长江口不同年限围垦区景观结构与功能分异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围垦区作为复杂的自然系统和人为系统作用的综合区域,其景观结构和功能呈现特殊的复杂性,本研究以长江口海岸带不同年限围垦区作为研究对象,利用数量生态学方法,构建能够体现围垦区建设先进性和可操作性要求的围垦区建设综合指标体系(景观、土壤、植被)和将景观结构和功能进行耦合研究的方法,利用CLUE-S模型对围垦区景观动态未来发展趋势进行情景模拟,为河口地区滩涂湿地围垦建设提供科学决策依据。研究内容和获得结论如下:
     基于1987、1995、2000和2006年长江口TM、ETM遥感影像,利用RS、GIS与数学统计方法,对长江口不同围垦区(3个试验区)土地利用动态进行了分析。结果表明:3个试验区间土地利用多样性指数的变化无显著性差异;各试验区土地利用年变化速率在空间上不存在显著差异,在时间上具有显著差异的土地类型为大棚用地和建筑用地;3个试验区的土地利用程度具有一致性,三区土地利用转移方向的差异也不显著,转移强度相似。长江口不同围垦区的土地利用动态在空间上的不显著差异主要受围垦工程和围垦时间的影响。
     采用“空间代时间”和主成分分析(PCA)综合评价模型的方法,对长江口奉贤不同围垦年限土地利用动态特征进行了综合评价分析。利用南汇围垦区土地利用动态变化对综合评价的结果进行验证。结果表明:(1)PCA土地利用综合评价指数(F)与农耕用地正相关(水田>大棚用地>旱地>林地>园地),与反映滨海特征的土地利用类型(养殖塘>草地>开放水域>光滩)呈负相关;(2)土地利用PCA综合评价指数(F)随围垦年限增加呈对数增长(R2=0.5119)并在围垦后40年左右达到稳定态。回归分析表明F值能很好反映土地利用程度指数(L)和多样性指数(GM)的变化趋势。
     借助多元方差分析(MANOVA).地统计分析(GA)、主成分分析(PCA)和典范对应分析(CCA)方法,研究了不同围垦年限土壤理化性质、土壤综合功能的分异及控制因子。结论:1)土壤水分、盐分、电导率和土壤粒度随着围垦年限的增加表现为下降趋势,有机质为上升趋势;速效磷在围垦初期上升,到围垦100年左右又表现为下降趋势;硝氮、氨氮和pH值则在不同围垦年限间变化不大;土壤理化性质在围垦后30年左右达到稳定态;2)在PCA分析中,反映土壤养分因子(硝氮、有机质、速效P、氨氮、-pH和-土壤粒度)的权重值(总计,0.97)要高于土壤限制因子(盐分、电导率和水分)的权重值(总计,0.48),Fs值越高土壤质量越好;3)不同土地利用类型在土壤功能熟化过程中起到不同的作用;4)CCA分析表明,围垦区土壤理化性质主要受到围垦时间的影响,其次受到土地利用方式的影响;土壤功能综合指数Fs与围垦时间的相关性(0.1905)大于土地利用方式(-0.1161)的影响。
     以2009年7月植被67个样方调查数据、2009年4月调查216样点土壤属性数据和2006年TM(30m)数据作为基础,应用双向指示种分析法(TWINSPAN)、多元方差分析(MANOVA)、除趋势典范对应分析(DCCA)和典范对应分析(CCA)方法,研究了杭州湾不同围垦年限垦区自然植被群落组成及特征分异。结果表明:1)围垦区植被群落以中生植物群落和沼生—中生过渡群落为主,随着围垦年限的变化呈梯度性分布,发现物种丰富度、物种多样性和地上生物量随着围垦年限的增加而增大,但在围垦中后期(>30年)会受到土地利用方式影响而出现反弹现象(下降);2)物种丰富度指数和物种多样性指数的变化规律与围垦年限的变异趋势相一致,随着土地利用程度的升高其出现先上升后下降的趋势。而物种生态优势度指数则出现下降趋势,地上生物量则略有增加;3)土地利用方式(r=0.55,p<0.05)、土壤水分(|r|=0.53,p<0.05)、土壤盐分(|r|=0.43,p<0.05)、围垦时间(r=0.40,p<0.05)是影响围垦后不同植被群落分布的主要因子。
     海岸围垦区景观动态变化是人-地关系复杂作用的结果,以1990年、2000年、2009年TM影像、社会统计数据、野外调查数据作为数据源。借助RDA和PCA分析了海岸带景观动态变化驱动力因子贡献度,并利用kappa指数对CLUE-S模型所选驱动力模拟效力进行验证。结果表明:海岸带围垦区景观动态变化人为驱动因子贡献度(57.10%)>自然驱动因子贡献度(42.90%)。CLUE-S模拟正确率可达82%,主导景观类型耕地、未利用地和养殖塘kappa指数均大于0.75,CLUE-S模拟效果较为理想,所选驱动力很好地模拟了规则景观突变的空间分布特征,进而对围垦区2010-2020年未来发展进行了情景模拟,模拟结果表明CLUE-S模型能够较为有效地模拟围垦区景观格局的规则性、集中性和呈带性分布,同时为围垦区管理决策提供了参考依据。
The reclaimed zone or polder land has complicated landscape structure and functions due to the mixed influence from natural and anthropological factors.Based on the reclamation zones of different years at the Changjiang River (Yangze River) Estuary, a synthesized indicator system,including landscape, soil and vegetation factors, was established to combine landscape structure and functions together. CLUE-S model was employed to simulate the future scenarios in the reclamation zones. Following are the main results:
