晶种分解过程中铝酸钠溶液的结构演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝酸钠溶液分解是从铝土矿提取氧化铝过程中至关重要的工序之一,直接影响产品的物理和化学性能以及分解过程的效率,是当前氧化铝工业上的技术瓶颈之一。要实现铝酸钠溶液的强化分解,必须首先在铝酸钠溶液的结构及其分解理论上寻求突破。本论文通过计算铝酸根阴离子的迁移数,结合红外光谱分析,研究了铝酸根离子的电迁移性质与其结构间的关系,分析了铝酸钠溶液分解过程中各种铝酸根离子的反应行为,并最终确定了有利于铝酸钠溶液分解过程的离子类型。通过调控铝酸钠溶液的离子结构,使其向含有更多有利于分解过程的铝酸根离子转化,并最终促进了铝酸钠溶液的分解过程。论文的主要研究结果如下:
     (1)铝酸钠溶液的电导率随着Na2O质量浓度的升高先变大后减小,在100~120g/L出现一极大值,符合强电解质电导率变化规律。根据电解质溶液离子迁移数的计算方法,计算了铝酸钠溶液中各种铝酸根离子的离子迁移数,结合红外光谱,研究了铝酸根阴离子的导电能力和结构的关系。研究发现:较低Na2O质量浓度(<175g/L)下,铝酸根阴离子的迁移数为0.6左右,红外光谱显示在这个浓度范围内离子结构主要为Al(OH)4-;中等Na2O质量浓度(175-330g/L)下,铝酸根阴离子的迁移数为0.2左右,此时溶液结构为A1(OH)4-和[Al2(OH)8(H2O)2]2-;高Na2O质量浓度(>330g/L)下,铝酸根阴离子的离子迁移数接近于0,对应的溶液结构主要是Al2O(OH)62-和[Al2(OH)8(H2O)2]2-,只有少量Al(OH)4-。铝酸钠溶液中铝酸根离子聚合度随溶液碱浓度的增大而增大,铝酸根离子的电迁移能力则随离子聚合度的增大而降低。
     (2)高浓度或高苛性比的铝酸钠溶液中,铝酸根离子主要以聚合形式存在,随着溶液的稀释,铝酸钠溶液中聚合离子逐渐减少,而单体的铝酸根离子Al(OH)4-逐渐增多,稀释到一定程度时,铝酸钠溶液中只存在Al(OH)4-。随着温度的升高,铝酸钠溶液的电导率逐渐升高,这是因为温度升高时,导电能力较强的Al(OH)4-离子有所增多,同时880cm-1峰也逐渐增强,说明温度的升高有利于550cm-1处对应的Al-O-Al结构的Al2O(OH)62-向Al(OH)4-和880cm-1处Al-O伸缩振动带对应的[Al2(OH)8(H2O)2]2-离子转化。
     (3)研究发现,碳酸钠和硫酸钠均会改变铝酸钠溶液的结构。当C(Na2CO3)>10g/L,C(Na2SO4)>5g/L时,铝酸钠溶液中四面体离子Al(OH)4-明显减少,低波数段Al-O-Al结构的Al20(OH)62-离子明显增多。同时,加入碳酸钠和硫酸钠后,铝酸钠溶液粘度升高,电导率下降,并对晶种分解产生抑制作用。由此说明,铝酸钠溶液中聚合离子增多,不利于铝酸钠溶液的晶种分解。硅可以取代铝酸钠溶液中Al-O-Al结构中的Al,形成Al-O-Si结构和Al-O-Si-O-Al-O结构等多种形式硅氧铝键以及由氢键相连的大分子结构,导致铝酸钠溶液粘度增大,分解率降低。
     (4)铝酸钠溶液晶种分解过程中,720、880cm1处Al-OH振动带对应的四面体铝酸根离子百分比及浓度不断下降;550cm-1处对应的Al20(OH)62-离子百分比及浓度略有上升。衰减全反射(ATR)方法测得铝酸钠溶液分解过程中氢氧化铝表面附液中主要为Al(OH)4-离子,且随着分解时间的延长,该离子的浓度基本保持不变。结合本体溶液和氢氧化铝附液中铝酸根离子的结构变化,认为铝酸钠溶液分解过程中有利于氢氧化铝析出的含铝离子是Al(OH)4-等Al-OH四面体离子,若调控溶液中其它复杂含铝离子结构向该类结构转变,将有利于氢氧化铝的析出。
     (5)通过磁场处理铝酸钠溶液后,铝酸钠溶液的电导率和离子结构都会发生明显的变化。在磁场强度为50~70kA/m及150~200kA/m范围内时,铝酸钠溶液的电导率达到最大值,铝酸钠溶液中导电能力最强的离子A1(OH)4-的浓度达到最大。在磁场强度为52kA/m下处理铝酸钠溶液并进行晶种分解,当晶种包含有部分细颗粒时,磁场提高铝酸钠溶液的分解率为6%左右,但其分解产品的粒度也变细,究其原因是磁场使铝酸钠溶液中二聚离子减少、Al(OH)4-增多,并最终加速了铝酸钠溶液的二次成核过程;当晶种为均一的粗颗粒时,磁场提高铝酸钠溶液的分解率为2-3%,且产品形貌规则,颗粒大小均匀。除此之外,晶种和杂质的加入,也可以改变溶液中铝酸根离子间的转化并最终影响分解过程。
The precipitation of gibbsite from caustic aluminate solution is one of the most important operations during the alumina production process, which influences the precipitation efficiency and the physical and chemical properties of products directly. It has been the rate-limiting step in the Bayer process used for alumina refining since the innovation of Bayer process. The fundamental understanding of the structure of aluminate solution and the precipitation mechanism is essential for substantial advances in the precipitation process, although some improvements have been achieved over the years by incremental process modifications. In this thesis, the intrinsic relationship between the electric conductivity and the structure of sodium aluminate