阻燃剂氢氧化镁的合成及在聚丙烯中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,社会对环境保护极其重视,伴随着人们环保意识的增强,Mg(OH)2作为一种新开发的添加型环保无机阻燃剂,已经受到各界重视。其较传统阻燃剂具有稳定性好、不挥发、环保、分解温度高等优点。由于国内Mg(OH)2的生产工艺路线长,纯度和产率不高,表面极性强,不宜添加到聚丙烯等高分子材料中,本课题旨在研究高纯度、高产率、表面极性弱的Mg(OH)2一步法合成工艺。此工艺反应条件温和,工艺流程短,设备投资小,产品成本低。因此,本课题的研究对Mg(OH)2阻燃剂工业化生产具有一定的指导意义。
     本论文以超声波为前提,以纯度和产率为指标,通过单因素考察Mg(OH)2生产工艺条件,再经过正交实验优化工艺条件。对Mg(OH)2阻燃剂进行改性效果的研究,对比两种复配表面处理剂的改性效果,初步探讨了表面处理剂复配的影响因素及表面处理剂的改性机理。通过对改性Mg(OH)2的各种性能测试分析,对其在聚丙烯中的应用进行了预测。
     通过实验研究得到:实验在反应初期采用超声波处理,可以明显改善Mg(OH)2的过滤问题,在一定程度上缓解Mg(OH)2的抽滤洗涤这一难题。合成Mg(OH)2的较佳工艺条件为:Mg2+的初始浓度2.5 mol·L-1,NH3·H2O与Mg2+的物料比4.5:1,表面处理剂A 5 mL,超声波处理2 min(脉冲4 s),反应温度55℃,恒温反应时间2 h。产品质量远优于工业标准。通过各种改性效果研究,表面处理剂A的最佳用量为5 mL,表面处理剂B的最佳用量为8 mL,且表面处理剂A改性效果优于B。初步探讨阴离子与非离子表面活性剂复配时,具有降低表面张力的增效作用,而相等或相近碳链长的两种表面活性剂具有较强的相互作用,使其活性增强。表面活性剂的复配,使Mg(OH)2改性处理多样化,不仅仅局限于单一表面活性剂改性。改性后的Mg(OH)2热稳定性增强,粒径小,粒度分度均匀,极性减弱,亲油性增强,预测其能在聚丙烯中分散均匀,不易团聚,与聚合物相容性增强,可改善聚丙烯复合材料的力学性能和加工性能,能够达到较好的阻燃效果。
At present, the society has paid much attention to environmental protection, and theenvironmental requirement has increasingly improved. Magnesium hydroxide, one of theinorganic additive flame retardants, as a newly developed flame retardant, has attracted muchattention because of its good stability, non-volatile, environmental protection and higherdecomposition temperature. Since the domestic production of magnesium hydroxide has along synthesis route, low purity and yield, strong surface polarity and is unsuitable to add tosuch polymer materials as polypropylene. The research is aimed at the one-step synthesistechnology of magnesium hydroxide. Improving the purity and the yield , and bringing downthe surface polarity, this process has mild reaction condition, short process flow, smallequipment investment and low production cost. Therefore, this research has certain directivesignificance for magnesium hydroxide flame retardants industrial production.
     The thesis takes ultrasonic as the premise and takes the purity and yield as the index,using single factor experiment to test magnesium hydroxide production conditions, in theabstract, the optimal reaction condition was confirmed by orthogonal experiment. Using twocompound surface treatment agents as modification agent, modification effects wereinvestigated and contrasted. This study elementarily examined factors into compound of surfacetreatment and the modification mechanism of the surface treatment. Through test ing variousperformances of modificated magnesium hydroxide, the application in the polypropylene isforcasted.
