绒山羊绒毛生长相关基因的筛选、鉴定和多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绒山羊是重要的绒用经济动物,其绒毛生长具有较强的季节性,但不同品种之间有很大的差异,大多数绒山羊在非长绒季节(5-8月份)不长绒,而辽宁绒山羊一些品系可以常年长绒(6月开始长绒)。埋植褪黑激素可以促进绒山羊在非长绒季节长绒,从而达到四季长绒的目的。本研究以内蒙古白绒山羊为主要研究对象,采用分子标记和基因芯片技术,从候选基因和差异表达基因筛选入手,研究绒山羊产绒经济性状的遗传多态性和非长绒季节埋植褪黑激素绒山羊皮肤组织差异表达基因,初步探讨促进绒山羊绒毛生长的因素及其分子调控机理。
     1、绒山羊内分泌激素类基因SNP分析
     应用PCR-SSCP和DNA测序技术,以内蒙古阿尔巴斯型、阿拉善型、二郎山型以及罕山白绒山羊4个品种(系)共456个样本为实验材料,分析PRL、PRLR、 MLTR1a、MLTR1b、IGF-I和TG6个候选基因共16个位点的遗传多态性,结果表明:
     (1)在绒山羊PRL基因Exon5区域P2引物位点存在X76049:g.576bp处C-A突变,该突变导致第176个密码子CCC变成ACC,从而使脯氨酸变成苏氨酸(Pro-Thr),该位点SNP对绒山羊绒厚度存在显著影响(P<0.01),同时还对阿尔巴斯绒山羊产羔数存在边际显著影响(P=0.055);在PRLR基因Exon10区域P3引物位点存在HQ266606:g.1076bp处T-C突变,该突变导致第359个密码子CTT变成CCT,从而使亮氨酸变成脯氨酸(Lue-Pro),该位点SNP对阿尔巴斯绒山羊羊绒细度存在显著影响(P<0.05);
     (2)在绒山羊MLTR1b基因Exon2区域P8引物位点存在NM_001206907:g.648bp处C-G突变,该突变没有导致氨基酸的改变,还存在NM_001206907:g.665bp处G-A,该突变导致第223个密码子CGC变成CAC,从而使精氨酸变成组氨酸(Arg-His),该位点SNP对绒山羊产绒量有显著影响(P<0.05)。同时,该多态位点基因型与年龄互作效应对绒山羊绒厚度有显著影响(P<0.05);MLTR1b基因Exon2区域P9引物位点存在NM_001206907:g.1015bp处G-A突变,该突变导致第339个密码子GGC变成AGC,从而使甘氨酸变成丝氨酸(Gly-Ser),该位点SNP与年龄互作效应对绒山羊绒细度存在边际显著影响(P=0.056);这两个位点多态对绒山羊产羔数、羔羊初生重等繁殖性状均无显著影响(P>0.05)
     (3)在绒山羊TG基因Exon9区域P14引物位点存在NM_173883:g.1895bp处C-T突变,该突变导致第632个密码子GCG变成GTG,从而使丙氨酸变成缬氨酸(Ala-Val);在Exon11区域P16引物位点存在NM_173883:g.2849bp处G-A突变,该突变导致第950个密码子CGC变成CAC,从而使精氨酸变成组氨酸(Arg-His)。这两个位点SNP对绒山羊体重、产羔数和产绒性状均无显著影响(P>0.05)。
     2、绒山羊皮肤差异表达基因的筛选、鉴定和特征分析
     (1)通过基因芯片技术筛选绒山羊在非长绒期埋植MLT促进羊绒生长的相关基因。筛选出差异表达的基因95个,其中61个表达上调、34个下调。这些异常表达的基因按照功能分类,参与组成细胞成分的基因占18.33%,参与分子功能的基因占47.78%,参与生物学过程的基因占33.89%。
     (2) Pathway信号通路分析表明:差异基因共参与了55条信号通路,其中CTNNB1基因参与的Wnt信号通路,CYP2B基因参与的维生素A代谢和外源药物代谢等信号通路可能与埋植MLT促进绒山羊非长绒期绒毛生长和毛囊发育有关。
     (3)采用Real time定量PCR检测技术,选择芯片试验结果中表达差异显著上调的PAX6基因和显著下调的CSN2基因,进一步扩大样本对芯片结果准确性做验证。结果表明,PAX6基因在埋植MLT试验组羊皮肤中的表达量是对照组羊皮肤中表达量的2.399倍,CSN2基因在试验组羊皮肤中的表达量是对照组羊皮肤中表达量的0.044倍,与基因芯片结果完全相符,说明本研究基因芯片数据准确、可靠。
     本研究揭示了CTNNB1、CYP2B、PAX6、CSN2等基因可能参与了埋植MLT之后促进绒山羊长绒的过程,有必要对这些基因功能作进一步研究,以期探明绒山羊绒毛生长和毛囊发育的分子机制。
Cashmere goat is a kind of economic animal for production cashmere,which cashmere growth have strong seasonal and great difference between different breeds,which can't produce cashmere for most of cahsmere goats in the telogen period(May-August), while some strains of Liaoning cashmere goats can product cahsmere in the whole year(beginning from June). Embedding melatonin can promote cashmere growth in the telogen period so as to production cashmere in the whole year.In this paper,Inner Mongolian Ardrs white cashmere goats were used as main experimental samples, selection of candidate and differentially expressed genes was engaged in studying differentially expressed gene between genetic polymorphism of production cashmere economic traits and skin organism embedding melatonin in the telogen period by PCR-SSCP and gene chip technology, and preliminary discuss factors and molecular regulation mechanism of promoting cashmere growth.