solutions was investigated by calculating the transference number of aluminate anions (t(Al)) in the solution of different alkali concentration and molar ratio of Na2O to Al2O3. Furthermore, combining with the characterization of FTIR analyses of the solution, the changes of aluminate ions in the Bayer seeded precipitation process were analyzed and thus the aluminate species favoring gibbsite precipitation were approximately confirmed. The gibbsite precipitation process was eventually enhanced by transferring other aluminate ions to those which were beneficial for gibbsite crystallization. The main results and progresses are listed as follows:
     (1) The electric conductivity of sodium aluminate solution firstly increases with increasing concentration of alkaline, and then reaches the maximum when the concentration of C(Na2O) is between100-120g/L, illustrating that the aluminate solution belongs to strong electrolyte solution. The relationship between electric conductivity and ion structure of sodium aluminate solution was investigated and the results show that in the solution of low concentration of C(Na2O)<175g/L, the aluminate anions dominantly exist in the form of Al(OH)4-and t(Al) is approximately0.6; that in the solution of medium concentration of C(Na2O) from175g/L to330g/L, the aluminate anions mainly exist in the form of Al(OH)4-and [A12(OH)8(H2O)2]2-,in which t(Al) is approximately0.2; and that in the solution of high concentration of C(Na2O)>330g/L, aluminate anions exist dominantly in the form of Al2O(OH)62-and [Al2(OH)8(H2O)2]2-with a little Al(OH)4-, where t(Al) is almost zero. This illustrates that the electric conduction ability of the aluminate anion in the sodium aluminate solution is closely related to its structure. It has been studied that the degree of polymerization of aluminate anions rises with the increasing concentration of the alkaline and the transference number of the aluminate anions declines with the increasing degree of polymerization of aluminate anions.
     (2) The aluminate species maily exist in the form of dimeric or polymeric species in the solution of high concentration of alkaline or high causitic ratio. The concentration of dimeric or polymeric species decreases with the diluting process and the concentration of Al(OH)4-increases gradually and eventually becomes the predominant species in alkaline aluminate solutions. The concentration of tetrahedral aluminate ions corresponding to the bands at720cm-1and880cm-1increases remarkably as the temperature rises, while the concentration of Al2O(OH)62-corresponding to the band at about550cm-1declines slightly, suggesting that the tetrahedral aluminate ions are transferred by Al2O(OH)62-.