     1) Based on the TM and ETM image of the Changjiang River Estuary obtained from 1987,1995,2000 and 2006, landuse dynamics of 3 typical pilot study areas were analyzed with GIS and statistical methods. The results showed that the 3 study areas were not significantly different in terms of land use diversity indicated by Gibbs-Mirtin diversity index. The land use change rate had no spatial difference among the 3 study areas. But the change rate of Greenhouse land and built-up land were found to be significantly different among time scales, land use levels of the 3 study areas were similar with each other, with similar land transformation trends and intensities.The insignificant difference among the 3 study areas might be caused by reclamation projects and time of reclamation.
     2) Fengxian area was select for the study or the land use dynamics along temporal series, with combined methods of "spatial sere substituting for time sere" and Principle Component Analysis, while the 2 study areas from Nanhui were used for verification.The results indicated:(1)The comprehensive evaluation index based on PCA(F)was positively related to farmlands(Paddy field>Greenhouse land>dry land>forest land>orchards),and negatively related to coastal land cover types(breeding ponds>grass land>open water>bare flat).(2)The F-value increased with time logarithmically (R2:0.5119), and reached stable around 40 years after reclamation.Regression analysis showed that F-value can reflect the trends for both land use levels(L) and diversity index (GM).
     3)With multivariate analysis of variance(MANOVA),Geo-statistical analysis(GA), PCA and Canonical Correspondence analysis, soil properties and their possible control factors were analized among zones with different reclamation years.(1)With the increase of reclamation time. Soil moisture, salinity, conductivity and partical size decreased,While soil organic matter increased;Soil available phosphorus increased first, and decreased after 100 years of reclamation.No change trend was found for NO3-N, NH4+-N and pH along time series. Soil properties reached stable around 30 years after reclamation.(2) According to the PCA results, the weight values for soil nutrient factors(such as NO3--N, SOM,SAP,NH4+-N,-pH and-soil partical size) were higher than those for soil limitation factors(such as soil salinity, conductivity and soil moisture). Higher Fs values indicated better soil quality. (3) Different land use types contributed differently during the soil maturation process; (4) CCA results indicated that soil properties were mainly affected by reclamation time, and the influence from land use was secondary. The comprehensive soil function index Fs is more related to reclamation time (r=0.1905) than with land use (r=-0.1161).
