阻燃型氢氧化镁的制备及其在聚丙烯中应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着人们环保意识的增强及阻燃法规的相继颁布,对环境的影响已成为聚合物选择阻燃剂的一个重要因素。由于超细氢氧化镁[Mg(OH)2]具有一系列卓越的性能,符合可持续发展战略,日益成为人们研究的热点。然而大多数Mg(OH)2的制备方法工艺流程长、成本高、效率低或对设备要求高,产品过滤困难、粒径大且分布宽、团聚严重。特别是作为聚合物阻燃剂使用时,其团聚现象严重恶化了聚合物基体的力学性能。因此研制超细单分散的Mg(OH)2阻燃剂具有很高的实际应用意义。本论文以一种简单高效的方法制备出高纯单分散的超细Mg(OH)2,表征了产品的形貌、粒径及其分布。采用熔融共混的方法制备了增容PP/Mg(OH)2共混物,系统研究了共混物的阻燃效果、力学性能以及流变性能。
     本文首次以丙酮和氯化镁液的混合液为母液,在常温下采用卤水—氨正向加料直接沉淀法制备出高纯单分散超细Mg(OH)2疏松粉体。随着母液中丙酮含量的增加,产品的过滤时间、干燥时间、平均粒径、分散状况、团聚状况和聚集状态逐渐改善。当母液中丙酮含量为80%时,与母液中未加入丙酮相比,产品的过滤时间减少了98.9 %,干燥时间减少了79.2 %,微粒形貌为规则的圆片状(首次报道),平均粒径为382.7nm,呈单分散性,产品为非常疏松的粉末,不含NH4Cl·MgCl2·6H2O杂质。
     论文中采用“一步法”对Mg(OH)2进行表面处理,亦即在液相沉淀反应中氨水加料结束后2.5h继续添加基于六水氯化镁质量1.2%的硬脂酸,产品由“亲水型”转变为“疏水型”,“活化指数”达到100%。
     Mg(OH)2经表面改性后较未改性添加到聚丙烯中,复合材料的力学性能、Mg(OH)2的分散性和界面相容性得到改善,在其用量为90phr时极限氧指数达到27.5%,但与纯聚丙烯相比复合材料的力学性能急剧恶化,加入复合增容剂POE-g-MAH和EPDM-g-MAH、碳酸钙和新型无卤阻燃剂六苯氧基环三磷腈(POP),复合材料的力学性能和阻燃性能显著得到改善。在Mg(OH)2用量为42phr,复合增容剂(POE-g-MAH和EPDM-g-MAH的质量比为1:1)用量为15phr,碳酸钙用量为40phr,六苯氧基环三磷腈用量为8phr时复合材料断裂伸长率、拉伸强度、冲击强度分别达到264.76%、22.34MPa、48.65 KJ·m-2,同时极限氧指数可达28.2%。流变测试结果表明,复合增容剂和碳酸钙的加入并没有改变共混体系的非牛顿型假塑性特征,表现出明显的“切力变稀”现象。
Recently, influence on environment was an important consideration for the selection offire-resistant in the polymer with the enhanced protection consciousness of people andconsequent promulgation of the laws and regulations about fire -retardant all over the world.For its series excellent merits as well as in agreement to the sustainable development strategy,superfine magnesium hydroxide was increasingly developed. However, most of the currentprocessing methods of magnesium hydroxide had deficiency, for example, long technologicalprocess, high yield cost, exorbitant equipment, difficult filterability, large size and broad sizedistribution, and serious aggregation. Especially, when magnesium hydroxide was blendedwith polymer, its serious aggregation deteriorated the mechanical performances of thepolymer matrix. Therefore, the prapration of superfine and monodispersion magnesiumhydroxide is more practable. In this dissertation, superfine and monodispersion magnesiumwith high purity was prepared via an easy and high efficient. The particle size and itsdistribution, morphology, crystal phase, and thermal behavior of the product werecharacterized through ultrasonic particle size analyzer (UPSA), transmission electronmicroscopy (TEM) and scanning electron microscopy (SEM), X ray diffraction (XRD),Fourier transform-infrared spectroscopy (FT-IR), and thermogravimetry (TG), respectively.Compatibilized PP/Mg(OH)2 blends were prepared by melting compounding, and thefire-resistance, mechanical and rheological properties were investigated.