     1、SNP analysis of endocrine hormone gene on cashmere goats
     456samples were used as experimental materials including four types:Inner Mongolian Ardrs, Alashan, Erlangshan and Hanshan white cashmere goats by PCR-SSCP and DNA sequencing technology to analyze16loci genetic polymorphism of6candidate genes including PRL、PRLR、MLTR1a、MLTR1b、IGF-I and TG.
     Results were as follows:
     (1)There were SSCP at P2primer of PRL gene and P3primer of PRLR gene. P2primer of exon5of PRL gene existed in C-A mutation at X76049:g.576bp, which resulted in CCC-ACC of the176th codon from Pro into Thr. The results showed that the its SNP was the most significant correlation with cashmere thickness(P<0.01), and the marginal significant correlation(P=0.055)with kidding number of Ardrs cashmere goat; P3primer was in T-C mutation at HQ266606:g of exon10of PRLR gene, which lead to CTT-CCT of the359th codon from Lue into Pro, of which SNP was significant difference (P<0.05) to cashmere fineness.
     (2) There were SSCP in the exon2of MLTRlb gene and three of SNP were detected. P8primer existed in C-G mutation at NM_001206907:g.648bp which didn't result in change of amino acid, and also be G-A mutation at NM_001206907:g.665bp which led to CGC-CAC of the223th codon from Arg into His. The results showed that the SNP of P8locus had an significant effect on cashmere yield(P<0.05), meanwhile, interaction effect between the SNP genotype and age was a significant correlation with cashmere thickness(P <0.05); P9primer existed in G-A mutation at NM_001206907:g.1015bp, which led to GGC-AGC of the339th codon from Gly into Ser. The analysis indicated that interaction effect of the SNP and age was the marginal significant correlation(P=0.056) with cashmere fineness.
     (3) There were SSCP at P14primer and P16primer of TG gene. P14primer of the exon9existed in C-T mutation at NM_173883:g.1895bp, which resulted in GCG-GTG of the632th codon from Ala into Val. P16primer of exon11existed in G-A mutation at NM_173883:g.2849bp, which led to CGC-CAC of the950th codon from Arg into His, which both were no significant effect on weight, kidding number and production cashmere traits (p>0.05). P8and P9primes were not significance(P>0.05) with kidding number and birth weight.
     2^Selection, identification and characteristic analysis of skin differentially expressed gene on cashmere Goat
     (1) To select correlation genes which promoted cashmere growth embedding melatonin(MLT) in the telogen period by gene chip technology.To have selected95of differentially expressed genes,61of which were up-regulated expression, while34genes were down-regulated expression.Those abnormal expression genes were assorted by function,18.33%,47.78%,33.89%of genes involved in cellular component, molecular function, biological process, respectively.
     (2) Analyses of signaling pathway showed that differentially expressed genes totally involved in55pieces of signaling pathway. CTNNB1gene participated in WNT signaling pathway, and CYP2B gene related to metabolism of retinol and xenobiotics by cytochrome P450, which probably promoted cashmere growth and follicle development related with embedding MLT in the telogen period.
     (3) Significant Up-regulated PAX6gene and down-regulated CSN2gene of differentially expressed gene were further identified by real time quantitative so as to validate result of gene chip. Resulted showed that expression level of skin in PAX6gene was2.399times that of control group, and also expression level of skin in CNS2gene was0.044times compared to control group. The results were the same with gene chip. It indicated that gene chip had character of data precision and reliability.
     The paper disclosed that CTNNB1gene, CYP2B gene, PAX6gene and CSN2gene etc. probably participated in promoting cashmere growth process after embedding MLT, which was necessary to further study their gene function, so as to find out molecular mechanism of cashmere growth and follicle development on cashmere goats.
引文
1 内蒙古农牧学院.家畜育种学[M].北京:中国农业出版社,1999.
    2 蒋英,陶雍.中国山羊[M].西安:西安陕西科学出版社,1988.
    3 常棋.山羊绒及绒山羊概述[J].青海畜牧兽医杂志,1996,26(2):34-40.
    4 姜怀志,李莫南等.中国产绒山羊的分布、生产性能与生态环境间关系的初步研究[J].家畜生态学报,2001,22(2):30-34.
    5 张灿立,马友记,蒋海涛.中国绒山羊生产的现状及发展趋势[J].四川畜牧兽医,2005,(4):9-12.
    6 周占琴.中国羊绒产业发展现状、前景与对策[J].中国畜牧兽医杂志,2008,44(4):42-45.
    7 姜怀志,郭丹,陈洋,张世伟.中国绒山羊产业现状与发展前景分析[J].牧兽与饲料科学,2009,30(10):100-103.
