新型中红外空芯光纤的制备及其性能和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先回顾了红外传能光纤的发展史,尤其是对用于传输波长10.6μm的CO_2激光空芯氧化物介质光纤的探索与发展现状进行了论述。从理论上分析了衰减全反射(ATR)光纤在中红外波段折射率n_r<1的特征,通过射线理论和光纤理论阐述Ge/GeO_2双层介质膜空芯光纤的传输机理,运用光子带隙理论设计并制备出微结构空气孔为包层的Ge/GeO_2双层介质膜空芯光纤,改进了MCVD与拉丝一体化的工艺及设备,发展了相应的制备技术,并针对其在医疗诊断和工艺加工等方面进行了应用研究。
     从理论上分析了氧化物材料在中红外波段n_r<1的特征,利用K-K关系,并通过实验测出材料正入射反射谱,由此计算出在反常色散区的复折射率n+ik。应用光子晶体的带隙理论,设计并制备出具有光子带隙效应和nr <1机理的带有光子晶体光纤结构的空芯传能光纤。
     采用改进的化学气相沉积(MCVD)方法与拉制一体化技术进一步制备出纯GeO_2膜的空芯光纤,通过氧化还原反应,将部份多晶态GeO_2介质膜还原成富Ge层,由此成功地制备出以超微结构的多晶态GeO_2为基的双层介质膜空芯传能光纤,同时进行了多种状态下的损耗测试。采用紫外光(UV)固化法在空芯传能光纤的外表面涂覆硅胶,以加强光纤的机械强度和柔软性。另外,本论文还采用Auastar360FTIR红外光谱仪以及KYKY-2800型扫描电镜等设备对制备的光纤样品进行了性能检测和实验分析。实验结果表明:用改进的MCVD与拉丝一体化设备拉制中红外传能光纤具有非常好的光学特性。
     提出测量传输CO_2激光能量光纤的能量分布的新实验方案,首次使用针孔扫描法、热敏直接曝光法。通过实验比较,得到了热敏直接曝光法效果较好,并根据光斑的照射时间绘制出了光纤输出光模式的变化。本论文还对具有自主知识产权的光纤双透镜、三透镜聚焦系统进行了设计,并通过实验研究了由不同透镜组成的光学系统对光束聚焦及缩束作用的影响。
     将已制备的新型结构的中红外传输CO_2激光能量光纤用于医疗临床开展实验。通过研制“带光纤的CO_2激光治疗机”应用于腹腔手术说明了光纤所具有的独特优势,也为腹腔镜进入人体进行微创手术提供了前期准备。同时,还利用自主研制的新型中红外光纤配合医学红外光谱仪在生物体表进行检测,经光谱检测分析,该光纤可传输波长为3~12μm,并且中间没有出现大的吸收峰,完全达到了临床使用的要求。
In this paper, the development history of infrared fiber was reviewed. A lot ofresearch works and a great deal of achievement on the hollow-core fibers with dioxidedielectric layers used in transmission of high-power CO_2laser with the lasing wavelengthof10.6μm were discussed. The characteristic of the ATR fiber with n<1in themid-infrared region was analyzed based on theory. The mechanism of Ge/GeO_2doubledielectric layers hollow-core fiber was discussed through the theories of ray path andwaveguide. The hollow-core micro-structure fibers were designed and drawed based onthe the modified chemical vapor deposition (MCVD) method. The integration processof MCVD and the preparation of the fiber were improved. Moreover,the experimentalresearch on applications in medical diagnosis is carried out.
     Based on the characterize in mid-infrared region of oxide material (nr <1) thecomplex refractive index (n+ik) was derivated from the calculation procedure on thecomplex refractive index in abnormal dispersion_region that was calculated based on thereflectance spectrum under the addition of normal incidence in material.The hollow-coretransimission energy fiber with photonic bandgap effect and the micro-structure likingphotonic crystal fiber which thenr <1,was designed and fabricated.