     Superfine magnesium hydroxide was synthesized by using magnesium chloridehexahydrate in presence of acetone as precursor and industrial ammon ia as precipitator in thisdissertation. The filtering time, drying time, mean grain size, dispersivity and aggregationwere gradually improved with increasing content of acetone in the mother liquor. In comparison with blank experiments, the filtering time and drying time were drasticallydecreased by 96% and 75% at the level of 80% acetone in the mother liquor, disk-like andmonodispersed ( d 314nm) magnesium hydroxide particles with high purity (that is, impurityof NH4Cl MgCl2 6H2O not to be examined in the products) were obtained.
     One-step method was adopted to treat the surface of magnesium hydroxide. Namely,1.2 wt% stearic acid of magnesium chloride hexahydrate was added at the time 2.5h after theend of feeding ammonia. The surface property of products was completely translated fromhydrophilicity to hydrophobicity, and the hydrophobicity index of products was up to 100%.Mechanical properties, dispersibility of magnesium hydroxide and interfacial compatibilityof polypropylene/magnesium hydroxide blends were obviously improved when magnesiumhydroxide was surface-treatment. The oxygen index was 27.5% in the case of 90phrmagnesium hydroxide. However, the mechanical performances of blends were seriouslydeteriorated by contrast to pure polypropylene. The Mechanical and fire-retardant propertieswere obviously improved after the addition of hybrid compatibilizer (POE-g-MAH andEPDM-g-MAH), calcium carbonate and halogen-free fire retardant (POP). Elongation atbreak, tensile strength, impact strength and oxygen index of composites was 264.76%,22.34MPa, 48.65 KJ m-2 and 28.2% at the level of 42phr magnesium hydroxide, 15phrhybrid compatibilizer, 40phr calcium carbonate and 8phr POP. The rheological resultsindicated that the addition of hybrid compatibilizer and calcium carbonate did not change theNon-Newtonian pseudoplastic character of blends and all blends displayed theshear-thinning phenomenon.
引文
[1] 王永强. 阻燃材料及应用技术[M]. 北京:化学工业出版社,2003,4.
    [2] 胡国胜, 张翠梅, 王标兵, 吴湘锋. 高纯高分散氢氧化镁阻燃剂的制备方法:中国, CN101012382A[P]. 2007 年8 月8 日.
    [3] 吴湘锋, 王标兵, 胡国胜. 纳米氢氧化镁阻燃剂的研究进展[J]. 材料导报纳米与新材料专辑Ⅷ,2007,21(5):17~19; 23.
    [4] 殴育湘.阻燃剂-制造、性能及应用[M]. 北京:兵器工业出版社,1997,187~194.
    [5] 王伟宁, 胡金华. 针状氢氧化镁在热塑性塑料中的增强与阻燃研究[J]. 中国塑料,1991,(1):61~65.
    [6] 杨华明等. 氢氧化镁阻燃剂的现状和发展[J]. 中国非金属矿工业导刊, 2004,13(5):81~84
    [7] Yi Ding, Guangtao Zhang, Hao wu, Bin Hai, Liangbin Wang, Yitai Qian. Nanoscale MagnesiumHydroxide and Magnesium Oxide Powders : Control over Size,Shape,and Structure via HydrothermalSynthesis[J]. Chem mater, 2001,13(2):435~440.
    [8] Chenglin Yan, Dongfeng Xue, Longjiang Zou, Xiaoxing Yan,Wen Wang. Preparation of magnesiumhydroxide nanoflowers[J]. Journal of Crystal Growth, 2005,282(3-4):448~454.
    [9] 向兰, 金永成, 金涌. 氢氧化镁的结晶习性研究[J]. 无机化学学报, 2003,19(8):837~842.
    [10] 任庆利, 刘斌, 陈寿田. 热液环境下Mg(OH)2 结晶形态机理研究[J]. 稀有金属材料与工程,2004,33(1):47~50.
    [11] 孙海霞, 陈建军. 氢氧化镁阻燃剂发展状况及前景预测[J]. 海湖盐与化工, 2005, (4):29~33.
    [12] Larry K. Magnesium hydroxide: Halogen free flame retardant and smoke suppressant f orpolypropylene [J]. Plastics Compounding, 1985, 9(4):402; 441.
