KK-42对感染嗜水气单胞菌的日本沼虾成活率的影响及其可能的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本沼虾(Macrobrachium nipponense)是我国重要的淡水甲壳类,随着养殖规模的扩大以及发病率的逐年增加,对其自身免疫机能的研究越来越受到关注。我们前期研究发现,咪唑类物质KK-42能提高凡纳滨对虾(Penaeus schmitti)虾苗的成活率。为了探究该类物质是否对日本沼虾也有类似的作用,本文首先研究了KK-42处理对日本沼虾感染嗜水气单胞菌(Aeromonas hydrophila)后成活率的影响,进一步观察肝胰腺组织形态变化,分析体液免疫因子α2-巨球蛋白(alpha2-macroglobulin, α2M)和几丁质酶(chitinase,Chi)的表达变化,为阐明KK-42的作用机制提供资料。
     将体长3.5~5.0cm的日本沼虾600尾随即分成3组:实验组、对照组和空白组,其中,实验组用1.95×10~(-4)mol/L的KK-42溶液浸泡处理1min,对照组用不含KK-42溶液做相同的处理,空白组不做处理;12h后向腹部第二肌节注射嗜水气单胞菌,空白组注射等量的生理盐水,观察48h内日本沼虾的死亡数量,计算成活率;同时,于不同时间分别从实验组和对照组抽取血淋巴、解剖肝胰腺等组织,用于后续实验。采用常规石蜡切片技术观察肝胰腺的组织学变化,Real-time PCR方法测定α2M、Chi mRNA水平,分光光度法测定α2M、Chi活性。结果如下:
     实验期间,空白组成活率在90%以上(个别虾因蜕皮死亡)。注射嗜水气单胞菌后,对照组成活率迅速下降,在24h成活率最低并趋向稳定;实验组成活率在6、12、24h内比对照组增高了25%、141%和133%,呈显著或极显著差异(P<0.05, P<0.01)。
     组织学观察显示,对照组在0h肝小管轮廓清晰,F-细胞易分辨;在6h肝小管管腔增大,可见较多絮状物;12h肝小管受损较重,空泡较多且体积较大;24h肝小管轮廓相对清晰,部分有空泡。实验组在6h肝小管管腔体积相对较小;在12h部分肝小管受损;在24h肝小管形态和0h基本相似。
     首次从日本沼虾克隆出的α2M的部分cDNA序列,经在线BLAST比对,与罗氏沼虾(Macrobrachium rosenbergii)a2M具有90%以上同源性。Real-time PCR结果显示,α2M mRNA在血细胞中的表达量最高;在蜕皮周期过程中,血细胞α2M表达水平在蜕皮前期(D)最高,蜕皮后期(A、B)和蜕皮间期(C)相对较低。KK-42处理可显著诱导肝胰腺α2M mRNA的表达,在处理后6~48h,mRNA水平与对照组相比极显著升高(P<0.01),但血细胞α2M mRNA水平与对照组相比无显著性差异。注射嗜水气单胞菌后,对照组血细胞和肝胰腺α2M mRNA水平分别在3h和3、6、12、48h显著升高(P<0.05);实验组血细胞和肝胰腺α2M mRNA含量分别在6、12、48h和12h显著高于相应对照组。血淋巴中α2M活力与其mRNA表达具有相似的模式。
     首次从日本沼虾克隆出几丁质酶(Mnchi-3)的部分cDNA序列,经氨基酸序列分析发现,其序列为几丁质酶GH18催化域中的一部分,含活性催化中心-LDGLDMDWE-及保守性的谷氨酸残基,与其它物种相似性达90%。Real-time PCR结果显示,Mnchi-3mRNA在肝胰腺的表达量最高,表皮也有微量表达;在蜕皮周期过程中,Mnchi-3mRNA水平在D2/D3期最高。KK-42处理后12h,Mnchi-3mRNA表达量比相应对照组增高了150%(P<0.05)。注射嗜水气单胞菌后,对照组Mnchi-3mRNA水平在3h时显著升高,实验组mRNA表达量在12、24和48h比相应对照组分别增高了127%、304%和120%(P<0.05),酶活力在24h时与相应的对照组比显著增高(P<0.05)。
     结论:咪唑类物质KK-42能够提高日本沼虾感染嗜水气单胞菌后的成活率,降低嗜水气单胞菌对肝胰腺的损伤程度,可诱导α2-巨球蛋白、几丁质酶基因表达及其酶活力。
Macrobrachium nipponense is an important freshwater species for aquaculture in China. With therapid production and development of the prawn industry, prawn diseases have become severe in recentyears. The exploration of prawn immune response is therefore of great signifcance. Our previous study hasdemonstrated that the treatment of imidazole derivative KK-42can increase the survival rate of juvenileLitopenaeus vannamei. In order to research whether the similar effect of KK-42on M. nipponense existed,we firstly investigated the survival rate of M. nipponense challenged Aeromonas hydrophila after KK-42treatment; secondly we observed the histological changes of hepatopancreas of M.nipponense challengedA. hydrophila and analysed the expressions of humoral immunity factors such as α2M and chitinase. Theresults were as follows.