     (3) Na2CO3and Na2SO4can change the ion structure of the aluminate solution, the concentration of Al(OH)4-declines remarkably, while the concentration of Al2O(OH)62-increases obviously according to the FTIR analyses when the concentration of Na2CO3is above10g/L and the concentration of Na2SO4is above5g/L. Besides, the viscosity of sodium aluminate solution is increased, the electric conductivity is reduced and the gibbsite precipitation is inhibited after adding Na2CO3and Na2SO4. Consequently, higher concentration of polymeric aluminate anions is harmful to the precipitation process of gibbsite from sodium aluminate solution. It is obtained that Al in Al-O-Al is replaced by Si and formed Al-O-Si, Al-O-Si-O-Al band, and larger molecular structures connected by hydrogen bonding are also formed, resulting in the increase of the viscosity and the decrease of the precipitation ratio.
     (4) The concentration of tetrahedral aluminate ions corresponding to the bands at720cm-1and880cm-1declines remarkably as the precipitation process proceeds, while the concentration of Al2O(OH)62-corresponding to the band at about550cm-1increases slightly, the content of Al(OH)4-in the attached-liquid on the aluminum trihydroxide surface has not diminished apparently, suggesting that Al-OH tetrahedral aluminate ions centered at about720and880cm-1are the most beneficial aluminate ions resulting in gibbsite precipitation from sodium aluminate solution, while the dimeric aluminate species centered at about550cm-1are disadvantageous to gibbsite precipitation. The gibbsite precipitation process can be enhanced by transferring other aluminate ions to ions which are beneficial for gibbsite crystallization.
     (5) The electrical conductivity of the sodium aluminate solution with low caustic molar ratio of Na2O to Al2O3varies with the intensity of the applied magnetic field and reaches a maximum in the presence of a magnetic field ranging from50to70kA/m and from150to200kA/m. IR spectra of sodium aluminate solutions suggest that magnetic field treatment modifies the structure of the aluminate solution. Moreover, the gibbsite precipitation from sodium aluminate solution would be promoted when the aluminate solution is magnetically treated with a magnetic field of52kA/m. The precipitation ratio increases about6%compared with the nonmagnetically treated aluminate solutions when the seeds include a fraction of finer particles, and the gibbsite products include more fine particles, indicating the secondary nucleation process is enhanced in the early stage of the precipitation process. The precipitation ratio increases about2~3%compared with the nonmagnetically treated aluminate solutions when the seeds with uniform size are added. And the products are made up of globular particles in uniform size. It can be concluded that the precipitation of gibbsite from sodium aluminate solution could be promoted by adjusting the structure and the physicochemical properties of aluminate solutions by introducing suitable magnetic field. Moreover, adding seed or impurities can also adjust the aluminate ions and eventually affect the gibbsite precipitation process.
引文
[1]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1992:115-122.
    [2]李洁,陈启元,尹周澜,等.过饱和铝酸钠溶液结构性质与分解机理研究现状[J].化学进展,2003,15(3):170-177.
    [3]Sipos P. The structure of Al(Ⅲ) in strongly alkaline aluminate solutions-A review, [J]. Journal of Molecular Liquids,2009,146,1-14.
    [4]陈启元.有色金属基础理论研究-新方法与新进展[M].北京:科学出版社,2005:88-95.
    [5]李春荣,毕诗文,杨毅宏,等.铝酸钠溶液表面张力数学模型的研究[J].轻金属,1986,(3):7-10.
    [6]王雅静,翟玉春,田彦文,等.铝酸钠溶液结构改变时的表面张力变化[J].过程工程学报,2003,3(2):121-124.
    [7]赵苏,毕诗文,杨毅宏,等.添加剂作用下铝酸钠溶液物化性质的变化对产品性能的影响[J].材料与冶金学报,2004,3(3):189-192.
    [8]Li Jun, Prestidge C A, Addai-mensah J. Viscosity, density, and refractive index of aqueous sodium and potassium aluminate solutions[J]. Journal of Chemical and Engineering Data,2000,45(4):665-671.
    [9]成琼文,李小斌,彭志宏,等.铝酸钠溶液的粘度[J].中南大学学报:自然科学版,2005,36(2):229-233.
    [10]成琼文.铝酸钠溶液的粘度[D].长沙:中南大学,2004,45.