    [13] Hornsby P R, Watson C L. Mechanism of smoke suppression and fire retardancy in polymerscontaining magnesium hydroxide filler [J]. Plastics and Rubber Processing and Application,1989,11(1):452~511
    [14] 吴健松, 李海民. 氢氧化镁阻燃剂研制技术近况[J]. 无机盐技术, 2004,(2):5~8.
    [15] 吴荣良, 黄颂安等. 从硼泥制取氢氧化镁阻燃剂[J]. 上海化工, 1996,21(3):1~5.
    [16] 余仁. 阻燃剂氢氧化镁的制备及其应用[J]. IM&P 化工矿物与加工, 2000,(12):1~4.
    [17] 易求实. 反向沉淀法制备纳米Mg(OH)2 阻燃剂的研究[J]. 化学试剂, 2001,23(4):197~199;228.
    [18] C.Henrist, J.-P.Mathieu, C.Vogels, A. Rumlmont, R.Cloots. Morphological study of magnesiumhydroxide nanaparticles precipit ated in dilute aqueous solution [J] . Journal of Crystal Growth,2003,249(1-2):321~330.
    [19] 姚佳良, 彭红瑞, 张志焜. 聚丙烯/纳米氢氧化镁阻燃符合材料的性能研究[J]. 青岛科技大学学报, 2003,24 (2):142~144.
    [20] 李玲. 表面活性剂与纳米技术[M]. 第1 版.北京:化学工业出版社, 2004. 2~5;107.
    [21] Jianping Lv, Longzhen Qiu, Baojun Qu. Controlled growth of three morphological structures ofmagnesium hydroxide nanoparticles by wet precipitation method [J]. Journal of Crystal Growth,2004,267(3-4):676~684.
    [22] 李志强, 吴庆流, 向兰, 魏飞. 温度对氢氧化镁阻燃剂制备影响的研究[J]. 海湖盐与化工,2004,33(5):1~5.
    [23] 门常青等. 无机阻燃剂—氢氧化镁的发展现状[J]. 消防技术与产品信息, 2004,2(5):59~61.
    [24] Hornsby P R, Watson C L. Interfacial modification of polypropylene composites filled w ithmagnesium hydroxide [J]. Journal of Materials Science, 1995,30:53472~53551.
    [25] 王正洲, 瞿保钧. 表面处理剂在氢氧化镁阻燃聚乙烯体系中的应用[J]. 功能高分子学报,2001,14(1):452~481.
    [26] Monte,S.J., Society of Plastics Engineers, 36th Annual Technical Conference, 781, the WashingtonHotel Washington, D.C. April, 1987, 24~27.
    [27] Wang Z, et al. Halogen-free flame retardation and silane crosslinking of polyethylenes [J]. PolymerTesting,2003,22(5):533~538.
    [28] 李玲.表面活性剂与纳米技术[M]. 第1 版.北京: 化学工业出版社, 2004.43~150
    [29] Longzhen Qiu, Rongcai Xie, Peng Ding, Baojun Qu. Preparation and Characterization of Mg(OH) 2nanoparticles and flame-retardant property of its nanocomposites with EVA[J]. Composite Stuctures,2003,62 (3-4):391~395.
    [30] 戴焰林, 洪玲, 施利毅. 沉淀—共沸蒸馏法制备纳米Mg(OH)2 的研究[J]. 上海大学学报(自然科学版), 2003, 9(5):402~404;409.
    [31] 钟明强, 宋栩冰. 有机硅复合阻燃剂阻燃聚丙烯的研究[J]. 塑料工业, 1991,3,46~49.
    [32] 李克民, 舒永爱, 杨凤兰. 镁铝复合阻燃剂的制备与应用[J]. 中国塑料, 1990,4(2):70~73.
    [33] 李永泉. 氢氧化镁及其阻燃增效剂阻燃LDPE 的研究[D]. 硕士论文, 北京化工大学, 2003:15~17.
    [34] Fabien Carpentier, Serge Bourbigot, Michel Le Bras, Rene? Delobel, Michel Foulon. Charring ofreretarded ethylene vinyl acetate copolymer -magnesium hydroxide/zinc borate formulations [J].Polymer Degradation and Stability, 2000,69 (1):83~92.
    [35] A.Riva, G.Caminao, L.Fomperie, P.migouet. Fire retardant mechanism in intumescent ethylene vinylacetate compositions [J]. Polymer Degradation and Stability, 2003,82(2):341~346.