     The experiment shows that the filtration problem of magnesium hydroxide obviouslyimproved by using ultrasonic processing in the initial stage of experiment. the best conditionsof synthesis were the initial concentration of Mg2+was 2.5 mol·L-1, the molar ration of NH3·H2O and Mg2+was 4.5 : 1, surface treating agent A was 5 mL, ultrasonication 2 min(impulse 4s), The reaction temperature was 55℃, and reaction time under constanttemperature was 2 h, The product quality is far superior to the industry standard. Throughvarious modification effect researches, the optimum dosage of surface treating agent A was 5mL, B was 8 mL, and the modification effect of A was better than that of B. This paperinvestigates when the anionic and nonionic surfactant mixed, the surface tension lowered. Thetwo surfactants with equal or similar carbon chain length have so strong interaction that theiractivity increased. Due to Compound of surfactant, magnesium hydroxide modificationdiversified, not limited to a single surfactant modification. The results indicated that thethermal stability of modified magnesium hydroxide was improved, the particle size becomesmaller, The size distribution was uniform, the polarity abated and made oil wettabilitystronger. This paper also predicts that magnesium hydroxide in the polypropylene has a gooddispersion and is not agglomerate in the the particles and the polymer compatibility isenhanced. Meanwhile the mechanical properties and processing properties of thepolypropylene compound material is ameliorated. From the above, the modified magnesiumhydroxide can achieve a good flame retardant effect.
引文
[1]欧育湘.国外阻燃剂发展动态及对发展我国阻燃剂工业之浅见[J].精细与专用化学品,2003,(2):1-5
    [2] Sigalas M M, Economou E N. Elastic and acoustic wave band structure[J]. JSound Vib, 1992, 158(2): 377
    [3]王保正.聚丙烯用阻燃剂及阻燃聚丙烯[J].塑料,2004,33(1):54-59
    [4]白景瑞,藤进.阻燃剂的应用与研究[J].宇航材料工艺,2001(2):10-13
    [5]由婷,赵伟,樊唯镏,等.特殊形貌氢氧化镁阻燃剂的研究与应用[J].精细与专用化学品,2006,14(8):17-19
    [6]曾金波,李珍,魏彦芳,等.硅灰石、微囊化红磷/天然水镁石复配阻燃聚丙烯的制备与性能[J].浙江化工,2007,38(3):1-3
    [7]王保正.聚丙烯用阻燃剂及阻燃聚丙烯[J].塑料,2004,33(1):54-59
    [8]戴焰林,洪玲,施利毅.沉淀-共沸蒸馏法制备纳米Mg(OH)2的研究[J].上海大学学报(自然科学版),2003,9(5):402-404
    [9]胡国胜,张翠梅,王标兵,等.高纯高分散氢氧化镁阻燃剂的制备方法[P].CN:101012382A.2007-8-8
    [10]吴湘锋,王标兵,胡国胜.纳米氢氧化镁阻燃剂的研究进展[J].材料导报,2007,2l(5):17-19
    [11]Walter M D. Recent. Advance flame retad[J]. Polym.Mater, 1998, 9, 274-285
    [12]任相敏,张诗海.应大力发展的新型无机阻燃剂-氢氧化镁[J].化工中间体,2003,(14):15-18