    [11]阿格兰诺夫斯基.A.A著.氧化铝生产手册[M].北京:冶金工业出版社,1974:44-50.
    [12]陈念贻.氧化铝生产的物理化学[M].上海:上海科学技术出版社,1962:27-29.
    [13]下里纯一郎.铝酸钠溶液的特性[J].工业化学杂志,1962,65(11):1779-1782.
    [14]Hefter G, May P M, Sipos P, et al. Viscosities of concentrated electrolyte solutions[J]. Journal of Molecular Liquids,2003,103-104:261-273.
    [15]Buvari-Barcza A, Rozsahegyi M, Barcza L. Hydrogen bonded associates in the bayer process (in concentrated aluminate lyes):the mechanism of gibbsite nucleation[J]. Journal of Materials Chemistry,1998,8:451-455.
    [16]王雅静.铝酸钠和硅铝酸钠溶液的结构和物理化学性质研究[D].沈阳:东北大学,2004,121-125.
    [17]毕诗文,李春荣,马绍光.铝酸钠溶液电导率数学模型的研究[J].轻金属,1984, 56(6):9-12.
    [18]王家纯,杨新民.温度-密度-电导率法在线实时测量铝酸钠溶液的化学成分[J].轻金属,1996,12:5-8.
    [19]Barcza L, Palfalvi-rozsahegyi M. The aluminate lye as a system of equilibria[J]. Materials Chemistry and Physics,1989,21(4):345-356.
    [20]张立川,陈启元,尹周澜.电导法研究过饱和铝酸钠溶液均相成核过程[J].物理化学学报,2008,24(6):1111-1114.
    [21]李洁.过饱和铝酸钠结构及分解机理的研究[D].长沙:中南大学,2001,127-130.
    [22]Diakonov I, Pokrovski G, Schott J, et al. An experimental and computational study of sodium-aluminum complexing in crustal fluids[J]. Geochimica et Cosmochimica Acta,1996,60(2):197-211.
    [23]Mahin E G, Ingraham D C, Stewart O J. The constitution of aluminates [J]. Journal of the American Chemical Society,1913,35(1):30-39.
    [24]Moolenaar R J, Evans J C, Mckeever L D. Structure of the aluminate ion in solutions at high pH[J]. Journal of Physical Chemistry,1970,74(20):3629-3636.
    [25]Lippincott E R, Psellos J E, Tobin M C. The Raman spectra and structures of aluminate and zincate ions[J]. Journal of Chemical Physics,1952,20:536-541.
    [26]Kraus I P, Derevyankin V A, Kuznetsov S I. Kinetics of formation and the solubility of hydrated sodium aluminosilicate in aluminate solutions[J]. Tsvetnaya Metally, 1968,41(1):43-46.
    [27]Chen N Y, Liu M X. Studies on the anionic species of sodium aluminate solutions[J]. Science in China, Series B,1993,36:32-38.
    [28]Carreira L A, Maroni V A, Swaine J W, et al. Raman and Infrared Spectra and Structures of the aluminate ions[J]. Journal of Chemical Physics,1966,45(6): 2216-2220.
    [29]Gale J D, Rohl A L, Watling H R, et al. Theoretical investigation of the nature of aluminum-containing species present in alkaline solution[J]. Journal of Physical Chemistry B,1998,102(50):10372-10382.
    [30]Watling H R, Fleming S D, Van Bronswijk W, et al. Ionic structure in caustic aluminate solutions and the precipitation of gibbsite[J]. Journal of the Chemical Society, Dalton Transactions,1998, (23):3911-3918.
    [31]Anderson G M, Castet S. Reaction of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressure[J]. American Journal of Science,1967,265:1227-1232.
    [32]Anderson G M, Castet S. Feldspar solubility and the transport of aluminum under metamorphic condition[J]. American Journal of Science,1983,238-A:283-297.
    [33]Gutowsky H S, Saika A. Dissociation, chemical exchange, and the proton magnetic resonance in some aqueous electrolytes[J]. Journal of Physical Chemistry,1953, 21(21):1688-1694.
    [34]Watling H. Spectroscopy of concentrated sodium aluminate solution[J]. Journal of Applied Spectroscopy,1998,52(2):250-258.
