neuropeptideY in the anti-obesity action of the obese gene product.Nature,1995,377:530-532.
    [124]Spiegelman BM and Filert JS. Obesity and the regulation of energy balance. Cell,2001 104:531-543.
    [125]Pelleymounter MA, Cullen MJ, Baker MB,et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science,1995,269:540-543.
    [126]Halaas JL, Gagiwala KS, Maffei M. et al.Weight-reducing effects of the plasma protein encoded by the obese gene. Science,1995,269:543-546.
    [127]Barb CR, YanX, Azain MJ, et al. Recombinant porcine Leptin reduces feed intake and stimulates growth hormone secretion in swine. Dourest Anim Endocrinol 1998,15:77-86.
    [128]Masuzaki H, Ogawa Y, Isse N,et al.Human obese gene expression adipocyte-specific expression and regional differences in the adipocyte tissue. Diabetes,1995,44:855-858.
    [129]Inoue S, et al.Transplantation of pancreatic bate cells prevents the development of hypothalamic obesity in rats. American Journal of Physiology,1978,235:266-271.
    [130]Dallman MF, et al.The neutral network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsivity at a site proximal to CRF neurons. Ann NY Acad Sci,1995,771:730.
    [131]Emilsson V et al.Expression of the functional Leptin receptor mRNA in pancreatic islets and direct inhibitory action of Leptin on insulin secretion.Diabetes,1997,46:313-316.
    [132]Vos PD, Lefebvre AM, Shrivo I, et al.Glucocorticoids induce the expression of the Leptin gene through a nonclassical mechanism of transcriptional activation. J Biol Chem,1998,273:619-626.
    [133]Banks WA, Kastin AJ, Huang W, et al.Leptin enters the brain by a saturable system independent of insulin. Peptides,1996,17:305-311
    [134]Mounzih K, Lu R, and Chehab F F. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology.1997.138:1190-1193.
    [135]Cheung CC, Thornton JE, Kuijeer JL, et al.Leptin is a metabolic gate for the onset of puberty in the female rat. Endocrinology,1997,138 (2):855-858.
    [136]Mercer JG, Hoggard N, Williams L et al.Coexpression of Leptin receptor and preproneuropeptide Y mRNA in arcute nucleus of mouse hypothalamus.J Neuroendocrinol,1996,8:733-735.
    [137]Lord GM, Matarese G, Howard JK, et al. Leptin modulates the T-cell immune response and reverses starvation — induced immunosuppression. Nature,1998,394:897 — 901.
    [138]Loffreda S, Yang SQ,Lin HZ, et al.Leptin regulates proinflammatory immune responses. The FASEB Journal.1998.12:57-65.
    [139]Cao RH, Brakenhielm E, Wahlestedt C, et al.Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci USA,2001,98:6390-6395
    [140]Gasow A, Haidan A, Hilbers U. et al.Expression of Leptin receptor in normal human adrenalsdifferential regulation of adrenocortical and adrenomedullary function by letpin.Journal of ClinicalEndocrinol Metab,1998,84:4459-4466.
    [141]Kain ZN, et al.Leptin and perioperative neuroendocrinological stress response. Journal of Clinical Endocrinol Metab,1999,84:2438 — 2442
    [142]杨昭庆,洪坤学等.单核苷酸多态性的研究进展[J].国外遗传学分册,2000,23(1):4-8.
    [143]侯振平,蒋思文.单核苷酸多态性的研究进展[J].中国畜牧杂志.2004,(40)4:45-47.
    [144]J Graig Venter,et al.The sequence of the Human Genome[J].Science,2001,291:1304-1351.
    [145]Kruglyak L.The use of a genetic map of biallelic markers in linkage studie[J].Nat.Genet, 1997,17:21-24.
    [146]欧阳建华,黄建安PCR-SSCP技术的研究进展[J].上海畜牧兽医通讯,2002,4:10-11.
    [147]李鸿浩,任有蛇,岳文斌PCR-SSCP研究进展及其在羊经济性状研究中的应用[J].草食家畜,2006,1(130):20-22.
    [148]中国科学院综合考察队主编.新疆畜牧业[M].科学出版社,1964.5.