    [13]Koverzanova E V, Usachev S V, Shilkinan G. Specific features of thermaldegradation of polypropylene in the presence of magnesium hydroxide [J].Applied Chemistry, 2004, 77(3): 445-448
    [14]闫朝叶.氢氧化镁阻燃剂的优势探讨[J].苏盐科技,2008,9(3):9-10
    [15]徐旺生,宣爱国.阻燃型氢氧化镁生产新工艺研究[J].无机盐工业,2001,33(1):13-14
    [16]孙永明,钱海燕,刘建兰.分散剂对制备超细氢氧化镁影响的试验研究[J].非金属矿,2005,28(4):54-57
    [17]吴健松,李海民.氢氧化镁阻燃剂研制技术近况[J].无机盐技术,2004,(2):5-8
    [18]陶宏君.降低软聚氯乙烯-表面积大的三水合铝与氢氧化镁比较[J].材料通讯,1996(2):22-23,32
    [19]胡章文,王理想,杨保俊,等.硫酸镁一步法制备氢氧化镁阻燃剂[J].过程工程学报,2007,7(3):561-562
    [20]罗振敏,任大伟.天然纤维水镁石在阻燃材料中的应用[J].非金属矿,2001,24(3):21-23
    [21]郭如新.水镁石应用近况[J].海湖盐与化工(现《盐业与化工》),2000,29(2):32-34
    [22]向兰,吴会军,金永成,等.阻燃剂氢氧化镁制备技术评述[J].海湖盐与化工,2001,30(5):1-4
    [23]陶勇.氢氧化镁阻燃剂的表面改性研究现状[J].中国非金属矿工业导刊,2008,70(5):13-46
    [24]牛永效,席晓凤,王毅.纳米氢氧化镁制备技术的研究进展[J].金属矿山,2008,381(3):19-21
    [25]Qian H Y, Deng M, Zhang S M, et al. Synthesis of super fine Mg(OH)2 particlesby magnesite[J]. Matetials Scienceand and Engineering A, 2007, 445-446:600-603
    [26]林慧博,印万忠,南黎.纳米氢氧化镁制备技术[J].有色矿冶,2003,19(1):33-36
    [27]Lv X T, Hari B L, Li M G. In situ synthesis of nanolamellas of hydrophobicmagnesium hydroxide[J]. Colloids and Surfaces A, 2007, 296(123): 97-103
    [28]Yan C L , Xue D F , Long J. Preparation of magnesium hydroxide nanoflowers [J].Journal of Crystal Growth, 2005, 282(324): 448-454
    [29]Xu H, Deng X R. Preparation and properties of superfine Mg(OH)2 flameretardant[J]. Trans Nonferrous Met Soc China, 2006, 16: 488-492
    [30]周军,常芙蓉.超细氢氧化镁的制备及其表面改性研究进展[J].苏盐科技2007,4:9-12
    [31]邓新荣.盐湖水氯镁石制取超细阻燃型氢氧化镁的研究[D].长沙:中南大学,2005
    [32]王相田,郑乾,汪瑾.高纯纳米氢氧化镁制备工艺[J].化工学报,2005,56(7):1360-1363
    [33]邱龙臻,吕建平,谢荣才.纳米氢氧化镁的结构表征和阻燃特性[J].半导体学报,2003,24(增刊):81-84
    [34]印万忠,南黎,韩跃新.纳米氢氧化镁的合成与结晶机理分析[J].金属矿山,2005,(3):38-41
    [35]王志强,吕秉玲,刘建平.沉淀法合成高纯超细氢氧化镁的研究[J].无机盐工业,2001,33(4):3-4
    [36]Lv J P, Qiu L Z, Qu B J. Controlled growth of three morphological structures ofmagnesium hydroxide nano-particles by wet precipitation method[J]. Journal ofCrystal Growth, 2004, (267): 676-684
    [37]徐宝强,戴永年,杨斌.苦卤水制备纳米氢氧化镁的研究[J].云南化工,2005,32(4):7-9
    [38]易求实.反相沉淀法制备纳米Mg(OH)2阻燃剂的研究[J].化学试剂,2001,23(4):197-199
    [39]徐旺生,张翼.新型无机阻燃剂的研究进展[J].江苏化工,2002,30(4):20-22
    [40]朱亚先,曾人杰,刘新锦,等.MgO纳米粉制备及表征[J].厦门大学学报(自然科学版),2001,40(6):1256-1259
    [41]金永成,向兰,金涌.溶液组成对氢氢化镁水热改性的影响[J].海湖盐与化工,2002,31(1):124
    [42]吴会军,向兰,朱冬生.高纯微细氢氧化镁的水热法制备[J].华南理工大学学报:自然科学版,2003,31(6):88-90
    [43]陈志航,向兰,张英才.双注-水热法制备高分散氢氧化镁纳米片[J].无机化学学报,2006,22(6):1062-1066