     4) Based on the 67 quadrats data obtained in July 2009,216 soil sampling points data obtained in April 2009, as well as the TM data of 2006, the natural vegetation zones were analized with TWINSPAN, MANOVA, DCCA and CCA methods. The results indicate that:(1) the vegetation community in the reclamation zones was mainly composed of mesophytes and helophytes-mesophytes. With the increase of reclamation time, the communities showed a transitional gradient trend; Species richness (MA), species diversity (H) and above ground biomass also increased. Nevertheless, they appeared to decline slightly in the middle and late reclamation period (>30 years), being affected by land use types, (ii) The change in species richness(MA) and species diversity (H) with reclamation time also tended to increase at first and then decreased with the rise in land use degree. Species dominance (D), however, tended to decline, and above-ground biomass increased slightly, (iii) The distribution of the vegetation community was mainly influenced by the following factors:land use patterns (r=0.55, p<0.05), soil moisture (r=0.53, p<0.05), soil salinity (r=0.43, p<0.05) and reclamation time (r=0.40, p<0.05).
     5) Landscape dynamics of the reclamation zone is resulted from the interaction between human and natural factors. Based on the TM image data of 1990,2000 and 2009, the driving forces for landscape dynamics in the reclamation zone was analized with RDA and PCA methods. Kappa index and CLUE-S model were also employed to verify the effectiveness of the driving factors selected.Results indicated that:The contribution from human induced factors (57.10%) is higher than that from natural factors (42.9%) to the landscape dynamics in the reclamation area.The prediction accuracy from CLUE-S model reached 82%, While the kappa index for major landscape types such as farmland,unused land and breeding ponds were all higher than 0.75.Therefore the CLUE-S model could be used for future scenarios simulation, and the driving factors selected for this study were also effective in depicting the spatial distribution of landscape transformation.Future development scenarios of the study area were simulated for the next 10 years(2010-2020), which can provide scientific support for decision making in the newly reclaimed area.
引文
1. Abd EI,Ghani MM,Amir WM,2000. Soil vegetation relationships in a coastal desert plain of southern Sinai, Egypt. Journal of Arid Environments,55:607-628. DOI:10.1016/S0140-1963(02)00318-X.
    2. Badsha KS, Goldspink CR,1988. Heavy metal levels in three species of fish in Tjeukemeer, a Dutch polder lake. Chemosphere,17 (2):459-463.
    3. Bernhardt Karl-Georg, Marcus Koch,2003. Restoration of a salt marsh system: temporal change of plant species diversity and composition.Bas/c and Applied Ecology,4(5):441-451.
    4. Byeong MM, Kim JH,1997. Soil texture and desalination after land reclamation on the West coast of Korea. Korean J Ecol,120:133-143.
    5. Byeong MM, Kim JH,2000. Plant Succession and Interaction between Soil and Plants after Land Reclamation on the West Coast of Korea. Journal of Plant Biology,43 (1): 41-47.DOI:10.1007/BF03031035.
    6. Byeong MM, Kim JH,1999a. Plant Distribution in relation on to soil properties of reclaimed lands on the West Coast of Korea. Journal of Plant Biology,42 (4):279-286. DOI:10.1007/BF03030341
    7. Byeong MM, Kim JH,1999b. Plant Community Structure in Reclaimed Lands on the West Coast of Korea. Journal of Plant Biology,42 (4):287-293. DOI:10.1007/BF0303034213.
    8. Critchley CNR, Chambers BJ, Fowbert JA et al.,2002. Plant species richness, functional type and soil properties of grasslands and allied vegetation in English environmentally sensitive areas. Grass and Forage Science,57:82-92. DOI:10.1046/j.l365-2494.2002.00305.x
    9. De Temmerman, L Vanongeval C, Boon W, Hoenig M, Geypens M,2003. Heavy metal content of arable soil in Northern Belgium. Water Air and Soil Pollution, 148(l-4):61-76.
    10. Devos JA, Raats PAC, Feddes RA,2002. Chloride transport in a recently reclaimed Dutch polder. Journal of Hydrology,257 (1),59-77.
    11. El-Demerdash MA, Hegazyt AK, Zilay AM,1995. Vegetation-soil relationships in Tihamah coastal plains of Jazan region, Saudi Arabia. Journal of Arid Environments, 30:161-174. DOI:10.1016/S0140-1963(05)80067-9.
    12. Ertsen ACD, Bio AMF, Bleuten W, Wassen MJ,1998. Comparison of the performance of species response models in several landscape units in the province of Noord-Holland, The Netherlands. Ecological Modelling,109 (2):213-223.
    13. Forman RTT,1995. Land Mosaics, the Ecology of Landscape and Regions. Cambridge University Press, Cambridge, New York.