    [35]Zambo J. Structure of sodium aluminate liquors; molecular model of the mechanism of their decomposition[C]. Light Metals, New Orleans, Louisiana, TMS (The Minerals, Metals & Materials Society),1986,2:199-215.
    [36]Chen Qiyuan, Li Jie, Yin Zhoulan, et al. Decomposition of supersaturated sodium aluminate solution[J]. Transactions of Nonferrous Metals Society of China,2003, 13(3):649-654.
    [37]Sipos P, Capewell S G, May P M, et al. Spectroscopic studies of the chemical speciation in concentrated alkaline aluminate solutions[J]. Journal of the Chemical Society, Dalton Transactions,1998, (18):3007-3012.
    [38]Sipos P, May P M, Hefter G. Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy [J]. Journal of the Chemical Society, Dalton Transactions,2006, (2):368-375.
    [39]Szabo Z G, Wajand J, Ruff I, et al. Investigation of aluminate solutions by water activity measurement[J]. Journal of Inorganic and General Chemistry,1978, 441(1):245-251.
    [40]May P M, Muray K. Jess, A joint expert speciation system-Ⅱ. The thermodynamic database[J].Talanta,1991,38(12):1419-1426.
    [41]洪梅,曹益林.铝酸钠溶液的27A1核磁共振谱研究[J].轻金属,1994(5):26-27.
    [42]孙素琴,胡鑫尧,洪梅,等.铝酸钠溶液碳酸化过程的红外光谱研究[J].光谱与光谱分析,1996,16(4):21-23.
    [43]赵继华,陈启元.Al(OH)3种分过程的超声场强化[J].金属学报,2002,38(2):171-173.
    [44]刘吉波.超声波强化铝酸钠溶液分解过程机理的研究[D].长沙:中南大学,2004:73-77.
    [45]Van straten H A, Schoonen M A A, Verheul R C S, et al. Precipitation from supersaturated aluminate solutions, Ⅳ. Influence of citrate ions[J]. Journal of Colloid and Interface Science,1985,106(1):175-185.
    [46]Fleming S, Rohl A, Lee M Y, et al. Atomistic modeling of gibbsite:Surface structure and morphology[J]. Journal of Crystal Growth,2000,209(1):159-166.
    [47]李洁,陈启元,张平民.三水铝石晶体生长基元的研究[J].中国稀土学报,2000,18(9):325-329.
    [48]李洁,陈启元,张平民,等.中等浓度过饱和铝酸钠溶液自发分解过程Raman光谱研究[J].中国学术期刊文摘,2001,7(8):1008-1013.
    [49]陈念贻.铝酸钠溶液分解的一种可能机理[J].科学通报,1992:242-245.
    [50]Gerson A R, Ralston J, Smart R S C. An investigation of the mechanism of gibbsite nucleation using molecular modelling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,110(1):105-117.
    [51]Addai-Mensah J, Ralston J. The influence of interfacial structuring on gibbsite interactions in synthetic bayer liquors[J]. Journal of Colloid and Interface Science, 1999,215(1):124-130.
    [52]Addai-Mensah J, Dawe J, Hayes R, et al. The Unusual Colloid Stability of Gibbsite at High pH[J]. Journal of Colloid and Interface Science,1998,203(1):115-121.
    [53]Loh J S C, Fogg A M, Walting H R, et al. A kinetic investigation of gibbsite precipitation using in situ time resolved energy dispersive X-ray diffraction[J]. Physical Chemistry Chemical physics,2000,2(16):3597-3604.
    [54]Gerson A R, Counter J A, Cookson D J. Influence of solution constituents, solution conditioning and seeding on the crystalline phase of aluminium hydroxide using in situ X-ray diffraction[J]. Journal of Crystal Growth,1996,160(3):346-354.
    [55]曾纪术,尹周澜,陈启元.过饱和铝酸钠溶液的分解机制[J].中国有色金属学报,2008,18(专辑1):143-147.
    [56]Counter J A, Addai-Mensah J, Ralston J. The formation of A1(OH)3 crystals from supersaturated sodium aluminate solutions revealed by cryovitrification-transmission electron microscopy[J]. Journal of Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,154(3),389-398.