    [149]克木尼斯汉·加汉,杨晓刚,海拉提·胡尔受。巴什拜羊羔羊体重增长规律的探讨[J].新疆畜牧业,2002,(3):20.
    [150]哈米提·哈凯莫夫,决肯·阿尼瓦什,买买提明·巴拉提.巴什拜羊的研究.新疆农业大学学报[J].1995.(2):1-5
    [151]内蒙古农牧学院主编。家畜育种学[M]。北京:中国农业出版社,1987.39-45
    [152]宗贤爝.肉羊的形态特征与生物学特性[J].养殖与饲料,2002.6:7-8
    [153]曹斌云,赵敬贤,张若楠。杜泊肉绵羊适应性及生长发育规律研究畜牧兽医杂志[J].2004, 23(1):28-30.
    [154]陈天宝,熊朝瑞,骆佳锐,等.阿旺绵羊产肉性能研究[J].中国草食动物,2009,29(1):26-28.
    [155]祁玉香,余忠祥.欧拉型藏羊屠宰试验研究[J].四川畜牧兽医,2007,(4):25.28.
    [156]马章全,赵敬贤,黄莉萍杜泊肉用绵羊的种质特性[J].中国草食动物,2005,25(1):63-64
    [157]张前中,包永清,何文,等。甘加羊种质特性[J]。中国草食动物,2008,28(3):66-68
    [158]王玉琴,赵有璋.波德代羊主要生理生化指标的测定和分析[J].甘肃畜牧兽医。2003(3):2-4.
    [159]朱玉成,薛科邦,宗海万,等。陇东绒山羊主要生理生化指标的测定和分析[J].畜牧兽医杂志,2009,28(2):32-34.
    [160]朱玉成,薛科邦,宗海万,等。绒山羊主要生理生化指标的测定和分析[J].中国兽医杂志,2008,44(7):41-42.
    [161]何生虎,王明成,晁向阳,等.银川地区小尾寒羊血常规生理指标的测定[J].甘肃畜牧兽医。2004(6):17--18.
    [162]解玉忠.地名中的新疆[M].乌鲁木齐:新疆人民出版社,2003:65-67.
    [163]刘武军,余雄,李建华,等。巴什拜羊春季牧食行为研究[J]。新疆农业科学 2008,45(1):180-183。
    [164]刘艳芬,刘铀,林红英,等。雷州山羊春季牧食行为的观测[J]。家畜生态,2001,22(4):34-38。
    [165]浦亚斌,马月辉.我国养羊业发展道路探讨农村[J].养殖技术,2008,(2):11-12
    [166]张艳花,田可川,黄锡霞,等。中国美利奴羊(新疆型)肉用类型部分经济性状的遗传分析[J]。草食家畜,2005,(4):31-32
    [167]刘芳,何忠伟.中国肉羊产业国际竞争力影响因素分析[J].世界农业,2007,(6):33-36
    [168]李法忱,王立铭,王金文,等。杜泊绵羊羔羊生长发育规律的研究[J]。中国草食动物,2003,23(5):13-15.
    [169]张颖,沈忠,周志权,等。波尔山羊体型外貌与部分生产性能的相关分析[J].中国草食动物,2007,27(4):18-22
    [170]崔德胜,高志英,章焕然,等。纯种肉用细毛羊与杂一代羔羊生长发育规律的研究[J].草食家畜,2007,136(3):21-23
    [171]决肯.阿尼瓦什,哈米提,克木尼斯汗,等,巴什拜羊瘦肉型品系的培育及生产性能测定[J],新疆农业科学,2010.47(2):212-216。
    [172]王师珊。藏系绵羊自然放牧条件下生长发育规律观察[J].青海畜牧兽医杂志2009,39(3)罗惠娣,毛杨毅,李俊,等陶赛特羊改良山西本地绵羊产肉性能研究[J]。中国草食动物,2007,27(4):32-33
    [173]王德芹,王金文,张果平,等。杜泊绵羊与小尾寒羊杂交后代的屠宰性能和肉品质性状研究[J].中国草食动物[J]。2008,28(5):22-25.