     The hollow-core fiber with the pure GeO_2film was fabricated by the integrationprocess of MCVD and the preparation of the fiber. The part of multi-crystalline GeO_2dielectric layer was reduced to rich Ge layer by oxidation-reduction_reactions. Thedouble dielectric layer hollow-core fiber with ultr-microstructure multi-crystalline GeO_2was fabricated. The losses of the fiber were tested under the different state. The outsurface of the hollow-core fiber was coated with silica gel to protect fiber. In addition, theperformance test and experimental analysis of the optical fiber samples were carried byinfrared spectrometer (Auastar360FTIR) and scanning electron microscopy(KYKY-2800). Based on the experiment results, the integration equipment of MCVD anddrawing using for the fabrication of the mid-infrared fiber was successful.
     The experiment measure scheme of the energy distribution in optical fiber for CO_2 laser energy transmission was proposed. In the experiment, the pinhole scanning methodand direct thermal exposure method were used. Moreover, comparing the pinholescanning method, the direct thermal exposure method is proved much better in theexperiment. The relations between the irradiation time of the spot and the change ofoutput light mode were obtained. The optical fiber double lens and three lens focusedsystem with independent intellectual property rights were designed. In addition, the effectof the optical lens systems with different compositions on beam focus is experimentalresearched.
     The optical fiber with the innovation structure for CO_2laser energy transmission isfabricated and used for medical clinical. Many medical clinical experiments are carriedout. The optical fiber are proved the function of cutting fast and good hemostatic effectthrough animal laparoscopic surgery, which provide the fundamental experiment forentering human body laparoscopic to carry minimally invasive surgery. The spectraltesting of the fiber was implemented by combining the infrared fiber fabricated by ourlaboratory and medical infrared spectrometer. The results found that the transmissionwavelength of the fiber is3-12μm, and the large absorption peaks was not appear in thisregion, which the requirements of clinical application are well met.
引文
[1] C. Lou, Y. Hsing, Y. Shih, et al. Process evalution of the health-care and protective compositenonwoven[J]. Advanced Materials Research.2012,627:57-61.
    [2] R. W. Waynant,I. K. Ilev, I. Gannot. Infrared optical fibers and their applications[J]. SPIE.1999,3849:2-6.
    [3] N. S. Kapany, and R. J. Simms. Recent Developments of Infrared Fiber Optics[J]. InfraredPhysics,1965,5(1):69-73.
    [4]王维,刘明辉.传输紫外激光空芯光纤的研究[J].科技创新导报.2012,35:1-1.
    [5]石艺尉,朱晓松,松浦祐司等.用于红外图像传输的柔性空芯光纤束[J].红外与毫米波学报.2008,1:12-15
    [6] J. Pascual-Cosp, A. J. Ramirez del Valle, J. Garcia-Fortea et al. Laser cutting of high-vitrifiedceramic materials: Development of a method using a Nd:YAG laser to avoid catastrophicbreakdown[J]. Materials Letters.2002,55:274-280.
    [7]刘明辉.太阳能传输用空芯光纤研究及收集装置的设计[D].武汉理工大学.2008.1:12-13.
    [8]聂平,郝瑞宇,薛文瑞等. Bragg空芯光纤中的群速度超光速的理论探讨[J].量子光学学报.2006,2:98-101.
    [9]汤烨.聚焦式太阳能热发电系统的发展综述[J].工程建设与计量.2009,5:15.
    [10]郁道银,谈恒英.工程光学[M].机械工业出版社,2005:168.
    [11]商海英,吴静. CO2激光用光纤组件[J].光通信,2004,3:38-40
    [12] A. Marandi, C. W. Rudy, V. G. Plotnichenko, et al. Mid-infrared supercontinuum generation intapered chalcogenide fiber for producing octave-spanning frequency comb around3μ m[J]. Opt.Express2012,20(22):24218–24225.
    [13]陈家壁,彭润玲.激光原理与应用(第二版).北京:电子工业出版社.2008:245.
    [14]隋可融,汤晓黎,朱晓松.高性能Ag/AgI红外空芯光纤的研究[J].光子学报.2008,11:2186-2190.
    [15] J. Dai, J. A. Harrington. High peak power, pulsed CO2laser light delivery by hollow glasswaveguides.[J]. Appl. Opt.1997,36(21):5072-5077.