     About600prawns with body length of3.5~5.0cm randomly were divided into three groups: KK-42treatment, control, blank. The prawns of KK-42treatment or control group were soaked for1min inKK-42solution at a concentration of1.95×10-4mol/L or0mol/L, respectively. After12h, the prawns ofthese groups or blank group were injected with20μL of A. hydrophila suspension or sterile saline solutioninto the abdomen muscle. The survival rate for48h after A. hydrophila-challenge test was calculated; thehepatopancreas and hemolymph were collected, and the histological changes of hepatopancreas ofM.nipponense was observed by paraffin section; and the expressions of α2M and chitinase genes wereassayed using Real-time PCR; and the activities of α2M and chitinase were monitored byspectrophotometer method.
     The survival rate of blank group keeped upon90%although few prawns died because of molt. AfterA.hydrophila injection, the survival rate of KK-42treatment group respectively increased by25%,141%and133%at6,12,24h compared with control group which rapidly descended and retained lower level at24h.
     The histology result revealed that the hepatopancreas tubules of control group had complete structureand clearly distinguished F-cell, the lumen with floccules extended, basement membranes fractured andmany big vacuoles observed, the structure restored and few vacuoles observed at0,6,12,24h, respectively.The hepatopancreas tubules’ lumen was relatively smaller at6h in KK-42treatment group, few hepatopancreas tubules were damaged at12h and the structure was similar to those of0h at24h.
     A partial fragment of α2M gene was cloned from M. nipponense by PCR, Sequence comparisonshowed that the fragment shares90%identity with that of Macrobrachium rosenbergii. The quantitativereal-time PCR analysis showed that α2M was mainly expressed in haemocytes; a2M mRNA level was thehighest in stages D, and the lower in stages A, B and C stages. After KK-42treatment, the hepatopancreasα2M mRNAlevel significantly increased compared with the corresponding controls at6~48h(P<0.01),but the haemocyte α2M mRNA level couldn’t showed significant differentiation. Atfer A. hydrophilainjection, the α2M mRNA level of hepatopancreas or haemocyte significantly increased at3,6,12,48h or3h, respectively(P<0.05).However, the haemocyte or hepatopancreas α2M mRNA level significantlyincreased at6,12,48h or12h, respectively, compared with the corresponding control in KK-42treatmentgroup(P<0.05). The haemolymph α2M activity pattern was similar to α2M mRNA level.
     A partial fragment of chitinase gene(Mnchi-3)was obtained, sequence comparison showed that thededuced amino acid of Mnchi-3cDNA fragment involved chitinase catalyticactive site‘-LDGLDMDWE-’and the fully conserve glutamate residue ‘-G-’, and which revealed homology around90%compared to those in other species. The real-time PCR analysis analysis showed that Mnchi-3wasexpressed mainly in hepatopancreas, and Mnchi-3mRNA level was the highest in stages D2/D3. AfterKK-42treatment, the hepatopancreas Mnchi-3mRNA contents significantly increased by150%comparedwith the corresponding controls at12h(P<0.05). Atfer A. hydrophila injection, the Mnchi-3mRNA levelsignificantly increased at3h; the Mnchi-3mRNA contents increased by127%,304%,120%, respectively,compared with the corresponding controls at12,24,48h in KK-42treatment group(P<0.05). Thehepatopancreas chitinase activity significantly increased at24h in KK-42treatment group(P<0.05).
     Conclusion:Administration of imidazole derivative KK-42can increase the survival rate of M.nipponense, reduce the degree of damage of hepatopancreas of M. nipponense challenged A. hydrophila,and induce the α2M, Mnchi-3gene expressions and enzyme activities.
引文
[1]何绪刚,龚世园,刘军,等.大水面日本沼虾资源人工增殖[J].湖泊科学,2002,14(4):377-380.
    [2]吴惠仙,薛俊增,俞宏.日本沼虾常见疾病与防治[J].淡水渔业,2002,32(1):47-48.
    [3]宁黔冀,杨洪,程鸿轩,等.保幼激素拮抗物溶液及其提高水产养殖甲壳动物成活率方法[P].发明专利:ZL200510017350.X,2008.
    [4]邢克智,刘茂春,王金华.温度、盐度对青虾幼体生长发育的影响[J].南开大学学报(自然科学版),1997,30(3):88-93.
    [5]曾朝曙.温度对锯缘青蟹幼体存活与发育的影响[J].水产学报,1992,16(3):213-221.
    [6]郁桐炳,唐渝,尤洋,等.5种波长光对日本沼虾人工育苗幼体成活率的影响[J].湛江海洋大学学报,2004,24(4):5-9.