    [174]决肯.阿尼瓦什,哈米提,克木尼斯汗,等。额敏县也木勒白羊羔羊屠宰研究[J]。新疆农业科学,2006.,44(5):402-406。
    [175]邓蓉,张存根,郭爱云.中国肉羊生产分析[J].现代化农业,2007,333(4):1-3
    [176]王旭刚.甘肃现代肉羊新品种选育群肉用性能的研究[D].甘肃:甘肃农业大学,2008
    [177]张庆坤,王玉田,李红光,李立山,李红云.夏、寒杂交羔羊肉品质的分析研究[J].黑龙江畜牧兽医,2006年(3)89.
    [178]杨富民,王晓玲.杂种羊肉品质测定[J].甘肃科技,2004(6)161.
    [179]刘海珍.焦小鹿.青海藏羊的产肉性能及肉食用品质的分析研究[J].中国草食动物,2006(4)60-61.
    [180]王金文,王德芹,张果平,李焕玲,朱荣生。杜泊绵羊与小尾寒羊杂交肥羔肉质特性的研究[J].中国畜牧杂志,2007(3)4-5.
    [181]郑中朝,张耀强.波杂肉羊屠宰性能及肉品质研究[J]..中国草食动物,2007,27,05
    [182]罗惠娣,毛杨毅,李俊,陶赛特羊改良山西本地绵羊产肉性能研究[J].中国草食动物,2007,27(4):32-33。
    [183]王永.郑玉才,梁梓.等,草地藏系绵羊羊肉品质特性研究[J].黑龙江畜牧兽医,2006(10):111-114.
    [184]决肯.阿尼瓦什,哈米提,克木尼斯汗,等,巴什拜羊质量性状的初步研究[J],草食家畜1998,(6):17-19。
    [185]决肯.阿尼瓦什,哈米提,克木尼斯汗,等,野生盘羊与巴什拜羊杂交二代生长发育规律测定[J],新疆农业科学,2007.(2)212-216:
    [186]Ryder,M. L.,Sheep and man 1983.London:DuckWarth,ix,846p.
    [187]Geist, V., OnthetaxonomyofgiantsheeP.CanadianJournalofZoology,1990.69:P.70672
    [188]国家家畜禽遗传资源管理委员会,中国畜禽遗传资源状况[M]。北京:中国农业出版社,2003。
    [189]王旭刚.甘肃现代肉羊新品种选育群肉用性能的研究[D].甘肃:甘肃农业大学,2008
    [190]赵有璋,李发弟,张子军,等。无角陶赛特品种绵羊种质特性及其应用的研究[J],中国工程科学,2009.11(5)。
    [191]哈米提·哈凯莫夫等.新疆阿勒泰羊染色体研究.新疆农业大学学报,1988,(1)
    [192]买买提依明·巴拉提等.南山型新疆细毛羊染体的研究.1995,817-818
    [193]刘爱华,林世英,张亚平。盘羊的染色体研究[J].遗传,1997,91
    [194]晃玉庆等.内蒙古细毛羊染体核型分析.内蒙古畜牧科学,1991(5):5-8
    [195]晃玉庆等.内蒙古乌珠穆沁羊染体组型和带型分析.内蒙古农牧学院学报.1986(1):13-19
    [196]门正明等.滩羊染色体组型分析.遗传,1985(5)
    [197]沈长江.郭爱朴.关于滩羊与蒙古羊的染色体.畜牧兽医学报.1980,11(2):83-86;
    [198]赵艳红,张海军,李金泉。内蒙古白绒山羊染色体核型分析。中国草食动物[J]2008专辑,173-174
    [199]姬爱国.八个绵羊种群的染色体研究,山西农业大学,硕士研究生论文[D]2004.
    [200]Purchas, R.W.Effect of growth potential and growth path ontendness of beef longissimus muscle from bulls and steers[A].Journal of Animal Sciencs,2002,80:12,3.
    [201]于福清等。日粮中维生棠E、硒水平对熟化过程中牛肉氧化稳定性的影响[J]畜牧兽医学报,2003,34(1):7-23
    [202]李建文,武彬,魏茂嵘,等.奶山羊血红蛋白多态性的研究[J].中国养羊,1987,1:]4-17.