    8 贾志海,安民.山羊绒生长机理研究进展[J].草食家畜,1996(1):2-6.
    9 贾志海,Teh T H, Newton G R不同光照周期和褪黑激素对绒山羊生产性能的影响.中国畜牧杂志,1995,31(4):8-10.
    1 0李金泉.绒山羊绒毛生长调控机理研究进展[J].中国草食动物,2001,21(3):41-43.
    11 甄玉国.绒山羊生绒机理及营养研究进展[J].内蒙古畜牧科学,2000,21(4):1-5.
    12魏云霞.绒山羊绒毛生长机理研究进展[J].中国草食动物,2008,28(3):64-66.
    13 尹俊.内蒙古绒山羊毛囊发育、生长周期及相关基因的研究.生命科学院.呼和浩特:内蒙古大学,2004.
    14 胡坚.动物饲养学.长春:吉林科学技术出版社,1990.
    15 侯广田,古丽格娜.羊毛饥饿痕研究概况[J].草食家畜2002(3):12-5.
    16 吴江鸿Hoxc13基因在绒山羊皮肤中的表达规律及体外功能分析.动物科学学院.呼和浩特:内蒙古农业大学,2011.
    17 Koraiya Y, Habas R. Wnt signal transduction pathways[J]. Organogenesis 2008;4 (2):68-75.
    18 Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours[J]. Development 2004; 131 (8):1787-99.
    19 Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin[J]. Cell 2001; 105 (4):533-45.
    20 Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration [J]. Cell 2011;145 (6):941-55.
    21 Carter TC. Wavy-coated mice:phenotypic interactions and linkage tests between rex and (a) waved-1, (b) waved-2[J]. Journal of Genetics 1951;50 (2):268-76.
    22 Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies 0, Lee DC. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice[J]. Cell 1993; 73 (2):263-78.
    23 Nixon AJ, Broad L, Saywell DP, Pearson AJ. Transforming growth factor-alpha immunoreactivity during induced hair follicle growth cycles in sheep and ferrets [J]. J Histochem Cytochem 1996;44 (4):377-87.
    24 Staecker H, Dazert S, Malgrange B, Lefebvre PP, Ryan AF, Van de Water TR. Transforming growth factor alpha treatment alters intracellular calcium levels in hair cells and protects them from ototoxic damage in vitro [J]. Int J Dev Neurosci 1997;15 (4-5):553-62.
    25 Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle[J]. J Invest Dermatol 2002;118 (6):993-7.
    26 Foitzik K, Paus R, Doetschman T, Dotto GP. The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis [J]. Dev Biol 1999;212 (2):278-89.
    27 Mori 0, Hachisuka H, Sasai Y. Effects of transforming growth factor beta 1 in the hair cycle[J]. J Dermatol 1996;23 (2):89-94.
    28 Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Dotto GP, Paus R. Control of murine hair follicle regression (catagen) by TGF-betal in vivo[J]. FASEB J 2000;14 (5):752-60.
    29 Soma T, Dohrmann CE, Hibino T, Raftery LA. Prof ile of transforming growth factor-beta responses during the murine hair cycle [J]. J Invest Dermatol 2003;121 (5):969-75.
    30 Jamora C, Lee P, Kocieniewski P, Azhar M, Hosokawa R, Chai Y, Fuchs E. A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis [J]. PLoS Biol 2005; 3 (1):ell.
    31 Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R. Towards dissecting the pathogenesis of retinoid-induced hair loss:all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla [J]. J Invest Dermatol 2005; 124 (6):1119-26.
    32 Peters EM, Hansen MG, Overall RW, Nakamura M, Pertile P, Klapp BF, Arck PC, Paus R. Control of human hair growth by neurotrophins:brain-derived neurotrophic factor inhibits hair shaft elongation, induces catagen, and stimulates follicular transforming growth factor beta2 express ion [J]. J Invest Dermatol 2005;124 (4):675-85.
    33 Sasajima M, Moriwaki S, Hotta M, Kitahara T, Takema Y. trans-3,4'-Dimethyl-3- hydroxyflavanone, a hair growth enhancing active component, decreases active transforming growth factor beta2 (TGF-beta2) through control of urokinase-type plasminogen activator (uPA) on the surface of keratinocytes [J]. Biol Pharm Bull 2008; 31 (3):449-53.
    34 Plasari G, Edelmann S, Hogger F, Dusserre Y, Mermod N, Calabrese A. Nuclear factor I-C regulates TGF-(beta)-dependent hair follicle cycling [J]. J Biol Chem 2010; 285 (44):34115-25.
    35 Lefever T, Pedersen E, Basse A, Paus R, Quondamatteo F, Stanley AC, Langbein L, Wu X, Wehland J, Lommel S, Brakebusch C. N-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGF(beta) pathways[J]. J Cell Sci 2009;123 (Pt 1):128-40.
    36 Wilson N, Hynd PI, Powell BC. The role of BMP-2 and BMP-4 in follicle initiation and the murine hair cycle [J]. Exp Derraatol 1999;8 (4):367-8.
    37 Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, Croft NJ, Cebra-Thomas JA, Metzger D, Chambon P. Epithelial Braprla regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development [J]. Development 2004; 131 (10):2257-68.