    [7]谢文星.大中水面青虾增产技术要点[J].淡水渔业,1997,27(6):30-32.
    [8]成永旭,王武,吴嘉敏,等.虾蟹类幼体的脂类需求及脂类与发育的关系[J].中国水产科学,2001,7(4):104-107.
    [9]陆承平.致病性嗜水气单胞菌及其所致鱼病综述[J].水产学报,1992,16(3):282-288.
    [10]张晓君,陈翠珍,房海.草鱼肠炎嗜水气单胞菌分离株的主要特性及系统发育学分析[J].中国人兽共患病学报,2006,22(4):334-337.
    [11]贺路,艾晓辉,左文功.牛蛙腹水病病原研究[J].淡水渔业,1995,25(3):16-18.
    [12]陈晓凤,陈沂辉,王好镇,等.牛蛙肝肿大病病原及防治的研究[J].厦门水产学院学报,1995,17(2):32-37.
    [13]纪荣兴,邹文政,莫英军.牛蛙“白内障”病病原的初步研究[J].集美大学学报:自然科学版,2003,8(1):8-11.
    [14]薛晖,陆全平,马小荣,等.日本沼虾“红体病”病原的研究[J].水产养殖,2004,25(5):35-37.
    [15]夏小安,吴清洋,李远友,等.锯缘青蟹混合感染症致病菌的分离鉴定与感染治疗[J].热带海洋学报,2010,29(5):103-110.
    [16]陈武,李婉萍.巨蜥源嗜水气单胞菌分离株的病原特性分析[J].动物医学进展,2004,25(4):114-116.
    [17]齐雷,徐可利.鸭嗜水气单胞菌病的病原分离与诊治[J].水禽世界,2007,1:26-27.
    [18]游忠岚,陈嵩,王字明.慢性重型肝炎并发嗜水气单胞菌败血症1例[J].第三军医大学学报,2008,30(3):206.
    [19]朱红,牛红喜,伺春涤.嗜水气单胞菌性面部蜂窝织炎死1例[J].中国麻风皮肤病杂志,2006,22(8):703-704.
    [20]张庆利.中国对虾免疫系统中抗氧化相关基因的克隆与表达分析[D].北京:中国科学院研究生院,2007.
    [21] Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals[J]. Biochem MolBiol,2005,38(2):128-150.
    [22]章跃陵,王三英,彭宣宪.无脊椎动物适应性免疫的研究进展[J].水产科学,2005,25(8):43-45.
    [23]薛清刚,张学雷,王雷,等.虾、贝类免疫反应基础及作用[C].相建海主编:海水养殖生物病害发生与控制.北京:海洋出版社,2001:74-84.
    [24]管华诗.海水养殖动物的免疫、细胞培养和病害研究[M].山东:山东科学技术出版社,1999:1-21.
    [25]高宏伟.中国对虾病原检测新方法及酚氧化酶通路相关基因的研究[D].北京:中国科学院研究生院,2008.
    [26]刘逸尘.中国明对虾凝结过程中免疫相关基因的克隆与表达研究[D].北京:中国科学院研究生院,2005.
    [27] van de Braak CBT, Botterblom MHA, Taverne N, et al. The roles of haemocytes and the lymphoidorgan in the clearance of injected Vibrio bacteria in Penaeus monodon prawn[J]. Fish ShellfishImmunol,2002,13(4):293-309.
    [28] Johansson MW, Soderhall K. Isolation and purification of a cell adhesion factor from crayfish bloodcells[J]. J Cell Biol,1988,106(5):1795-1803.
    [29] Soderhall K, Smith VJ, Johansson MW. Exocytosis and uptake of bacteria by isolated haemocytepopulations of two crustaceans: evidence for cellular cooperation in the defence reactions ofarthropods[J]. Cell Tissue Res,1986,245(1):43-49.
    [30]邓欢,陈球,刘卫东.中国对虾血细胞包掩作用和超微结构的组织化学观察[J].应用与环境生物学报,1999,5:296-299.
    [31] Hoffmann JA, Kafatos FC, Janeway CA, et al. Phylogenetic perspectives in innate immunity[J].Science,1999,284(5418):1313-1318.
    [32] Robalino J, Bartlett TC, Chapman RW, et al. Double-stranded RNA and antiviral immunity in marineprawn: inducible host mechanisms and evidence for the evolution of viral counter-responses[J]. DevComp Immunol,2007,31(6):539-547.
    [33] Destoumieux D, Bulet P, Loew D, et al. Penaeidins, a new family of antimicrobial peptides isolatedfrom the prawn Penaeus vannamei (Decapoda)[J]. J Biol Chem,1997,272:28398-28406.