    14. Frihy OE, Nasr SM, Hattab MME, et al. Remote sensing of beach erosion along the Rosetta Promontary, Northwestern Nile Delta, Egypt. Remote Sensing,1994,15: 73-82.
    15. Fred j, Brenner,1979. Soil and plant characteristics as determining factors in site selection for surface coal mine reclamation. Environmental Geochemistry and Health, 1 (1):10-22. DOI:10.1007/BF02010597
    16. Fu, BJ, Zhang, QJ, Chen LD et al.,2006. Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. Catena,65,41-48.
    17. Goss-Custard JD, Yates MG,1992. Towards predicting the effect of salt marsh reclamation on feeding bird numbers 6 on the Wash. The journal of applied ecology, 29(2):330-340.
    18. Hammersmark CT, Fleenor WE, Schladow SG,2005. Simulation of flood impact and habitat extent for a tidal freshwater marsh restoration. Ecological Engineering,25(2): 137-152.
    19. Hatvany MG,2003. Marshlands:Four centuries of environmental change on the shores of the St. Lawrence. Ste-Foy:Les Presses de I'Universite Laval, pp.204.
    20. Hesterberg D, de Vos B, Raats PAC,2006. Chemistry of subsurface drain discharge from an agricultural polder soil. Agricultural Water Management,86 (1):220-228.
    21. Hill MO,1979.Twinspan-a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca.
    22. Huang Jinliang, Lin Jie,Tu Zhenshun,2010. Detecting spatiotemporal change of land use and landscape pattern in a coastal gulf region,southeast of China. Environ Dev Sustain, (12):35-48. DOI 10.1007/sl0668-008-9178-8.
    23. Huang HM, Zhang LQ, Guan YJ, Wang DH,2008. A cellular automata model for population expansion of spartina altenrniflora at Jiuduansha Shoals,Shanghai,China. Estuarine Coastal and Shelf Science,77:47-55.
    24. Hu YC, Li XJ, Fang YD, Liu XR, Zhong WJ,2009. Spatial-temporal variance of reclamation soil physical and chemical character in opencast mine region. Journal of coal science & engineering,15(4):399-403.
    25. Jung K, Stelzenm U, ller V, Zauke G,2006. Spatial distribution of heavy metal concentrationsand biomass indices in Cerastoderma edule Linnaeus (1758) from the German Wadden Sea:an integrated biomonitoring approach. Journal of Experimental Marine Biology and Ecology,338(1):81-95.
    26. Kang JW,1999. Changes in tidal characteristics as a result of the construction of sea-dike/sea-walls in the Mokpo coastal zone in Korea. Estuarine, Coastal and Shelf Science,48:429-438.
    27. Kashem M A, Singh B R,2001. Metal availability in contaminated soils:I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems,61(3):247-255.
    28. Ledous L, Cornell S, O'Riordan T et al.,2005. Towards sustainable flood and coastal management:identifying drivers of, and obstacles to, managed realignment. Land Use Policy,22:129-144.
    29. Lefeuvre J-C, Bouchard V,2002. From a civil engineering project to an ecological engineering project:An historical perspective from the Mont Saint Michel bay (France). Ecological Engineering,18(5):593-606.
    30. Liu X M, Xu J M, Zhang M K, Huang J H, Shi J C, Yu X F,2004. Application of geostatistics and GIS technique to characterize spatial variability's of bioavailability micronutrient in paddy soils, Environmental Geology,46:189-194.
    31. Li Xiu Zhen, Mander Ulo,2009. Future options in landscape ecology:development and research. Progress in Physical Geography,33(1):31-48.
    32. Matheron G,1963. Principles of geostatistics, Economic Geology 58(8):1246-1266.
    33. Milligan J, O'Riordan X Nicholson-Cole S A, et al.,2009. Nature conservation for future sustainable shorelines:Lessons from seeking to imvolve the public. Land Use Policy,26:203-213.
    34. O'Rourke S, Gauthreaux K, Noble CO, Sneddon J, Beck JN,2001. Mercury in sediments collected at the Sabine National Wildlife Refuge Marsh reclamation site in southwest Louisiana. MicrochemicalJournal,70(1):1-5.