    [36] B. Marosfoi, Sz. Matko, P. Anna Gy. Marosi. Fire retarded polymer nanocomposites [J]. CurrentApplied Physics, 2006,6 (2):259~261.
    [37] Zhengzhou Wang, Yuan Hu, Zhou Gui. Halogen-free flame retardation and silane crosslinking ofPolyethylenes [J]. Polymer Testing, 2003,22 (5):533~538.
    [38] 王艳丽, 张勇, 张隐西等. 羟基硅油对Mg(OH)2 高填充HDPE 力学性能的影响[J]. 中国塑料,200,14(2):65~68.
    [39] 李景, 欧育湘. 氢氧化镁表面处理工艺对阻燃PP 性能的影响[J]. 塑料工业, 2003,31(12):13~14.
    [40] 罗鸿鑫, 郭宝春, 洪皓群等. 表面改性对尼龙6/氢氧化镁阻燃性能的影响[J]. 绝缘材料,2005,6:34~38.
    [41] 倪忠斌, 陈明清, 刘俊康, 刘晓亚. 氢氧化镁表面改性及其在LDPE 中的应用[J]. 江南大学学报(自然科学版), 2003,2(4):399~401.
    [42] 刘立华, 宋云华, 陈建明, 郭奋, 陈建峰. 纳米氢氧化镁表面改性研究[J]. 化工进展,2004,23(1):76~79.
    [43] 李良波, 孟平蕊. PP/CPE/纳米Mg(OH)2 复合材料的研究[J]. 合成树脂及塑料, 2003,20(5):33~34;39.
    [44] 杜高翔, 郑水林, 李杨. 超细水镁石的硅烷偶联剂表面改性[J]. 硅酸盐学报, 2005,33(5):659~664.
    [45] Paton N E, William s J C. Effect of Hydrogen on Titanium and Its Alloys[J]. Hydrogen in Metals,1974, 409.
    [46] 宋云华, 陈建铭, 刘立华, 郭奋. 超重力技术制备纳米氢氧化镁阻燃剂的应用研究[J]. IM &P化工矿物与加工, 2004, (5 ): 19~23.
    [47] 李志强, 吴庆流, 向兰, 魏飞. 水热改性条件对制备氢氧化镁阻燃剂中试研究的影响[J].化工学报, 2005,56(7):1349~1354.
    [48] 向兰, 张英才, 吴庆流, 魏飞. 液氨加压沉淀-水热改性法制备氢氧化镁阻燃剂的方法: 中国,CN 1740269A[P]. 2006 年3 月1 日
    [49] 吴会军, 向兰, 金永成, 金永. 高分散氢氧化镁粉体的制备及其影响因素[J]. 无机材料学报,2004,19(5):1181~1185.
    [50] 赵伟, 叶虹, 樊唯镏, 韩玲, 孙思修. 阻燃剂用氢氧化镁超细粉体的水热制备[J]. 山东大学学报(理学版), 2005,40(6):77~82.
    [51] 吴湘锋,王标兵,杨云锋,胡国胜.直接沉淀法制备微细均匀氢氧化镁粉体的研究,化学工程师,2007,21(10):50~52.
    [52] 王志魁. 化工原理[M]. 化学工业出版社, 第二版.1998,304~305.
    [53] 吴湘锋,胡国胜,杨云锋,王标兵.乙醚对制备超细氢氧化镁的影响,化工进展, 2008,27(1):131~134.
    [54] Xiang-feng Wu, Guo-sheng Hu, Biao-bing Wang, Yun-feng Yang. Synthesis and characterization ofsuperfine magnesium hydroxide with monodispers ity,Journal of crystal growth,2008,310(2):457~461.
    [55] 向兰, 王唐, 吴庆流, 金泳. 氢氧化镁在聚丙烯酰胺体系中的聚沉行为[J]. 过程工程学报,2005,5(1):58~61.
    [56] 郑燕青, 施尔畏, 李汶军, 王步国, 胡行方. 晶体生长理论研究现状与发展[J]. 无机材料学报,1999, 14(3):321~332.
    [57] J.-F.Hochedpied,O.Ilioukhina,M. -H.Berger. Effect of Mixing Precipitation on Aluminium(oxide)-Hydroxide Obtained by Precipitation of Aluminium Nitrate with Soda [J]. Materials letters,2003,57(19):2817~2822.