    [34] Cominetti MR, Marques MRF, Lorenzini DM, et al. Characterization and partial purification of alectin from the hemolymph of the white prawn Litopenaeus schmitti[J].Dev Comp Immunol,2002,26(8):715-721.
    [35] Haug T, Kjuul AK, Stensvag K, et al. Antibacterial activity in four marine crustacean decapods[J].Fish shellfish Immunol,2002,12(5):371-385.
    [36] Soderhall K, Cerenius L, Johansson MW. The prophenoloxidase activating system in invertebrates[C].In: Soderhall K, Iwanaga S, Vasta G.R (Eds), New Direetions in Invertebrate lmmunology, SOSPublieations, Fair Haven, pp.1996,229-253.
    [37] Rojtinnakorn J, Hirono I, Itami T, et al. Gene expression in haemocytes of kuruma prawn,Penaeusjaponicus,in response to infection with WSSV by EST approach[J]. Fish Shellfish Immunol,2002,13(1):69-83.
    [38] Xiang JH. Over10,000expressed sequence tags from Fenneropenaeus chinensis[R]. Beijing: InInternational Aquaculture Conference and Exposition,2002.
    [39] Gross PS, Bartlett TC, Browdy CL, et al. Immune gene discovery by expressed sequence tag analysisof hemocytes and hepatopancreas in the Pacific white shrimp, Litopenaeus vannamei, and theAtlantic white shrimp, L.setifirus[J]. Dev Comp Immunol,2001,25(7):565-577.
    [40] Cominetti MR, Marques MRF, Lorenzini DM, et al. Characterization and partial purification of alectin from the hemolymph of the white prawn Litopenaeus schmitti[J]. Dev Comp Immunol,2002,26(8):715-721.
    [41] Kang CJ, Wang JX, Zhao XF, et al. Molecular cloning and expression analysis of Ch-penaeidin,anantimicrobial peptide from Chinese prawn, Fenneropenaeus chinensis[J]. Fish Shellfish Immunol,2004,16(4):513-525.
    [42]郑清梅,叶星,白俊杰,等.斑节对虾溶菌酶基因的原核表达与产物活性检测[J].水产学报,2005,29(1):20-25.
    [43] He N, Qin Q, Xu X, et al. Differential profile of genes expressed in hemocytes of White SpotSyndrome Virus-resistant prawn(Penaeus japonicus)by combining suppression subtractivehybridization and differential hybridization[J]. Antiviral Res,2005,66(1):39-45.
    [44] Robalino J, Bartlett TC, Chapman, RW, et al. Double-stranded RNA an antiviral immunity in marineprawn:inducible host mechanisms and evidence for the volution of viral counter-responses[J]. DevComp Immunol,2007a,31(6):539-547.
    [45] Tirasophon W, Yodmuang S, Chinnirunvong W, et al. Therapeutic inhibition of yellow head virusmultiplication in infected prawns by YHV-protease dsRNA[J]. Antiviral Res,2007,74(2):150-155.
    [46] Wang HC, Leu JH, Kou G.H, et al. Protein expression profiling of the prawn cellular response towhite spot syndrome virus infection[J]. Dev Comp Immunol,2007,31(7):672-686.
    [47] Christophides GK, Zdobnov E, Barillas MC, et al. Immunity-related genes and gene families inAnopheles gambiae[J]. Science,2002,298(5591):159-165.
    [48] Hultmark D. Drosophila immunity: paths and patterns[J]. Current Opinion in Immunology,2003,15(1):12-19.
    [49] Cheng W, Liu CH, Tsai CH, et al. Molecular cloning and characterisation of a pattern recognitionmolecule, lipopolysaccharide and beta-1,3-glucan binding protein from the white prawn Litopenaeusvannamei[J]. Fish Shellfish Immunol,2005,18(3):297-310.
    [50] Chou PH, Chang HS, Chen IT, et al. The putative invertebrate adaptive immune protein Litopenaeusvannamei Dscam is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail[J].Dev Comp Immunol,2009,33(12):1258-1267.
    [51] Du XJ, Wang JX, Liu N, et al. Identification and molecular characterization of a peritrophin-likeprotein from fleshy prawn(Fenneropenaeus chinensis)[J]. Mol Immunol,2006,43(10):1633-1644.
    [52] Liu F, Li F, Dong B, et al. Molecular cloning and characterisation of a pattern recognition protein,lipopolysaccharide and beta-1,3-glucan binding protein(LGBP) from Chinese prawn Fenneropenaeuschinensis[J]. Mol Biol Rep,2009,36(5):471-477.
    [53] Mekata T, Okugawa S, Inada M, et al. Class B scavenger receptor, Croquemort from kunnna prawnMarsupenaeus japonicus: Molecular cloning and characterization[J]. Mol Cell Probes,2010, l3(1):76-84.