    38 Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle[J]. EMBO J 2000;19 (24):6664-74.
    39 Botchkarev VA, Botchkareva NV, Nakamura M, Huber 0, Funa K, Lauster R, Paus R, Gilchrest BA. Noggin is required for induction of the hair follicle growth phase in postnatal skin[J]. The FASEB Journal 2001; 15 (12):2205-14.
    40 Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature 2008;451 (7176):340-4.
    41 Su R, Zhang VG, Sharma R, Chang ZL, Yin J, Li JQ. Characterization of BMP2 gene expression in embryonic and adult Inner Mongolia Cashmere goat (Capra hircus) hair follicles [J]. Canadian Journal of Animal Science 2009; 89 (4):457-62.
    42吴江鸿,张文广,李金泉,闫祖威.内蒙古绒山羊毛囊发育不同时期皮肤中BMP4基因的表达[J].黑龙江畜牧兽医2009;12:35-6.
    43 Hebert JM, Rosenquist T, G tz J, Martin GR. FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous mutations [J]. Cell 1994;78 (6):1017-25.
    44 Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, Imamura T. Comprehensive analysis of FGF and FGFR expression in skin:FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles [J]. J Invest Dermatol 2005;124 (5):877-85.
    45 Suzuki S, Ota Y, Ozawa K, Imamura T. Dual-mode regulation of hair growth cycle by two Fgf-5 gene products [J]. J Invest Dermatol 2000;114 (3):456-63.
    46 Ota Y, Saitoh Y, Suzuki S, Ozawa K, Kawano M, Imamura T. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation [J]. Biochem Biophys Res Commun 2002; 290 (1):169-76.
    47 Schlake T. FGF signals specifically regulate the structure of hair shaft medulla via IGF-binding protein 5[J]. Development 2005; 132 (13):2981-90.
    48 Huang J, Dattilo LK, Rajagopal R, Liu Y, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC. FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate[J]. Development 2009; 136 (10):1741-50.
    49 Xu R-H. FGF, BMP, and TGF β signaling together control human embryonic stem cell fates [J]. Cell Research 2008;18 (s29):119.
    50 Davidson D. The function and evolution of Msx genes:pointers and paradoxes[J]. Trends Genet 1995;11 (10):405-11.
    51 Jiang TX, Liu YH, Widelitz RB, Kundu RK, Maxson RE, Chuong CM. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2[J]. J Invest Dermatol 1999;113 (2):230-7.
    52 Wang WP, Widelitz RB, Jiang TX, Chuong CM. Msx-2 and the regulation of organ size: epidermal thickness and hair length[J]. J Investig Dermatol Symp Proc 1999;4 (3):278-81.
    53 Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation[J]. Nat Genet 2000; 24 (4):391-5.
    54 Ma L, Liu J, Wu T, Plikus M, Jiang TX, Bi Q, Liu YH, Muller-Rover S, Peters H, Sundberg JP, Maxson R, Maas RL, Chuong CM.'Cyclic alopecia'in Msx2 mutants:defects in hair cycling and hair shaft differentiation[J]. Development 2003; 130 (2):379-89.
    55 Wu JH, Yan ZW, Husile, Zhang WG, Li JQ. Hoxc13 and the development of hair follicle [J]. Yi Chuan 2010;32 (7):656-62.
    56 Wu JH, Zhang WG, Li JQ, Yin J, Zhang YJ. Hoxc13 Expression Pattern in Cashmere Goat Skin During Hair Follicle Development [J]. Agricultural Sciences in China 2009;8 (4):491-6.
    57 Rogers, G. E, Powell, B. C. Human keratin-associated Proteins. Journal of Investigative Dermatology,1993,101:50-55
    58 Powell,B. C,Rogers,G.E.. The role of keratin proteins and their genes in the、 growth, structure and properties of hair. Information and Structure of Human Hair, 1997,59-148
    59 Cockett N E, Shay T L, Smit M. Analysis of the sheep[J]. genome. Physiol Genomics, 2001,7:769-781.
    60刘桂芬等,田可川,张恩平等.优质细毛羊羊毛细度的候选基因分析[J].遗传,2007,29(1):70-74
    61姚毅,雷承志,尹君亮等.新疆细毛羊和陕北细毛羊羊毛细度候选基因的PCR-SSCP分析[J].西北农林科技大学学报,2006,34(12):6-10
    62张亚妮,张恩平,吴迪,陈玉林.KAP基因的多态性与辽宁绒山羊经济性状的关系研究[J].中国农业科学2007,40(9):2062-2067
    63张亚妮,张恩平,吴迪,陈玉林.内蒙古绒山羊KAP基因与经济性状关系的研究[J].畜牧兽医学报2007,38(5):447-451
    64 Pennycuik P R, Raphael K A. The angora locus (go) in the mouse hair morphology, duration of growth cycle an d site of action[J]. Clin Invest,1999,104(7):855-864
    65 Hebert J M, Rosenquist T, Gtz J, el al. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations[J]. Cell,1994,78(6):1017-1025
    66 Syndberg J P, Rourk M H, Boggess D, el al. Angora mouse mutation:altered hair cycle, fol licular dystrophy, phenotypic maintenance of skin grafts, and changes in keratin express ion[J]. Veterinary Pathology (Vet Pathol),1997,34(3):171-179
    67 Drogemuller C, Rufenacht S, Wichert B, el al. Mutations within the FGF-5 gene are associated with hair length in cats[J]. Animal Genetics,2007,38(3):218-221
    68 高爱琴,李宁,李金泉等.山羊FGF-5基因cDNA分子克隆及序列分析[J].内蒙古农业大学学报(自然科学版)2006,37(2):179-183
    69 高爱琴,李宁,李金泉等.山羊FGF-5基因单核苷酸多态性群体遗传分析[J].华北农学报,2006,21(3):71-76
    70刘海英,杨桂芹,贾志海等.FGF5基因对内蒙古绒山羊绒毛性状的影响[J].遗传2009,31(2):175-179
    71 Gisela M, Aaron B L, John R, Hendee J R. The mechanism of frog skin lightening by acetylcholine. General and Comparative Endocrinology,1974,23(1):45-51.