    [203]邓艳美,叶绍辉.牛血清LDH同工酶遗传多样性及其在遗传育种中的应用[J]。山东农业科学,2006,1,98-100.
    [204]张才骏.青海半细毛羊血液生化遗传多态性的研究[J],青海畜牧兽医杂志,2004,34(1):3-6.
    [205]Garrick M D, Charlton J P. Inheritance of Structural Allelesfor Goat Hemoglobins:Site Duplication and Limited StruclualDivergence For the Alphachain Locus[J]. Biochemical Genet— ies,1969,31393-402.
    [206]张智英,魏慧霞,赵玲,等.河南省部分山羊品种血液蛋白多态性与亲缘关系的探讨[J].中国养羊,1992,3:13-16.
    [207]Shiquan w. Transferrin and HemoglobinPolymorphisminMalabariGoatsintheUSA[J] Animal Genetic.1990,21:91-94.
    [208]李建文,武彬,魏茂嵘,等.奶山羊血红蛋白多态性的研究[J].中国养羊,1987,1:14-17.
    [209]常洪,刘小林,耿社民编.中国家畜遗传资源研究[M].西安:陕西人民教育出版社。1998.
    [210]屈虹.党蕊叶.羚牛、羊、牛血清同工酶的比较研究[J]兽类学报。1988,8(2):113-116.
    [211]叶绍辉,苗永旺,宿兵等.云南保种山羊血液同工酶遗传多样性研究[J].中国畜牧杂志,2000,36(2);4-12.
    [212]汪时荃.滩羊血红蛋白的地区差异[J].畜牧兽医学报.1998,2;95-98.
    [213](美)J.萨姆布鲁克,黄培堂译.分子克隆实验指南(第三版)
    [214]瞿冬艳,陈仁金,毛永江,等.宁夏牧区主要绵羊品种遗传多样性分析及群体间杂种优势预测[J].畜牧兽医学报,2009,40(1):126
    [215]陈小勇.自然植物种群的亲本分析及其在生态学研究中的应用[J].生态学杂志,1999,18(2):30-35
    [216]Barker J S F, Moore S S, Hazel D J S, et al. Genetic diversity of Asian water Buffalo(Bubalus bubals)microsatellite variation and a comparison with protein-coding loci[J].Animal Genetics, 1997,28(2):103 — 115
    [217]John G P, Thomas F P. Glycoprotein in hormone:Structure and function [J]. Ann Rev Biochem, 1981,50:465-495
    [218]Nei M. Estimation of average heterozygosity and genetic distance from a small member of individuals [J]. Genetics,1978,89:483-490
    [219]常洪.家畜遗传资源学纲要[M].中国农业出版社,1999
    [220]陈幼春.关于分子水平下遗传距离检测的模型和适宜样本数的讨论[A].第五次全国畜禽遗传标记研讨会论文集[C].1996,130-132
    [221]王雅春等.不同取样方式及杂交对南阳黄牛三个蛋白多态性位点遗传特性的影响[J]. Animal Biotechnology Bulletin.1998.181 ~184
    [222]Tajima.F Sampling variance of heterozyogsity and genetic distance [J]. Genetics, 1983,106:437-460
    [223]BarkerJ S F. A global protocol for determining genetic diatances among domestic livestock breeds[C].Pro.5th World Genet Appl Livest Prod,1994,21:501-508
    [224]Nei M. Molecular Evolutionary Genetics[J]. New York:Columbia University Press,1987,149-253
    [225]王吉振.绵羊高繁殖力基因和的连锁微卫星位点的遗传研究[D].中国农业大学硕士论文,2000
    [226]Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet,1980,32:314-331
    [227]汤晓良,瞿冬艳,陈仁金,等.7个微卫星标记对5个肉用绵羊品种的遗传多样性分析[J].安徽农业科学,2002,36(12):4879-4881
    [228]仲涛,马跃辉,关伟军,凌英会,等.10个绵羊品种的为微星DNA多态性研究[J].畜牧兽医学报,2008,39(5):555-561
    [229]Santos-Silva F, Ivo R.S., Sousa M.C.O, et al. Assessing genetic diversity and differentiation in Portuguese coarse-wool sheep breeds with microsatellite markers [J].Small Ruminant Research 2008(78):32-40