    [54] Yang C, Zhang J, Li E, et al. A Toll receptor from Chinese prawn Fenneropenaeus chinensis isresponsive to Vibrio anguillarum infection[J]. Fish Shellfish lmmunol,2008,24(4):564-574.
    [55]刘晓云.中国对虾组织细胞中酚氧化酶活力的研究[J].高技术通讯,2002,8:89-92.
    [56]李莉,朱庆红.多糖类免疫增强剂在水产养殖中的应用研究概况[J].河南水产,2008,2:6-8.
    [57] Sahoo PK, Pillai BR, Mohanty J. In vivo humoral and cellular reactions, and fate of injected bacteriaAeromonas hydrophila in freshwater prawn Macrobrachium rosenbergii [J]. Fish Shellfish Immunol,2007,23(2):327-340.
    [58]王文锋,马建敏,杨洪,等.日本沼虾酚氧化酶原基因cDNA的全长克隆及表达分析[J].解剖学报,2012,待刊出.
    [59]刘振兴,陈昌福,高宇,等.嗜水气单胞菌对克氏原螯虾免疫相关因子活性的影响[J].华中农业大学学报,2011,30(3):358-363.
    [60] Gao H, Li F, Dong B, et al. Molecular cloning and characterisation of prophenoloxidase (proPO) cDNAfrom Fenneropenaeus chinensis and its transcription injected by Vibrio anguillarum [J]. Mol Biol Rep,2008,36(5):1159-1166.
    [61] Yeh MS, Lai CY, Liu CH, et al.Asecond proPO present in white prawn Litopenaeus vannamei andexpression of the proPOs during a Vibrio alginolyticus injection, molt stage, and oral sodium alginateingestion [J].Fish Shellfish Immunol,2009,26(1):49-55.
    [62] Destoumieux D, Bulet P, Loew D, et al. Penaeidins, a new family of antimicrobial peptides isolated fromthe prawn Penaeus vannamei (Decapoda)[J]. J Biol Chem,1997,272(45):28398-28406.
    [63] Relf JM, Chisholm JRS, Kemp GD, et al. Purification and characterization of a cysteine-rich11.5-kDaantibacterial protein from the granular haemocytes of the shore crab,Carcinus maenas [J]. Eur JBiochem,1999,264(2):350-357.
    [64] Li C, Zhao J, Song L, et al. Molecular cloning,genomic organization and functional analysis of ananti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis [J]. Dev Comp Immunol,2008,32(7):784-794.
    [65] Smith VJ, Fernandes JMO, Kemp GD, et al. Crustins: Enigmatic WAP domain-containingantibacterial proteins from crustaceans [J]. Dev Comp Immunol,2008,32(7):758-772.
    [66] Morita T, Ohtsubo S, Nakamura T, et al. Isolation and biological activities of Limulus anticoagulant(anti-LPS factor) which interacts with Lipopolysaccharide(LPS)[J]. Journal of Biochemistry,1985,97(6):1611-1620.
    [67] Beale KM, Towle DW, Jayasundara N, et al. Anti-lipopolysaccharide factors in the American lobsterHomarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialischallenge [J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,2008,3(4):263-269.
    [68] Blake C, Koening D. Structure of hen egg white lysozyme [J].Nature,1965,206(4986):757-758.
    [69] Sotelo-Mundo RR, Islas-Osuna MA, delaReVega E, et al. cDNAcloning of the lysozyme of the whiteprawn Penaeus vannamei [J]. Fish Shellfish Immunol,2003,15(4):325-331.
    [70]董波.中国明对虾和文蛤EST分析及细胞黏附蛋白基因的克隆和表达谱[D].北京:中国科学院研究生院,2005.
    [71] Luo T, Yang H, Li E, et al. Purification, characterization and cDNA cloning of a novellipopolysaccharide-binding lectin from the shrimp Penaeus monodon [J]. Dev Comp Immunol,2006,30(7):607-617.
    [72] Zhao ZY, Yin ZX, Xu XP, et al. A novel C-type lectin from the prawn Litopenaeus vannameipossesses anti-white spot syndrome virus activity [J]. J Virol,2009,83(1):347-356.
    [73] Song KK, Li DE, Zhang MC, et al. Cloning and characterization of three novel WSSV recognizinglectins from prawn Marsupenaeus japonicus [J]. Fish Shellfish Immunol,2010a,28(6):596-603.
    [74] Wang XW, Zhang XW, Xu WT, et al. A novel C-type lectin(FcLec4) facilitates the clearance of Hbrioanguillarum in vivo in Chinese white prawn [J]. Dcv Comp Immunol,2009b,33(7):1039-1047.
    [75] Sun YD, Fu LD, Jia YP, et al. A hepatopancreas specific C-type lectin from the Chinese prawnFenneropenaeus chinensis exhibits antimicrobial activity [J]. Mol Immunol,2008,45(2):348-361.