    [57]阿布拉莫夫в я.碱法综合处理铝原料的物理化学原理[M].陈谦德,唐贤柳,黄际芬,等译.长沙:中南工业大学出版社,1988:147.
    [58]赵清法,杨红菊.种分母液蒸发浓度与结晶碱析出关系探讨[J].有色冶炼,2002,(2):628.
    [59]刘桂华,刘云峰,李小斌,等.拜耳法溶出过程降低赤泥碱耗[J].中国有色金属学报,2006,16(3):555-559.
    [60]彭志宏,陈科云,李小斌,等.铝酸钠溶液蒸发过程中的结垢与防垢[J].中南大学学报,2008,39(1):69-74.
    [61]刘彩玫,王建立.铝酸钠溶液中Nc,Ns对晶种分解的影响[J].轻金属,2000,(7):22-24.
    [62]谢世鹢,伶立彬.硫酸钠对铝酸钠溶液分解过程的影响的研究[J].沈阳化工学院学报,2003,17(1):29-32.
    [63]邓永春.无机盐杂质对铝酸钠溶液晶种分解过程的影响[D].长沙:中南大学,2009,59-60.
    [64]梁成.硅在铝酸钠溶液快速分解过程中的行为[D].长沙:中南大学,2007,22-24.
    [65]张妮.拜耳法流程中有机物的行为研究[D].长沙:中南大学,2008,50-65.
    [66]陈国辉,陈启元,尹周澜,等.超声波对铝酸钠溶液种分成核粒度的影响[J].中南工业大学学报,2003(3):254-257.
    [67]赵继华.超声场强化拜耳法种分过程的研究[D].长沙:中南大学,2001,80-86.
    [68]韩颜卿.磁场对铝酸钠溶液种分分解的影响[J].矿产保护与利用,1999,(2):26-28.
    [69]谢雁丽,李尚明,毕诗文,等.强化铝酸钠溶液晶种分解过程的研究[J].轻金属,2000,(7):18-24.
    [70]上官正.高活性氢氧化铝晶种的制备[J].轻金属,1995,(8):12-15.
    [71]Misra C. Industrial Alumina Chemicals[M]. Washington DC:American Chemical Society Monograph,1986,184:1-165.
    [72]Andrija F. Improved method for recovering alumina from aluminate liquor. Germany Patent,1 123 184[P],1968-08-14.
    [73]Chen Qiyuan, Yin Jianguo, Yin Zhoulan. Effect of mechanically activated seeds on the agglomeration process of supersaturated sodium aluminate liquors[C]. Light Metals 2007, Orlando, Florida, TMS (The Minerals, Metals & Materials Society), 2007:157-161.
    [74]Paulaime A, Seyssiecq I, Veesler S. The influence of organic additives on the crystallization and agglomeration of gibbsite[J]. Powder Technology,2003, 130(1/3):345-351.
    [75]Seyssiecq I, Veesler S, Pepe G, et al. The influence of additives on the crystal habit of gibbsite[J]. Journal of Crystal Growth,1999,196(1):174-180.
    [76]李小斌,阎丽,周秋生,等.醚类添加剂B35对铝酸钠溶液晶种分解过程的影响[J].中国有色金属学报,2011,21(2):459-464.
    [77]彭志宏,刘燕庭,周秋生,等.非离子型表面活性剂对铝酸钠溶液晶种分解的影响[J].中国有色金属学报,2008,18(10):1909-1913.
    [78]Roe W J, Perisho J L. Use of polymers in alumina precipitation in the Bayer process of bauxite beneficiation, US patent,4 608 237[P].1986-08-26.
    [79]Owen D O, Davis D C. Use of surfactants in alumina precipitation in the Bayer process, United States patent,0 286 034[P].1988-03-31.
    [80]Chen Feng, Zhang Banyan, Bi Shiwen, et al. Effect of anionics-oily additive on seed precipitation from sodium aluminate solution[J]. Journal of Northeastern University,2004,25(6):606-609.
    [81]吴玉胜,于海燕,杨毅宏,等.添加剂对铝酸钠溶液晶种分解过程附聚及二次成核的影响[J].化工学报,2005,56(12):243,4-2439.
    [82]薛红,毕诗文,谢雁丽,等.添加剂强化拜耳法铝酸钠溶液分解[J].中国有色金属学报,1998,8(增刊2):415-417.