    72 Margarital L, Dubocovich, Joseph S, Takahashi. Use of 2-[1251] iodome-latonin to characterize melatonin binding sites in chicken retina. Proceedings of the National Academy of Sciences,1987,84:3916-3920.
    73 Reppert S M, Weaver D R, Rivkees S A, Stopa E G. Putative melatonin receptors in a human biological clock. Science,1988,242:78-81.
    74李金泉,尹俊,周欢敏.绒山羊绒毛生长调控机理研究进展.中国草食动物,2001,3:41-44.
    75 Chemineau P, Pelletier Y, Guerin Y, Colas G, Ravault J P, Tour e G, Almeida G, Thimonier J, Ortavant R. Photoperiod and melatonin in treatment for the control of reproduction in sheep and goats. Reprod Nutri Develop,1988,23:409-422.
    76 Ibraheem M, Galbraith H, Scaife, J, Ewen S. Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin. Journal of Anatomy,1994,1:135-142.
    77 Nixon A J, Choy V J, Parry A L, Pearson A J. Fiber growth initiation in hair follicles of goats treated with melatonin. Journal of Experimental Zoology,1993,1:47-56.
    78柳建昌,尹协镇,方天祺.褪黑素对中国绒山羊在非生绒期促绒生长与绒产量的影响.动物学杂志,1998,33(3):8-12.
    79王林枫,卢德勋,孙海洲,赵秀英,珊丹.光照和褪黑激素对内蒙古绒山羊氮分配和产绒性能的影响.中国农业科学,2006,39(5):1004-1010.
    80 Reppert S M, Weaver D R, Cassone V M, Godason C, Kolakowski F L. Melatonin receptor for birds:molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron,1995,15 (5):1003-1015.
    81 Roca A L, Godson C, Weaver D R, Reppert S M. Structure, characterization, and expression of the gene encoding the mouse Mella melatonin receptor. Endocrinology, 1996,137(8):3469-3477.
    82 Reppert S M, Godson C, Mahle C D, Weaver D R, Slaugenhaupt S A, Gusella J F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mellb melatonin receptor. Proc Natl Acad Sci USA,1995,92 (19):8734-8738.
    83赵艳红,李金泉,张文广,张海军,张燕军.内蒙古绒山羊MLTRla基因外显子2克隆及序列分析.湖北农业科学,2008,47(9):889-991.
    84孙永明,张燕军,李国华,刘志红,王志英,于新蕾,赵艳红.内蒙古绒山羊褪黑激素受体1a基因外显子1克隆及序列分析.中国畜牧兽医,2011,38(2):82-84.
    85赵苗.绒山羊6个候选基因遗传变异及其与经济性状关系研究[学位论文].陕西杨凌:西北农林科技大学硕士,2008.
    86韩正康.家畜生理学[M].北京:中国农业出版社,2000.
    87 Bole Feysot C, Goffin V, Edery M, et al. Prolactin and its receptor:action, signal transduction pathways and phentypes observed in PRL receptor knockout mice [J]. Endocrinology review,1998,19(1):225-268.
    88 Dicks P., A. J. F. Russel and G. A. Lincoln. The role of prolactin in the reactivation of hair follicles and the spring moult in goats[J]. Endocrinol,1994,143:441-448.
    89 Litherland, A, J. The role of plasma prolactin concentration in seasonal fiber growth cycles in down-producing goats and Wiltshire sheep[J]. Physiological Reviews, 1996,80 (4):1523-1631.
    90 Kloren W R L, Norton B W. Fleece growth in Australian cashmere goats.Ⅳ. The role of prolactin in the initiation and cessation of cashmere growth[J]. Australian Journal of Agricultural Research,1993,44(5) 1051-1061
    91 Merchant M, Riach D J. The effect of plane of nutrition and shearing on the pattern of the moult in Scottish Cashemere goats [J]. Animal Science,2002,74:177-188.
    92 Forsyth I A, Barker P, Keable S, Turvey A. Identification of prolactin receptors in hair follicles of the goat using an antipeptide antibody [J]. Journal of Reproduction and Fertility,1994,14:8.