    [76] Liu Y C, Li FH, Dong B, et al. Molecular cloning characterization and expression analysis of aputative C type lectin(Fclectin)gene in Chinese prawn Fenneropenaeus chinensis[J]. Mol Immunol,2007,44(4):598-607.
    [77]李凤玲,陆承平.草鱼α2-巨球蛋白的分离纯化与若干特性[J].动物学报,2004,50(2):308-312.
    [78] Spycher SE, Arya S, Isenman DE, et al. A functional, thioester-containing a-macroglobulinhomologue isolated from the hemolymph of the American lobster (Homarus americanus)[J]. J BiolChem,1987,262(35):14606–14611.
    [79] Stocker W, Breit S, Sottrup-Jensen L, et al.2-Macroglobulin from the haemolymph of the freshwatercrayfish Astacus astacus [J]. Comp. Biochem. Physiol. Part B,1991,98(4):501–509.
    [80] Iwaki D, Kawabata S, Miura Y, et al. Molecular cloning of Limulus a-macroglobulin [J]. Eur JBiochem,1996,242(2):822–831.
    [81] Rattanachai A, Hirono I, Ohira T, et al. Molecular cloning and expression analysis ofalpha2-macroglobulinin the kuruma prawn, Marsupenaeus japonicus [J]. Fish Shellfish Immunol,2004,16(5):599-611.
    [82] Lin YC, Vaseeharan B, Ko CF, et al. Molecular cloning and characterisation of a proteinase inhibitor,alpha2-macroglobulin(alpha2-M)from the haemocytes of tiger prawn Penaeus monodon[J].MolImmunol,2007,44(12):1065-1074.
    [83] Lin YC, Vaseeharan B,Chen JC. Molecular cloning and phylogenetic analysis ona2-macroglobulin(a2-M) of white prawn Litopenaeus vannamei[J]. Dev Comp Immunol,2008,32(4):317-329.
    [84] Ma HM, Wang B, Zhang JQ, et al. Multiple forms of alpha-2macroglobulin in prawn Fenneropenaeuschinesis and their transcriptional response toWSSV or Vibrio pathogen infection[J]. Dev CompImmunol,2010,34(7):677-684.
    [85] Perazzolo LM, Bachèreb E, Rosa RD, et al. Alpha2-macroglobulin from an Atlanticprawn:Biochemical characterization, sub-cellular localization and gene expression upon fungalchallenge[J]. Fish Shellfish Immunol,2011,31(8):938-943.
    [86] Ho PY, Cheng CH, Cheng WT. Identification and cloning of the a2-macroglobulin of giant freshwaterprawn Macrobrachium rosenbergii and its expression in relation with the molt stage and bacteriainjection[J]. Fish Shellfish Immunol,2009,26(4):459-466.
    [87] Vaseeharan B, Lin YC, Ko CF, et al. Molecular cloning and characterisation of a thioester-containingalpha2-macroglobulin(alpha2-M) from the haemocytes of mud crab Scylla serrata[J]. Fish ShellfishImmunol,2007,22(2):115-130.
    [88] Kopacek P, Weise C, Saravanan T. Characterization of an alpha-macroglobulin-like glycoproteinisolated from the plasma of the soft tick Omthodoros moubata[J]. Eur J Biochem,2000,267(3):465-475.
    [89] Dieguez uribeondo J, Cerenius J. The inhibition of extracellular proteinases from Aphanomyces spp.By three different proteinase inhibitors from crayfish blood[J]. Mycol. Res,1998,102:820-824.
    [90] Lee SY, Soderhall K. Early events in crustacean innate immunity[J]. Fish Shellfish Immunol,2002,12:421-437.
    [91] Lu KY, Sung HJ, Liu CL, et al. Differentially enhanced gene expression in hemocytes fromMacrobrachium rosenbergii challenged in vivo with lipopolysaccharide[J]. Journal of InvertebratePathology,2009,100:9-15.
    [92] Qin CJ, Chen LQ, Qin JG, et al. Molecular cloning and characterization ofalpha2-macroglobulin(a2-M) from the haemocytes of Chinese mitten crab Eriocheir sinensis[J].Fish Shellfish Immunol,2010,29(3):195-203.
    [93] Tonganunt M, Phongdara A, Chotigeat W, et al. Identification and characterization of syntenin bindingprotein in the black tiger prawn Penaeus monodon[J]. J Biotechnol,2005,20(2):135-145.
    [94] Swarnakar S, Asokan R, Quigley JP, et al. Binding of a2-macroglobulin and limulin: regulation of theplasma hemolytic system of the American horseshoe crab, Limulus[J]. Biochem J,2000,347(7):679-685.
    [95] Tonganunt M, Phongdara A, Chotigeat W, et al. Identification and characterization of synteninbinding protein in the black tiger prawn Penaeus monodon[J]. J Biotechnol,2005,20(2):135-145.