    [230]贾斌,赵宗胜,李大全,等.新疆3个地方品种绵羊微卫星遗传分析[J].石河子大学学报,2005,23(2):194-199
    [231]吕慎金,杨燕,候冠玉,等.运用微卫星标记对中国地方绵羊品种的遗传多样性分析[J].畜牧兽医学报,2008,39(7):858-865
    [232]Ligda Ch, Altarayrahb J, Georgoudis A et al. Genetic analysis of Greek sheep breeds using microsatellite markers for setting conservation priorities [J]. Small Ruminant Research,2009,83: 42-48
    [233]Kimura M, Crow J F.The number of alleles that can be maintained population[J].Genetics.1974. 49:725-738
    [234]候冠月,马月辉.微卫星DNA在草食动物遗传育种中的研究与应用[J].中国草食动物.2003,23(3):39-40
    [235]张建军,薛科邦,史兆国,朱玉成,苟想珍,宗海万.微卫星标记对陇东绒山羊遗传多样性研究Journal of Animal Science and Veterinary Medicine,2009,28:24-27
    [236]仲涛.中国部分绵羊品种的遗传多样性研究[D].中国农业科学院北京畜牧兽医研究所2007.6
    [237]Wright S. Evolution and the genetics of populations. Vol.4. Variability within and among natural populations [M]. Chicago: University of Chicago Press,1978
    [238]耿岩,杨章平,常洪,等.中国蒙系6个绵羊品种的遗传分化和基因流[J].扬州大学学报(农业与生命科学版),2007,28(3):22-26
    [239]Wright S. Evolution in Mendelian population [J].Genetics,1931,16:91-159
    [240]Nei M, Takezaki N. Estimation of genetic distance and phylogenetic trees from DNA analysis[C]. Proc 5th WCGALP, Canada,1994,21:405-411
    [241]A·Sewalem D, M·Morrice. Mapping of Quantitative Trait Loci for Body Weight at Three, Six and Nine Weeks of Age in a Broiler Layer Cross [J]. Poultry Science,2002.2:1775-1779
    [242]Cheng H H, Crittenden LB. Microsatellite markers for genetic mapping in the chicken [J]. Poultry Science,1994.73:539-546
    [243]张云霞.小尾寒羊等四个绵羊品种及两个杂交后代的微卫星多态性研究[D].中国农业科学院硕士学位论文
    [244]Walling G.A. Confirmed linkage for QTLs affecting muscling in Texel sheep on chromosomes 2 and C.52nd Annual Meeting of the European Association for Animal Production,2001:26-29
    [245]Napolitano F, et al. Explotation of microsatellites as genetic markers of beef performance traits in Pimontese x Chianina crossbred cattle [J].Anim Breed Genet,1996,113:157-162
    [246]Marcq F, et al. Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep [J]. Animal Genetics,1998,29(suppl.1):52
    [247]孙业良,刘国庆,王刚,任航行,代蓉,刘守仁,谢庄.绵羊微卫星标记与体重的相关分析[J].中国农业科学,2006,39(10):2095-2100
    [248]孙业良.绵羊微卫星标记与生长性能的相关性分析及其在亲子鉴定上的应用[D].南京农业大学硕士学位论文,2005
    [249]任坤刚,于成江,康康,刘健鹏,陈生会,陈玉林.4个微卫星座位多态性与萨福克羊体尺指标相关性的初步研究[J].西北农林科技大学学报(自然科学版),2008,36(1):43-53.
    [250]刘国庆,代蓉,任航行,等。新疆肉羊18号染色体上与后臀肌发育相关基因的多态性分析[J]。遗传2006,28(7)
    [251]武坚,史洪才,张志峰,等。绵羊双肌臀(Callipyge)基因型的检测[]畜牧兽医杂志[J],2006,29(6):1-4。
    [252]刘众.绵羊Leptin基因与部分经济性状的遗传相关性研究[D].西北农历科技大学。2008.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700