    35. Odum E P,2000. Tidal mashes as outwelling/pulsing systems. In:Weinstein M. P. and kreeger D. A. (Eds). Concepts and controversies in tidal marsh ecology.
    36. Pethick J,2002. Estuarine and tidal wetland restoration in the United Kingdom: policy versus practice. Restoration Ecology,10:431-437.
    37. Pontius RG, Schneider LC,2001. Land use change model validation by an ROC method for the Ipswich watershed, Massachusetss, USA. Agriculture, Ecosystems and Environment,85:239-248.
    38. Puijenbroek PJTM, Janse JH, Knoop JM,2004. Integrated modelling for nutrient loading and ecology of lakes in The Netherlands. Ecological Modelling,174 (1), 127-141.
    39. Qishlaqi A, Moore F, Forghani G,2009. Characterization of metal pollution in soils under two land use patterns in the Angouran region, NW Iran; a study based on multivariate data analysis, Journal of Hazardous Materials,11:1-11.
    40. Shin'ichi Sato,Mikio Azuma,2002.Ecological and paleoecological implications of the rapid increase and decrease of an intro-duced bivalve Potamocorbula sp.after the construction of a reclamation dike in Isahaya Bay,western Kyushu,Japan. Palaeogeography, Palaeoclimatology, Palaeoecology,185:369-378.
    41. Spijker J, Vriend SP, van Gaans PFM,2005. Natural and anthropogenic patterns of covariance and spatial variability of minor and trace elements in agricultural topsoil. Geoderma,127 (1):24-35.
    42. Stuyfzand PJ,1995. The impact of land reclamation on groundwater quality and future drinking water supply in the Netherlands. Water Science and Technology, 31(8):47-57.
    43. Ter Braak CJF,1986. Canonical correspondence analysis:A new eigenvector method for multivariate direct gradient analysis. Ecology,67:1167-1179.
    44. Ukpong IE,1997. Salinity in the Calabarmangrove swamp, Nigeria. Mangroves and SaltMarshes,1:211-218.
    45. Vanlier HN, Steiner FR,1982. A review of the Zuiderzee reclamation works:An example of Dutch physical planning. Landscape and Planning,9(1):35-59.
    46. Veldkamp A,1996.Fresco LO. CLUE-CR:an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological modeling,91:231-248.
    47. Verburg PH, Veldkamp A, de Koning GHJ, Kok K, Bouma J,1999. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecological modelling,116:45-61.
    48. Viguria JR, Irabienb MJ, Yustab I, et al.,2007. Physico-chemical and toxicological characterization of the historic estuarine sediments:A multidisciplinary approach. Environment International,33(4):436-444.
    49. Wang Sihui, Zhao Yanwei, Yin Xinan, Yu Lei, Xu Fei,2010. Land use and landscape pattern changes in Nenjiang River basin during 1988-2002, Front Earth Sci, China,4(1):33-41.
    50. Wang WY, Wang QJ, Wang HC,2006. The effect of land management on plant community composition, species diversity, and productivity of alpine Kobersia steppe meadow. Ecology Research,21:181-187. DOI:10.1007/s11284-005-0108-z.
    51. Walker B, Stefen W,1999. The Terrestrial Biosphere and Global Change:Implications for Natural and Managed Ecosystems. Cambridge University Press.
    52. Wolters,Angus Garbutt, Jan P Bakker,2005. Salt-marsh restoration:evaluating the success of de-embankments in north-west Europe.Biological Conservation, 123(2):249-268.
    53. Zonneveld IS,1995. Land Ecology. SPB Academic publishing, Amsterdam, The Netherlands.
    54.陈吉余,沈焕庭,恽才兴等,1988.长江河口动力过程和动力地貌演变.上海:上海科学技术出版社.
    55.陈吉余.中国围海工程.北京:中国水利水电出版社,2000.
    56.陈吉余,程和琴,戴志军,2007.滩涂湿地利用与保护的协调发展探讨.中国工程科学,9(6):11-17.
    57.陈吉余,2007.中国河口海岸研究与实践.北京:高等教育出版社.
    58.陈吉余,程和琴,戴志军,2008.河口过程中第三驱动力的作用和响应-以长江河口为例.自然科学进展,18(9):994-1000.