    93 Choy V J, Nixon A J, Pearson A J. Localisation of receptors for prolactin in ovine skin[J]. Journal of Endocrinology,1995,144:143-151.
    94 Allain D, Thebault R G, Rougeot J, Martinet L.Biology of fibre growth in mammals producing fine fibre and fur in relation to control by day length:relationship with other seasonal function[J]. European Fine Fibre Network,1994,2:23-40.
    95 Dicks P, Morgan C J, Morgan P J, Kelly D, Williams L M. The localisation and characterization of insulin-like growth factor-I receptors and the investigation of melatonin receptors on the hair follicles of seasonal and non-seasonal fibre-producing goats [J]. Journal of Endocrinology,1996,151:55-63.
    96 Kato Y, Hiarai T, Kato T. Molecular cloning of cDNA for porcine prolactin precursor [J]. Journal of Molecular Endocrinology,1990,4(2):135-142.
    97 Vincent A L, Rothschild M F. A restriction fragment length polymorphism in the ovine prolactin [J].Journal of Animal Science,1997,75(6):1686-1818.
    98代鸥,储明星等.催乳素基因多态性及其与小尾寒羊高繁殖力的关系[J].农业生物技术学报,2007,15(2):222-227.
    99 曹果清,李步高等.猪催乳素受体(PRLR)基因Alu Ⅰ多态性与产仔数关系的研究[J].山西农业大学学报,2004,24(3):253-225.
    100 Putnova L, Knoll A, Dvorak J, et al. A new Hpa II PCR-RFLP within the prolactin receptor (PRLR) gene and study of its effect on litter and number of teats [J]. Journal Animal Breed Genet,2002,119 (1):57-63.
    101 Rothschild M F, Vincent A L, et al. A mutation in the receptor gene is associated within increased litter size in pigs [J]. Animal Genetics,1998,29 (Suppl.1):69.
    102 Terman A. Effect of the polymorphism of prolactin receptor(PRLR) and leptin(LEP) genes on litter size in Polish pigs[J]. Journal Animal Breed Genetics, 2005,122(6):400-404
    103蓝贤勇.山羊重要功能基因遗传分析及其与经济性状的关系[D].陕西杨凌:西北农林科技大学博士,2007.
    104张珂.山羊PRLR基因多态性及其与产羔数相关性分析[D].四川成都:四川农业大学硕士,2009
    105 Dahl G E, Elsasser T H, Capuco A V, et al. Effects of a long daily photoperiod on milk yield and circulating concentrations of insulin-like-growth factor 1 [J]. J Dairy Sci,1997,80:2784-2789.
    106 Inaba T, Saito H, Fukaahishi S I, et al. Effects of growth hormone and insulinlike growthe factor 1 (IGF-1) treatment on the nitrogen metabolism and hepatic IGF-1 messenger RNA expression in postoperative parenterally fed rats [J]. J Parenteral and Enteral Nutrition.1996,20:325-331.
    107 Galbraith H, Sims D, Hazlerigs D. The effect of IGF-玉 on the growth of secondary hair follicles of the cashmere goat in vitro. Proceedings of the British Society of Animal Science. Penicuik [J]. British Society of Animal Science Press,1997.170 (Abstr)
    108李桂芳,赵宗胜,李大全.胰岛素样因子(IGF-1)对绵羊毛囊体外培养的研究[J].生物技术,2005,28(5):28-29.
    109 Galbraith H. Nutritional and hormonal regulation of hair follicle growth and development [J]. Proceedings of the Nutrition Society,1998,57:195-205.
    110 Harris P M, McBride B W, Gurnsey M P, et al. Direct infusion of a variant of insulin-like growth factor-1 into the skin of sheep and effects on local blood flow, amino acid utilisation and cell replication[J]. J, Endocrinol,1993,139,463 472.
    111 Damak S, Su H-Y, Jay N P, Barrell G K, Bullock D W. Improved wool production in transgenic sheep expressing insulin-like growth factor 1[J]. Biotechnology,1996, 14:185-188
    112 Yilmaz A, Davis M E, Hines H, et al. Detection of two nucleotide substitutions and putative promoters in the 5忆 flanking region of the ovine IGF-I gene[J]. J Appl Geophys,2005,46(3):307-309
    113郭翠华,贾存灵,贾志海等.辽宁绒山羊IGF-Ⅰ基因5' 调控区多态性与产绒性状相关[J].生物化学与生物物理进展,2009,36(5):556-573.
    114 Zhang C X, Zhang W, Luo H L, et al. A new single nucleotide polymorphism in the IGF-3. gene and its association with growth traits in the Nanjiang huang goat[J]. Asian-Aust J Anim Sci,2008,21(8):1073-1079
    115 Mikawa S, Yoshikawa G, Aoki H, et al. Dynamic aspects in the expression of the goat insulin-like growth factor-I(IGF-I) gene:diversity in transcription and post-transcription[J]. Biosci Biotech Biochem,1995,59(1):87-92.
    116 Kloren W R L, Norton B W, Waters M J. Fleece growth in Australian cashmere goats. III. The seasonal patterns of cashmere and hair growth, and association with growth hormone, prolactin and thyroxine in blood [J]. Australian Journal of Agricultural Research 44(5) 1035-1050
    117 Edmond J R, Rainer F E, et al. The relationship of thyroxine and cortisol to the moult of the harbor seal Phoca vitulina [J]. General and Comparative Endocrinology, 1977,31(4)398-401.