    [44]任鹏飞,陈建铭,宋云华,等.水热合成制备超细氢氧化镁阻燃剂[J].化工进展,2005,24(2):186-189
    [45]Ding Y, Zhang G T, Wu H, et al. Nanoscale magnesium hydroxide andmagnesium oxide powders:control over size, Shape and structure viahydrothermal syntheis[J]. Chem. Mater. 2001, 13: 435-440
    [46]Henrist C, Mathieu J P, Vogels C, et al. Morphological study of magnesiumhydroxide nanoparticles precipitated in dilute aqueous solution[J]. Journal ofCrystal Growth, 2003, 249 (1-2): 321-330
    [47]宋锡瑾,宣峰,王杰.纳米氢氧化镁的制备[J].应用基础与工程科学学报,2006,14(4):523-527
    [48]Wu H Q, Shao M W, Gu J S. Microwave-assisted synthesis of fibre-likeMg(OH)2 nanoparticles in aqueous solution at room temperature [J]. MaterialsLetters 2004, 58: 2166-2169
    [49]Hao L Y, Zhu C L, Mo X. Preparation and Characterization of nanorods byliquid-solid arc discharge tech-nique[J]. Inorganic Chemistry Communications2003, 6(3): 229-232
    [50]Qiu L Z, Xie R C, Ding P. Preparation and characrization of Mg(OH)2nanoparticles and flame-retardant property of its nanocomposites with EVA [J].Composite Structures, 2003, 62(3-4): 391-395
    [51]宋云华,陈建铭,刘立华,等.超重力技术制备纳米氢氧化镁阻燃剂的应用研究[J].化工矿物与加工,2004,(5):19-23
    [52]宋兴福,王相田,庞卫峰,等.固相法制备高纯超细氢氧化镁的工艺[J].华东理工大学学报:自然科学版,2001,31(5):616-619
    [53]胡章文,杨保俊.阻燃型氢氧化镁制备工艺探讨[J].合肥工业大学学报,2005,28(1):1-3
    [54]徐旺生,宣爱国.阻燃型氢氧化镁生产新工艺研究[J].无机盐工业,2001,33(1):13-14
    [55]李俊,唐国翌.纳米氢氧化镁阻燃剂的制备和改性进展[J].化工矿物与加工,2008,(8):32-33
    [56]孙德海.氢氧化镁改性综述[J].大化科技,2006,(3):1-3,31
    [57]邢殿香,刘耘,等.Mg(OH)2阻燃剂的应用与研究进展[J].海湖盐与化工,2003,32(6):25-29
    [58]陈德宏,陈鸣才,曹现福,等.氢氧化镁的制备及其表面接枝改性[J].无机盐工业,2006,38(7):14-17
    [59]闫修川,李召好,李法强,等.阻燃用氢氧化镁的表面改性研究现状[J].盐湖研究,2005,13(4):67-71
    [60]吴湘锋,杨云峰,程国丽.氢氧化镁阻燃剂的表面改性[J].中国粉体工业2008,3:11-13
    [61]杜高翔,郑水林,李杨.超细氢氧化镁扮的表面改性及其高填充聚丙烯的性能研究[J].中国塑料,2004,18(7):75-79
    [62]胡晓力,陈东丹,胡晓洪,等.表面活性剂对TiO2粉体粒度和形貌的影响[J].中国陶瓷工业,2003,10(4),25-28
    [63]王阳恩,凌向虎,尚志远,等.超声波对表面活性剂水溶液表面张力的影响[J].中国海上油气(工程),2001,13(6):36-38
    [64]杜高翔,郑水林,李杨.阻燃用氢氧化镁及水镁石粉体的表面改性研究现状[J].非金属矿,2002,25:10-12
    [65]李召好,马培华,李法强.阻燃型氢氧化镁表面改性研究[J].海湖盐与化工,2004,34(3):14-16
    [66]陈德宏,陈鸣才,曹现福,等.一步法制备硬脂酸盐改性的氢氧化镁及其性能[J].精细化工,2006,23(2):170-173
    [67]朱炤男.聚丙烯塑料的应用与改性[M].北京:轻工业出版社,1982:146-148
    [68]朱步瑶,赵振国,界面化学基础[M].北京:化学工业出版社,1996:23-25
    [69]张现军,王标兵,胡国胜.聚丙烯阻燃剂研究进展[J].塑料助剂,2009,3:10-11
    [70]杜振霞,贾志谦,饶国瑛,等.改性纳米碳酸钙表面性质的研究[J].现代化工,2001,4:42-44
    [71]郑忠.表面活性的物理化学原理第一版[M].广州:华南理工大学出版社,1995:1-13
    [72]王健,于文杰,董火成.氢氧化镁阻燃剂的研究进展[J].化学推进剂与高分子材料,2009,7(4):5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700