    59.陈宏友,徐国华,2004.江苏滩涂围垦开发对环境的影响问题.水利规划与设计,(Ⅰ):18-21.
    60.陈百明,周小萍,2007.《土地利用现状分类》国家标准的解读.自然资源学报,22(6):995-1003.
    61.陈满荣,韩晓非,刘水芹,2007.上海市围海造地效应分析与海岸带可持续发展.中国软科学,10:115-120.
    62.程征,冯学智,王雷萧,2003.绍围垦区遥感影像的景观结构分析.遥感信息,4:28-32.
    63.车越,杨凯,吴阿娜等,2005.上海城市水源战略与水源地保护:格局,问题与展望.自然资源学报,20(5):651-659.
    64.丁能飞,厉仁安,董炳荣等,2000.新围砂涂土壤盐分和养分的定位观测及研究.土壤通报,32(2):57~60.
    65.丁平,鲍毅新,诸葛阳,1994.萧山围垦农区小型兽类种群动态的研究.兽类学报,14(1):35-42.
    66.董哲任,2003.荷兰围垦区生态重建的启示.中国水利,11(A):45-49.
    67.付红波,李取生,骆承程,陈连运,2009.珠三角滩涂围垦农田土壤和农作物重金属污染.农业环境科学学报,28(6):1142-1146.
    68.傅伯杰,陈利顶,2001.土地利用变化与土壤养分的变化--以河北省遵化县为例.生态学报,21(6):927-931.
    69.高啸峰,王树德,宫阿都,于冬梅,2009.基于主成分分析法的土地利用/覆被变化驱动力研究.地理与地理信息科学,25(1):36-39.
    70.高宇,赵斌,2006.人类围垦活动对上海崇明东滩滩涂发育的影响.中国农学通报,22(8):475-479.
    71.葛全胜,赵名茶,郑景云,2000.20世纪中国土地利用变化.地理学报,55(6):698-706.
    72.葛振鸣,王天厚,施文或等,2005.崇明东滩围垦堤内植被快速次生演替特征.应用生态学报,16(9):1677~1681.
    73.巩晋楠,王开运,张超,马永,2009.围垦滩涂湿地旱生耐盐植物的入侵和影响.应用生态学报,22(1):33-39.
    74.何玮,薛俊增,方伟,吴惠仙,2010.滩涂围垦湖泊滴水湖水质现状分析.科技通报,26(2):869-878.
    75.何小勤,顾成军,2003.崇明湿地围垦与可持续发展研究.国土与自然资源研究,(4):39~40.
    76.贺强,崔保山,赵欣胜,付华龄,廖晓琳,2009.黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系.生态学报,29(2):676-687.
    77.黄日富,2006.荷兰围海拦海工程考察的启示.南方国土资源,(6):18-21.
    78.黄华梅,张利权,高占国.上海市滩涂植被资源遥感分析研究.生态学报,2005,25(10):2686-2693.
    79.黄华梅,2009.基于RS和GIS的上海滩涂盐沼植被的分布格局和时空动态.华东师范大学2009届博士学位论文.
    80.胡知渊,李欢欢,鲍毅新,葛宝明,2008.灵昆岛围垦区内外滩涂大型底栖动物生物多样性.生态学报,28(4):1498-1507.
    81.金周益,唐建军,陈欣,钱翌,傅庆林,2009.滩涂围垦的生态评价—以浙江省上虞市沥海滩涂围垦为例.科技通报,24(6):806-809.
    82.金忠贤,2005.滩涂围垦速率与自然淤积规律的关系研究,《上海市滩涂开发利用与湿地生态保护协调发展的示范研究》专题之二,上海市科委科研计划项目(032312012)科研报告.
    83.贾晓妮,程积民,万惠娥,2007DCA、CCA和DCCA三种排序方法在中国草地植被群落中的应用现状.中国农学通报,23:391-395.
    84.李艳,史舟,王人潮,2005.基于GIS的土壤盐分时空变异及分区管理研究.水土保持学报,19(3):121-124.
    85.李加林,杨晓平,童亿勤,2007.潮滩围垦对海岸环境的影响研究进展.地理科学进展,26(2):43-51.