    118程治平.内分泌生理学.北京:人民卫生出版社.1984,211-818.
    119 Rivolt C M, and Targovnik, H M. Molecular advances in thyroglobulin disorders. Clinica Chimica Acta,2006.374 (2):8-24.
    120 Oppenheimer J H, Schwartz H L, Mariash C N, et al. Advances in our understanding of thyroid hormone action at the cellular level [J]. Endocrine Reviews,1987,8 (3): 288-308.
    121 Yen P M. Physiological and molecular basis of thyroid hormone action [J]. Phys-iological Reviews,2001,81(3):1097-1142.
    122 Mendive E M, Rivolta, C M, et al. Genomic organization of the 3' region of the human thyroglobulin gene [J]. Thyroid,1999,9 (9):903-912
    123 Moya C M, Mendive F M, et al. Genomic organization of the 5' region of the human thyroglobulin gene [J]. European Journal of Endocrinology,2000,143 (6):789-798
    124 124. Moya C M, Varela V, et al. Identification and characterization of a novel large insertion/deletion polymorphism of 1464 base pair in the human thrroglobulin gene [J]. Thyroid,2003,13(4):319-323
    125 Barendse W J. Assessing lipid metabolism[P]. International Patent Application: PCT 98/00882,1999.
    126张路培,任红艳等.牛TG基因启动子区遗传变异与肉质和胴体性状的相关性研究[J].畜牧兽医学报,2009,40(3):315-319
    127姜运良,李宁,习欠云等.猪雌激素受体基因(ESR)点突变的PCR-SSCP检测[J].遗传2000,2:20-23.
    128刘平华,李奎,彭中镇.猪生长激素基因的PCR-RFLP与PCR-SSCP研究概况[J].畜牧兽医杂志.1994,3:16-18.
    129 Sugano K, Kyogoku A, Fukayama N, et al. Rapid and simple detection of c-Ki-ras2 gene codon 12mutations by nonradioisotopic single-strand conformation polymorphism analysis [J]. Laboratory Investigation,1993,68(3):361-366.
    130 Sarkar G, Koeberl D, Soremet S. Direct sequencing of the activation peptide and the catalytic domain of the factor IX gene in six species [J]. Genomics 1990,6:133-143.
    131雷娟利,陈剑平.我国真菌传线状小麦花叶病毒病病原初步鉴定为小麦黄花叶病毒(WYMV)[J].中国病毒学,1998,13(1):89-96.
    132 Schena M, Shalon D, Heller R, et al. Parallel human genome a-nalysis:micro-array based expression monitoring of 1000 genes[J]. Proc Natl Acad Sci USA,1996,8:10614-10619.
    133饶宝,肖松云,李文刚,昌莉丽.生物芯片技术研究进展[J].中国畜牧兽医,2010,37(1):77-79.
    134陈岩,潘龙.基因芯片技术研究进展[J].齐齐哈尔医学院学报,2011,32(17):2289-2291.
    135梁国栋.最新分子生物学实验技术[M].北京:北京科学出版社,2001,336-354
    136 Belgrader P, Hansford D, et al. A minisonicator to rapidly distrupt bacterial spores for DNA analysis. Anal Chem,1999,71:4232-4236
    137陈志.基因芯片技术的最新进展[J].国际检验医学杂志,2006,27(3):249-251
    138 Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes[J]. Science,2002,5559(295):1503-1506.
    139 Cho S, Choi G, et al. Crystal structure and enzyme mechanism of Delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni [J]. Biochemistry (1998) 2231-2237
    140 Mody M, Cao Y, Cui Z, Tay KY, Shyong A, Shimizu E, Pham K, Schultz P, Welsh D, Tsien JZ. Genome-wide gene expression profiles of the developing mouse hippocampus [J].2001, PNAS 98:8862-8867.
    141连冬生,杨汝德,赵树进.基因芯片技术及其在疾病基因诊断中的应用[J].现代生物医学进展,2008,8(10):1982-1986.
    142 Slater E P, Diehl S M, Langer P, et al. Analysis by eDNA microarrays of gene expression patterns of human adrenocortical tumor[J]. European J Endocrinol,2006,154(4): 587-592.
    143张亮,刑婉丽,程京.基因芯片技术及其在药学领域里的应用[J].基础医学与临床,2000,20(4):13-16.
    144马旭.基因芯片技术及其研究现状和应用前景[J].中国医疗器械信息,2002,8(1):4-7.
    145杜巍.基因芯片技术在食品检测中的应用[J].生物技术通讯,2006,17(2):296-298.
    146张驰宇,成婧,李全双.荧光实时定量PCR的研究进展[J].江苏大学学报,2006(3):92-95
    147 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001,25 (4):402-408.
    148 Schmittgen T D. Real-time quantitative PCR [J]. Methods,2001,25 (4):383-385.
    149陈颖,徐宝亮等.实时荧光定量PCR技术检测转基因大豆方法的建立[J].食品与发酵工业,200329(8):65-69.