    [83]Zeng Jishu, Yin Zhoulan, Chen Qiyuan. Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether[J]. Hydrometallurgy,2007,89(1/2):107-116.
    [84]Van Bronswijk W, Watling H R, Yu Z. A study of the adsorption of acyclicpolyols on hydrated alumina [J]. Journal of Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,157(1-3):85-94.
    [85]Smith P G, Watling H R, Crew P. The effects of model organic compounds on gibbsite crystallization from alkaline aluminate solutions:polyols[J]. Journal of Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996, 111(1/2):119-130.
    [86]Watts H L, Utley D W. Volumetric analysis of sodium aluminate solutions[J]. Analytical Chemistry,1953,25(6):864-867.
    [87]贾梦秋.应用电化学[M].北京:高等教育出版社,2004:17-22.
    [88]蔡炳新.基础物理化学[M].北京:科学出版社,2001:331.
    [89]杨文治.电化学基础[M].北京:北京大学出版社,1982:43.
    [90]Tarte P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra[J]. Spectrochim Acta, Part A, 1967,23(7):2127-2143.
    [91]王雅静,翟玉春,田彦文,等.苛性比对铝酸钠溶液结构和性质的影响[J].东北大学学报,2003,24(8):774-776.
    [92]谢雁丽,毕诗文,杨毅宏,等.氧化铝生产中铝酸钠溶液结构的研究[J].有色金 属,2001,53(2):59-62.
    [93]马淑花,郭奋,陈建峰.氢氧化铝的化学改性研究[J].北京化工大学学报,2004,31(4):19-22.
    [94]Terri J S, James A C, Andrea R G. A static light and X-ray scattering study of supersaturated caustic aluminate liquors[J]. Langmuir 2000,16:4784-4791.
    [95]Li Huixin, Addai-Mensah J, Thomas J C, et al. A study of colloidal Al(Ⅲ)-containing species in fresh/caustic aluminate solutions[J]. Journal of Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,223: 83-94.
    [96]Misra C, White E T. Kinetics of crystallization of aluminium hydroxide from seeded caustic aluminate solutions[J].Chemical engineering programming symposium series,1970,53:1024-1029.
    [97]尹建国,陈启元,尹周澜,等.阳离子聚丙烯酰胺强化铝酸钠溶液种分附聚过程的机理[J].中国有色金属学报,2008(18):134-138.
    [98]Radnai T, May P M, Hefter G T, et al. Structure of aqueous sodium aluminate solutions:a solution X-ray diffraction study [J]. Journal of Physical Chemstry A 1998,102,7841-7850.
    [99]李小斌,王丹琴,梁爽,等.铝酸钠溶液的电导率与结构的关系[J].高等学校化学学报,2010,31(8):1651-1655.
    [100]Sweegers C, Meekes H, van Enckevort W J P. Growth rate analysis of gibbsite single crystals growing from aqueous sodium aluminate solutions[J].Crystal Growth and Design,2004,4(1):185-198.
    [101]张克从.近代晶体学基础(上、下册)[M],北京:科技出版社,1987,120-130.
    [102]Panias D. Role of boehmite/solution interface in boehmite precipitation from supersaturated sodium aluminate solutions[J]. Hydrometallurgy,2004,74: 203-212.
    [103]Li Xiaobin, Feng Gangtao, Zhou Qiusheng, et al. Phenomena in late period of seeded precipitation of sodium aluminate solution[J]. Transactions of Nonferrous Metals Society of China,2006,16(4):947-950.
    [104]Zeng Jishu, Yin Zhoulan, Zhang Aimin, et al. Unusual effect of 1,2-octanediol on sodium aluminate solutions leading to inhibition of gibbsite crystallization[J]. Hydrometallurgy,2008,90:154-160.
    [105]Zhang Bin, Li Jie, Chen Qiyuan, et al. Precipitation of Al(OH)3 crystals from supersaturated sodium aluminate solution irradiated with ultrasonic sound[J]. Minerals Engineering,2009,22:853-858.
    [106]郑必胜,郭祀远,李琳,等.磁场处理强化水溶液蒸发效能的研究[J].华南理工大学学报,1995,23(7):20-25.