    86.李占玲,陈飞星,李占杰,唐汐,2004.滩涂湿地围垦前后服务功能的效益分析——以上虞市世纪丘滩涂为例.海洋科学,28(8):76-80.
    87.李秀彬,1996.国内LUCC研究进展综述.地理学报,51(5):553-557
    88.李黔湘,王华斌,2008.基于马尔柯夫模型的涨渡湖流域土地利用变化预测.资源科学,30(10):1542-1546
    89.李素英,李晓兵,王丹丹,2007.基于马尔柯夫模型的内蒙古锡林浩特典型草原退化格局预测.生态学杂志,26(1):78-82
    90.李九发,万新宁,陈小华等,2003.上海滩涂后备土地资源及其可持续开发途径.长江流域资源与环境,12(1):17-22.
    91.李博.生态学.北京:高等教育出版社,2004.
    92.林中,2003.莆田后海围垦水域污染现状与防治对策.莆田学院学报,10(3):91-94.
    93.刘淼,胡远满,常禹,贺红士,布仁仓,2009.土地利用模型时间尺度预测能力分析——以CLUE-S模型为例.生态学报,29(11):6110-6118.
    94.吕一河,傅伯杰,2001.生态学中的尺度及尺度转换方法.生态学报,21(12):2096-2105.
    95.蔺卿,罗格平,陈曦,2005.LUCC模型研究综述.地理科学进展.24(5):80-86.
    96.马金妍,石冰,王开运,巩晋楠,侯颖,2009.崇明东滩湿地围垦区芦苇生物量影响因素初探.生态与农村环境学报,25(4):100-104.
    97.毛明海,2002.杭州湾萧山围垦区环境变化和土地集约利用研究。经济地理,22(增刊):91~95.
    98.毛志刚,谷孝鸿,刘金娥,任丽娟,王国详,2010.盐城海滨盐沼湿地及围垦农田的土壤质量演变.应用生态学报,21(8):1986-1992.
    99.欧冬妮,刘敏,侯立军,刘巧梅,张斌亮,杨毅,2002.围垦对东海农场沉积物无机氮分布的影响.海洋环境科学,21(3):18-22.
    100.裘江海,2006.我国近代滩涂开发利用综述.水利发展研究,(3):26-28.
    101.任继周,1998.草业科学研究方法.北京:农业科学出版社.
    102.慎佳泓,胡仁勇,李铭红,丁平,于明坚,丁炳扬,2006.杭州湾和乐清湾滩涂围垦对湿地植物多样性的影响.浙江大学学报:理学版,33(3):324-328,332.
    103.石冰,马金妍,王开运,巩晋楠,张超,刘为华,2010.崇明东滩围垦芦苇生长、繁殖和生物量分配对大气温度升高的响应.长江流域资源与环境,19(4):383-388.
    104.孙永光,李秀珍,何彦龙,贾悦,马志刚,2010.长江口不同区段围垦区土地利用/覆被变化的时空动态.应用生态学报,21(2):434-441.
    105.宋开山,刘殿伟等,2008.1954年以来三江平原土地利用变化及驱动力.地理学报,63(1):93-104
    106.史培军,宫鹏,李晓兵.土地利用/覆盖变化研究的方法与实践.北京科学出版社,2000.
    107.施雅风,李小春,2010.基于SLEUTH模型的长江口北岸土地利用演化模拟研究.现代测绘,33(3):6-9.
    108.唐承佳,陆健健,2002.围垦堤内迁徙鸻鹬群落的生态学特性.动物学杂志,37(2):27-33.
    109.田博,遆超普,刘进超,姜小三,吴明,2010.杭州湾滨海湿地景观动态变化分析.遥感应用,(1):22-27.
    110.涂小松,濮励杰,吴骏等,2008.基于SLEUTH模型的无锡市区土地利用变化情景模拟.长江流域资源与环境,17(6):860-865.
    111.王玉,贾晓波,张文广,方淑波,姚懿函,安树青,2010.江苏海岸带土地利用变化及驱动力分析.长江流域资源与环境,19(1):7-12.
    112.王思远,刘纪远,张增祥,周全斌,赵晓丽,2001.中国土地利用时空特征分析.地理 学报,56(6):631-639.