    150 Amutan, M. and Batey, D. Real-time quantification of lamda and human genomic DNA using DyNAzyme II DNA polymerase in combination with SYBR Green I dye [J]. Application Note Vol.1, No.1. MJ Research, Inc. (2002).
    151宋萍,赵志奇.褪黑激素的研究进展[J].生命科学,2000,12(4):157-161.
    152 Archibald A L, Haley C S, Brown J F, Couperwhite S, et al. The PiG MaP consortium linkage map of the pig (Sus scrofa) [J].Mammalian Genome,1995,6:157-175.
    153 Ebisawa T, Kajimura N, Uchiyama M, et al. Allelic Variants of Human Melatonin 1A Receptor:Function and prevalence in subjects with circadian rhythm sleep disorders [J]. Biochemical Biophysical Research Communications,1999,262(3):832-837
    154 Messer L A, Li Wang, Tuggle C K, Rothschild M F. Mapping of themelatonin receptor la (MLTR1A) gene in pigs, sheep, and cattle[J]. Mammalian Genome,1997,8:368-370.
    155储明星,程笃学,刘文忠,方丽,叶素成.褪黑激素受体1A基因外显子2与小尾寒羊高繁殖力的关联[J].安徽农业大学学报,2008,35(1):1-4.
    156岳春旺,张微,贾志海等.褪黑激素对内蒙古白绒山羊产绒性能的影响[J].中国畜牧杂志,2007,43(7):32-34.
    157 Luo Y, Cai J, Liu Y, et al. Microarray analysis of selected genes in neural stem and progenitor cells [J]. J Neurochem,2002,83(6):148171497.
    158 Tanaka H, Hata F, Nishimori H, et al. Differential gene expression screening between parental and highly metastatic pancreatic cancer variants using a DNA microarray [J]. Journal of Experimental and Clinical Cancer Research,2003,22:3077313.
    159 Midorikawa T, Chikazawa T, Yoshino T, et al. Different gene expression profile observed in dermal papilla cells related to androgenic alopecia by DNA macroarray analysis [J]. Journal of dermatological science,2004,36,25-32.
    160 Kevin K, Darya C, et al. Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance [J]. Development Al Biology,2004,101(45):15955-15960.
    161苏蕊.内蒙古绒山羊绒毛生长、脱落期皮肤差异表达基因的研究[学位论文],内蒙古农业大学博士,2008.
    162雷平.基因芯片筛选人脑创伤皮层差异表达基因的实验研究[学位论文],天津医科大学博士,2006.
    163 Dhouailly D, Maderson PFA. Ultrastructural Observations on the Embryonic-Development of the Integument of Lacerta-Muralis (Lacertilia, Reptilia) [J]. Journal of Morphology 1984;179 (3):203-28.
    164 Molenear M, van de Wetering M, Oosterwegel M, et al. XTCF-3 transcr iption factor mediates β-catenin-induced Axis formation in Xenopus embr yos[J]. Cell,1996,86:391-399.
    165 CLEVERS H. Wnt/beta-catcnin signaling in development and disease [J]. Cell,2006, 127(3):469-480.
    166 Alibardi L. Ultrastructural localization of tritiated histidine in down feathers of the chick[J]. Cells Tissues Organs 2006; 182 (1):35-47.
    167 Bernot KM, Lee CH, Coulombe PA. A small surface hydrophobic stripe in the coiled-coil domain of type I keratins mediates tetramer stability [J]. The Journal of cell biology 2005; 168 (6):965.
    168 Nusse R, Varmas HE. Wnt gene[J]. Cell,1992,69:1073-1087.
    169 Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis [J].BioEssays,2005,27 (3):247-261
    170李国强,纪影畅,李宇.毛囊形态发生的分子机制[J].国外医学皮肤性病学分册,2004,30(1):38-40
    171 Merrill B J,Gat U, DasGupta R,et al.Tcf3 and Lefl regulate lineage differentiation of multipotent stem cells in skin[J]. Genes Dev,2001,15(13):1688-1705
    172 Niemann C, Owens D M, Hulsken J,et al. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours[J]. Development,2002,129(1):95-109
    173 Wang L C, Liu Z Y, Gambardella L, et al. Regular articles:conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration[J]. J Invest Dermatol,2000,114(5):901-908
    174 Fisher GJ, Voorhees JJ. Molecular mechanisms of retinoid actions in skin[J]. FASEB J 1996; 10 (9):1002-13.
    175 Vial let JP, Dhouailly D. Retinoic acid and mouse skin morphogenesis. I. Expression pattern of retinoic acid receptor genes during hair vibrissa follicle, plantar, and nasal gland development[J]. J Invest Dermatol 1994; 103 (1):116-21.
    176 Lewis D F.57 varieties:the human cytochromes P450 [J]. Pharmacogenomics,2004,5(3): 305-318.
    177 Rendic S. Summary of information on human CYP enzymes:human P450 metabolism data [J]. Drug Metab Rev,2002,34 (1112):83-448.
    178贾文杰,周宏灏.CYP2B6基因多态性及其功能意义的研究进展[J].中国临床药理学与治疗学,2008,13(12):1434-1440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700