    [107]Holysz L, Szczes A, Chibowski E. Effects of a static magnetic field on water and electrolyte solutions[J]. Journal of Colloid and Interface Science,2007,316: 996-1002.
    [108]Zhong C W, Wakayama N I. Effect of a high magnetic field on the viscosity of an aqueous solution of protein[J]. Journal of Crystal Growth,2001,226:327-332.
    [109]Szczes A, Chibowski E, Holysz L, et al. Effects of static magnetic field on water at kinetic condition[J]. Chemical Engineering and Processing:Process Intensification,2011,50(1),124-127.
    [110]Ambashta R D, Sillanpaa M. Water purification using magnetic assistance:A review[J]. Journal of Hazardous Materials,2010,180(1-3gers):38-49.
    [111]Sazaki G. Crystal quality enhancement by magnetic fields[J].Progress in Biophysics and Molecular Biology,2009,101(1-3):45-55.
    [112]Revalor E, Hammadi Z, Astier J P, et al. Usual and unusual crystallization from solution[J]. Journal of Crystal Growth,2010,312(7):939-946.
    [113]Kiani H, Sun Dawen. Water crystallization and its importance to freezing of foods: A review[J].Trends in Food Science & Technology,2011,22(8):407-426.
    [114]Higashitani K, Oshitani J. Magnetic effects on thickness of adsorbed layer in aqueous solutions evaluated directly by atomic force microscope[J].Journal of Colloid and Interface Science,1998,204(2):363-368.
    [115]Shcherbakova S V. The action of a magnetic field on water[R]. OHIO:Foreign technology div Wright-Patterson AFB OHIO,1973.
    [116]Higashitani K, Oshitani J. Measurements of magnetic effects on electrolyte solutions by atomic force microscope[J]. Process Safety and Environmental Protection,1997,75(2):115-119.
    [117]Kronenberg K J. Experimental evidence for effects on magnetic fields on moving water[J]. IEEE transactions on magnetics MAG,1985,21(5),2059-2061.
    [118]Lipus L C, Dobersek D. Influence of magnetic field on the aragonite precipitation[J]. Chemical engineering science,2007,62:2089-2095.
    [119]Alimi F, Tlili M, Amor M B, et al. Influence of magnetic field on calcium carbonate precipitation[J]. Desalination,2007,206:163-168.
    [120]Higashitani K, Okuhara K, Hatade S. Effects of magnetic fields on stability of nonmagnetic ultrafine colloidal particles[J].Journal of Colloid and Interface Science,1992,152(1):125-131.
    [121]Mullin J W. Crystallization [M].4th edition, Butterworth-Heinemann, Woburn MA,2001.
    [122]柴诚敬,贾绍义,李宗堂,等.磁化技术在化工分离领域中的应用[J].化学工业与工程,1999,16(4):245-249.
    [123]杨筠,杨祖荣,史季芬,等.磁场对碳酸氢钠结晶动力学的影响[J].北京化工大学学报,1997,24(2):1-7.
    [124]Lundager Madsen H E L, Crystallization of heavy-metal phosphates in solution-Ⅳ: growth of Cd5H2(PO4)4,4H2O in magnetic field[J]. Journal of Crystal Growth, 2004,263(1-4):564-569.
    [125]Lundager Madsen H E. Crystallization of calcium carbonate in magnetic field in ordinary and heavy water [J]. Journal of Crystal Growth,2004,267(1-2):251-255.
    [126]罗漫,陆柱.磁场对CaCO3结晶过程的影响[J].华东理工大学学报,2000,26(2):177-180.
    [127]Sundaram N M, Girija E K, Ashok M, et al. Crystallisation of hydroxyapatite nanocrystals under magnetic field[J]. Materials Letters,2006,60(6):761-765.
    [128]Chen Kexun, Zhang Xingyuan, Pan Jian, et al. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction-crystallization[J]. Journal of Crystal Growth,2003,258(1-2):163-167.
    [129]Gerson A R. The role of fuzzy interfaces in the nucleation, growth and agglomeration of aluminum hydroxide in concentrated caustic solutions[J]. Progress in Crystal Growth and Characterization of Materials,2001,43 (2/3): 187-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700