    113.吴清洋,李远友,夏小安,张亮,王树启,徐树德,2010.林尤顺汕头牛田洋沿海围垦区锯缘青蟹病害爆发的环境因素.生态学报,30(8):2043-2048.
    114.吴明,邵学新,胡锋,蒋科毅,2008.围垦对杭州湾南岸滨海湿地土壤养分分布的影响.土壤,40(5):760-764.
    115.吴泉源,侯志华等,2006.基于GIS技术龙口海岸带土地利用动态监测.地理研究,25(5):922-930
    116.吴征镒,1983.中国植被.北京:科学出版社.
    117.邬建国,2000.景观生态学-格局、过程、尺度与等级.北京:高等教育出版社.
    118.邬建国,2004.景观生态学中的十大研究问题.生态学报,24(9):2074-2076.
    119.徐岚,赵羿,1993.利用马尔柯夫过程预测东陵区土地利用格局的变化.应用生态学报),4(3):272-277.
    120.尹锴,崔胜辉,赵千钧,花利忠,石龙宇,吝涛,2009.基于冗余分析的城市森林林下层植物多样性预测.生态学报,29(11):6085—6094.
    121.姚荣江,杨劲松,陈小兵,邹平,2009a.苏北海涂围垦区表层土壤体积质量的空间异质性研究.土壤,41(4):659-663.
    122.姚荣江,杨劲松,陈小兵,邹平,赵秀芳,2009b.苏北海涂围垦区耕层土壤养分分级及其模糊综合评价.中国土壤与肥力,(4):16-20.
    123.姚荣江,杨劲松,邹平,陈小兵,余世鹏,李晓明,2009c.苏北海涂围垦区土壤水分空间变异性及其协同克立格估值.土壤,41(1):126-132.
    124.姚荣江,杨劲松,陈小兵,余世鹏,李晓明,2009d.苏北海涂围垦区土壤质量模糊综合评价.中国农业科学,42(6):2019-2027.
    125.姚荣江,杨劲松,陈小兵,余世鹏,李晓明,2010.苏北海涂典型围垦区土壤盐渍化风险评估研究.中国生态农业学报,18(5):1000-1006
    126.杨劲松,姚荣江,2009.苏北海涂围垦区土壤质量综合评价研究.中国生态农业学报,17(3):410-415
    127.杨世伦,杜景龙,郜昂等,2006.近半个世纪长江口九段沙湿地的冲淤演变.地理科学,26(3):335-340.
    128.袁兴中,陆健健,2001.围垦堤内迁徙鹆鹬群落的生态学特性.生态学报,21(10):1642-1647.
    129.于兵,2008.基于GIS的大庆市土地利用动态变化分析与预测.东北林业大学学报,36(2):45-48.
    130.张博,赵耕毛,刘兆普等,2010.江苏滩涂围垦区土壤养分空间变异研究.江苏农业科学,(5):461-464.
    131.张健,施青松,黄宝兴,2006.围垦的社会经济价值及其对海洋环境影响的评估.海洋学研究,24(7):20-25.
    132.张利权,2005.河口滩涂的自然演替规律及其生境分布研究,《上海市滩涂开发利用与湿地生态保护协调发展的示范研究(上海市科委科研计划项目032312012)》分报告.
    133.张容娟,布乃顺,崔军,方长明,2010.土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响.生态学报,30(24):6698-6706
    134.张忍顺,燕守广,沈永明等,2003.江苏淤长型潮滩的围垦活动与盐沼植被的消长.中国人口资源环境,12(7):9-15.
    135.张学儒,王卫,PH Verburg,徐中春,2009.唐山海岸带土地利用格局的情景模拟.资源科学,31(8):1392-1399
    136.仲阳康,周慧,施文或,周晓,周立晨,王天厚,2006.上海滩涂春季鹆形目鸟类群落及围垦后生境选择.长江流域资源与环境,15(3):378-383.
    137.周锐,2010.苏南典型村镇景观格局演变和模拟预测研究.中国科学院沈阳应用生态研究所,博士学位毕业论文.
    138.周学峰,赵睿,李媛媛,陈小勇,2009.围垦后不同土地利用方式对长江口滩地土壤粒径分布的影响.生态学报,29(10):5544-5551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700