    [58] 李云章. 试剂手册[M]. 上海科学技术出版社,第三版,2002,87.
    [59] W.L. Fan, S.X. Sun, L.P. You, G.X. Cao, X.Y. Song, W.M.Zhang, H.Y. Yu. Mater. Chem. 2003,13:3062~3065.
    [60] J.A.Wang, O. Novaro, X. Bokhimi, T. L′opez, R.G′omez, J. Navarrete, M.E. Llanos, E.L′opez-Salinas.Characterizations of the thermal decomposition of brucite prepared by sol –geltechnique for synthesis of nanocrystalline MgO[J]. Mater. Lett., 1998,35(5-6):317~323.
    [61] S. Ardizzone, C.L. Bianchi, M. Fadoni, B. Vercelli. Magnesium salts and oxide: an XPS overview [J].Appl. Surf. Sci., 1997, 119(3-4):253~259.
    [62] 李云章. 试剂手册[M]. 上海科学技术出版社,第三版,2002,88.
    [63] 杜高翔, 郑水林, 李杨. 超细氢氧化镁粉的表面改性及其高填充聚丙烯的性能研究[J].中国塑料.2004,18(7):75~79
    [64] Gilbert M, Sutherland I, Guest A. Characterization of coated particulate filler [J]. Journal of MaterialsScience, 2000, 35:391~397.
    [65] Zhenzhong Li, Baojun Qu. Flammability characterization and synergistic effects of expandablegraphite with magnesium hydroxide in halogen -free flame-retardant EVA blends [J]. PolymerDegradation and Stability, 2003, 81(3):401~408.
    [66] Rongcai Xie, Baojun Qu. Synergistic effects of expandable graphite with some halogen -free flameretardants in polyolefin blends [J]. Polymer Degradation and Stability, 2001, 71(3): 333~452.
    [67] Mouzheng Fu, Baojun Qu. Synergistic flame retardant mechanism of fumed si lica in ethylene-vinylacetate/magnesium hydroxide blends [J]. Polymer Degradation and Stability, 2004, 85(1):633 ~639.
    [68] C.M.Tai, Robert K.Y.Li. Studies on the impact fracture behaviour of flame retardant polymericmaterial [J]. Materials and Design.2001, 22(1):15~19
    [69] 章峻, 成江, 胡柏星, 任俊, 沈健. CaCO3 颗粒级配填充对PP性能和结构的影响[J]. 高分子材料科学与工程, 2003,19(1):184~187,191.
    [70] 黄珍珍,林志丹,麦堪成,曾汉民. AA 改性纳米CaCO3P聚丙烯的力学性能[J]. 材料科学与工程学报, 2003,21(5):714~716.
    [71] 万炜涛, 于德梅, 郭秀生, 曹继平. 复合表面改性剂处理纳米CaCO3 粒子填充聚丙烯的结晶形态及力学性能[J]. 高分子材料科学与工程, 2006,22(2):119~122.
    [72] 吴湘锋,王标兵,胡国胜,杨云峰.增容剂对PP/Mg(OH)2 复合材料性能的影响,中国塑料,2007,21(12):81~84.
    [73] U.Hippi, J.Mattila, M.korhonen, J.Seppala. Compatibilization of polyethylene/aluminum hydroxide(PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalizedpolyethylene[J]. Polymer, 2003,44(4):1193~1201.
    [74] 刘晓辉, 黄英, 李郁忠. PP/EPDM 共混物的力学性能及形貌研究[J]. 西北工业大学学报,1998,16(2):211~215.
    [75] 李学峰, 陈绪煌, 周密. 氢氧化铝阻燃剂在高分子材料中的应用[J]. 中国塑料, 1999,6(13):80~85.
    [76] 刘玲. LLDPE/EPDM 复合材料高效阻燃体系的研究[J]. 工程塑料应用,2005,33(6):19~22.
    [77] 曾能, 王万勋, 陈玉坤, 贾德民, 洪浩群, 徐传辉. 三单体固相接枝PP 对PP/LN-MH的改性研究[J]. 塑料工业, 2006,34(2):27~29; 32.
    [78] 章峻, 茅嘉原, 周宁琳, 李利, 马振毛, 沈健. EPDM-g-MAH/CaCO3 复合材料力学及热老化性能的表征[J]. 高分子材料科学与工程, 2006,22(4):130~133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700