    [96] Qazi U, Getrins PG, Strickland DK. Structural details of proteinase entrapment by human alpha2-macroglobulin emerge from three-dimensional reconstructions of Fab labeled native,half-transformed and transformed molecules[J]. J Biol Chem,1999,274(12):8137-8142.
    [97]梅承芳,马洪明,麦康森. a-巨球蛋白研究进展[J].海洋科学,2002,26(9):16-19.
    [98] Tjoelker LW, Gosting L, Frey S, et al. Structural and functional definition of the human chitinasechitin-binding domain[J]. J Biol Chem,2000,275(1):524-520.
    [99] Boraston AB, Bolam DN, Gibert HJ, et al. Carbohydrate-binding modules: fine-tuning polysacchariderecognition[J]. Biochem J,2004,382(3):769-781.
    [100] Watanabe T, Kono M, Aida K, et al. Purification and molecular cloning of a chitinase expressed inthe hepatopancreas of the penaeid prawn Penaeus japonicus[J]. Biochimica et Biophysica Acta,1998,13(82):181-185.
    [101]林建城.节肢动物几丁质酶及其在蜕皮中的生理作用[J].德州学院学报,2005,21(6):45-50.
    [102] Watanabe T, Kono M, Aida K, et al. Isolation of a cDNA encoding a chitinase family protein fromcuticular tissues of the kuruma prawn Penaeus japonicus[J]. Zool Sci,1997,14(1):65-68.
    [103] Zhao ZY, Yin ZX, Wang SP, et al. Profiling of differentially expressed genes in hepatopancreas ofwhite spot syndrome virus-resistant prawn (Litopenaeus vannamei) by suppression subtractivehybridization[J]. Fish Shellfish Immunol,2007,22(4):520-534.
    [104] Priya TA, Li F, Zhang J, et al. Molecular characterization and effect of RNA interference of retinoidX receptor (RXR) on E75and chitinase gene expression in Chinese prawn Fenneropenaeuschinensis[J]. Comp Biochem Physiol B,2009,153(2):121-129.
    [105] Tan SH, Degnan BM, Lehnert SA. The Penaeus monodon chitinase gene is differentially expressed inthe hepatopancreas during the molt cycle[J]. Mar Biotechnol(NY),2000,2(2):126-135.
    [106] Pan D, He N, Yang Z, et al. Differential gene expression profile in hepatopancreas ofWSSV-resistant prawn (Penaeus japonicus) by suppression subtractive hybridization[J]. Dev CompImmunol,2005,29(2),103-112.
    [107] Porranee P, Anchalee T, Vichien R. Chitinases from the black tiger prawn Penaeus monodon:phylogenetics, expression and activities[J]. Comp Biochem Physiol B,2010,156(1):86-96.
    [108]吕黎,宁黔冀.甲壳动物几丁质酶基因结构与功能的研究进展[J].生理科学进展,2011,42(6):457-459.
    [109] Asano S, Kuwano E, Eto M, et al. Anti-juvenile hormone activity of imidazole compound (KK-22)and its diminution by methoprene in the4th instar silkworm, Bombyx mori (Lepidoptera:Bombycidae)[J]. Appl Ent Zool,1986,21(1):63-69.
    [110] Hirai M, Kamimura M, Kikuchi K, et al. cDNA cloning and characterization of Bombyx morijuvenile hormone esterase: an inducible gene by the imidazole insect growth regulator KK-42[J].Insect Biochemistry and Molecular Biologym,2002,32(6):627-635.
    [111] Suzuki K, Fujisawa T, Kurihara M, et al. Artificial hatching in silkworm, Antheraea yamamai:application ofKK-42and its analogs[J]. International Society for Wild Silkmoths,1989,13(1):79-84.
    [112] Jarvis TD, Earley FGP, Rees HH, et al. Inhibition of the ecdysteroid biosynthetic pathway in ovarianfollicle cells of Locusta migratoria[J]. Pesticide Biochemistry and Physiology,1994,48(2):153-162.
    [113] Helvig C, Koener JF, Unnithan GC, et al. CYP15A1, the cytochrome P450that catalyzesepoxidation of methyl farnesoateto juvenile hormone III in cockroach corpora allata[J].Proceedings of the National Academy of Sciences,2004,101(12):4024-4029.
    [114] Asano S. Anti-juvenile hormone activity of imidazole compound (KK-42) and its diminution bymetroprene in the4th instar silkworm Bombyx mori[J]. Appl Entomol Zool,1986,21(1):63-69.
    [115]陆瑶华,宋志乐,刘传林,等.用保幼激素及其类似物及拮抗物促进甲壳动物生长的方法[P].公开专利号:CNIIl3679A,1999.
    [116] Ning QJ, Fu SG, Xu XJ, et al. A new and practical application of JH antagonist KK-42to promotinggrowth of prawn Penaeus schmitti[J]. Aquaculture,2007,270(1-4):422-426.
    [117] de Oliveira Cesar JR, Zhao BP, Malecha S, et al. Morphological and biochemical changes in themuscle of the marine prawn Litopenaeus vannamei during the molt cycle[J]. Aquaculture,2006,261(5):688-694.
    [118] Promwikorn W, Kirirat P, Thaweethamsewee P. Index of molt staging in the black tiger prawn(Penaeus monodon)[J]. J Sci Technol,2004,26(5):765-772.
    [119]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:高等教育出版社,1997:138-140.
    [120] Gollas-Galvan T, Sotelo-Mundo RR, Yepiz-Plascencia G, et al. Purification and characterization ofa2-macroglobulin from the white prawn (Penaeus vannamei)[J]. Comparative Biochemistry andPhysiology, Part C,2003,134(3):431-418.
    [121] Le Moullac G, Soyez C, Saulnier D, et al. Effect of hypoxic stress on the immune response and theresistance to vibrisis of the prawn Penaeus stylirostris[J]. Fish Shellfish Immounol,1998,8(7):621-629.
    [122] Rojas-Avelizapa LI, Cruz-Camarillo R, Guerrero MI, et al. Selection and characterization of aproteo-chitinolytic strain of Bacillus thuringiensis, able to grow in prawn waste media [J]. World JMicrobiol Biotechnol,1999,15(2):299-308.
    [123]李昕,夏西超,宁黔冀. KK-42对凡纳滨对虾热激蛋白基因表达的诱导作用[J].水产学报,2011,35(10):1458-1462.
    [124]杨志彪.水体Cu2+对中华绒鳌蟹(Eriocheir sinensis)毒性作用机制的研究[D].上海:华东师范大学,2005.
    [125] Dieguez-Uribeondo J, Cerenius L. The inhibition of extracellular proteinases from Aphanomycesspp.by three different proteinase inhibitors from crayfish blood[J]. Mycol Res,1998,102(8):820-824.
    [126] Lee SY, Soderhall K. Early events in crustacean innate immunity[J]. Fish Shellfish Immunol,2002,12(5):421-437.
    [127] LeMoullac G, LeGroumellec M, Ansquer D, et al. Haematological and phenoloxidase activitychanges in the prawn Penaeus stylirostris in relation with the moult cycle[J]. Fish ShellfishImmunol,1997,7(4):227-234.
    [128] Cheng W, Chen JC. Effects of intrinsic and extrinsic factors on the haemocyte profile of the prawn,Macrobrachium rosenbergii[J].Fish Shellfish Immunol,2001,11(1):53-63.
    [129] Huang QS, Yan JH, Tang JY, et al. Cloning and tissue expressions of seven chitinase family genes inLitopenaeus vannamei [J]. Fish Shellfish Immunol,2010,29(1):75-81.
    [130] Porranee P, Anchalee T, Vichien R. Chitinases from the black tiger prawn Penaeus monodon:Phylogenetics, expression and activities [J]. Comp Biochem Physiol B,2010,156(2):86-96.
    [131] Zhang JQ, Sun YY, Li FH, et al. Molecular characterization and expression analysis of chitinase(Fcchi-3)from Chinese prawn, Fenneropenaeus chinensis [J]. Mol Biol Rep,2010,37(4):1913-1921.
    [132] Watanabe T, Kono M, Aida K, et al. Purification and molecular cloning of a chitinase expressed inthe hepatopancreas of the penaeid prawn Penaeus japonicus [J]. Biochimica et Biophysica Acta,1998,1382(2):181-185.
    [133] Tan SH, Degnan BM, Lehnert SA. The penaeus monodon chitinase1gene is differentially expressedin the hepatopancreas during the molt cycle [J]. Mar Biotechnol,2000,2(2):126-135.
    [134] Li DC. Review of fungal chitinases[J]. Mycopathologia,2006,161(6):345-360.
    [135] Mali B, Mohrlen F, Frohme M, et al. A putative double role of a chitinase in a cnidarian:patternformation and immunity[J]. Dev Comp Immunol,2004,28(10):973-981.
    [136] Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes:a review[J].Appl Microbiol Biotechinol,2006,71(6):773-782.
    [137]夏西超,王雪参,李欣,等.保幼激素拮抗物KK-42对南美白对虾FAMeT时空表达的影响[J].中国水产科学,2011,18(2):308-313.
    [138]夏西超. KK-42对凡纳滨对虾生长发育相关基因时空表达的影响[D].新乡:河南师范大学,2011.
    [139]李富花,李少菁.锯缘青蟹幼体肝胰腺的观察研究[J].海洋与湖泊,1998,29(1):29-34.
    [140]张莹.凡纳滨对虾和中华绒螯蟹免疫相关因子功能及应用的初步研究[D].青岛:中国科学院海洋研究所,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700