    [16]周佳琦,陆维佳,孙帮山等.空芯光纤气体传感气室的优化设计[J].光学学报,2012,2:281-286.
    [17]朱晓松,周志云,石艺尉.内窥镜的红外激光传输用柔性空芯光纤的研制[J].光学学报.2007,12:2123-2127.
    [18] K. Kincade. Erbium lasers vie for spot in medicine mainstream. Laser Focus World[J].1996,8:73-82.
    [19] J. Kottmann, J. M. Rey, J. Luginbuhl, et, al Glucose sensing in human epidermis usingmid-infrared photoacoustic detection[J]. Biomed. Opt. Exp.2012,3:667–680.
    [20] T. Baehr-Jones, A. Spott, R. Ilic, et al. Silicon-on-sapphire integrated waveguides for themid-infrared[J]. Opt. Express2008,18(12):12127–12135.
    [21]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社.1994.
    [22]张小青,徐智,凌晓峰等.红外光谱技术在医学中的应用[J].光谱学与光谱分析.2010,30(1):30-34.
    [23]侯正田,理记涛,侯承志.光纤及其在医学当中的应用[J].甘肃科技,2010,26(15):157-158.
    [24] J. Kottmann, J. M. Rey, M.W. Sigrist. New photoacoustic cell with diamond window formid-infrared investigations on biological samples[J]. Proc. SPIE2012,82231A.
    [25] J. M. Kriesel, N. Gat, B. E. Bernacki, et al. Hollow core fber optics for mid-wave andlong-wave infrared spectroscopy[J]. Proc. SPIE2011,80180V.
    [26] K. Kincade. Erbium lasers vie for spot in medicine mainstream[J]. Laser Focus World.1996,8:73-82.
    [27] K. Vogler, M. Reindl. Improved erbium laser parameters[J]. Biophotonics international.199612(11):40-47.
    [28] B. Vedilin. The erbium laser’s bright future in medicine[J]. Biophotonics international.1995,718:42-46.
    [29]刘德明,向清,黄德修.光纤技术及其应用[M].北京:电子科技大学出版社.2000:10-89.
    [30] Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi. Small-bore Fluorocarbon Polymer-coatedSilver Hollow Glass Waveguides for Er:YAG Laser Light[J]. Optics&Laser Tech.1997,29(8):455-461.
    [31] Y. Matsuura, K. Hanamoto, S. Sato. Hollow-fiber Delivery of High-power Pulsed Nd:YAGLight[J]. Optics Letters,1998,23(23):1858-1860.
    [32] J. Ballato, T. Hawkins, P. Foy, et al. Binary III-V semiconductor core optical fiber[J]. Opt.Express,2010,18(5):4972-4979.
    [33]侯蓝田,李曙光,周桂耀等.多孔微结构集束光子晶体光纤[J].中国光电.2003,创刊号:36-42.
    [34] Zhou Guiyao,Hou Zhiyun, Hou Lantian, Research on Transmitting High Power Hollow-coreFiber[J]. Chinese Journal of Laser,2001,10:50-53.
    [35]张元福,徐怡庄,翁诗甫等.傅立叶变换中红外光纤光谱技术及其应用[J],新技术运用.2009(5):27-37.
    [36] A. Lin, A. Zhang, E., J. Bushong, et al. Solid-core tellurite glass fiber for infrared and nonlinearapplications[J]. Opt. Express2009,17(19):16716–16721.
    [37]孟庆华,向阳.傅里叶变换光谱仪用红外水平衰减全反射测试仪[J],光学精密工程.2007,(10):15.
    [38] SHI YiWei, ZHU XiaoSong, M atsuu ra Yuji et al. Flexible bundled hollow fiber for them al infrared in aging[J]. Infrared. Millin. Waves.2008,27(1):12-15.
    [39]谭伟,何宇婧,杨从辉等.中红外空芯光纤探头的特征谱遥测系统[J].红外与毫米波学报.2012,2:148-152.
    [40] R. T. White and T. M. Monro. Cascaded Raman shifting of high-peak-power nanosecond pulsesin As S and As Se optical fibers[J]. Opt. Lett.2011,36(12):2351–2353.
    [41] M. El-Amraoui, J. Fatome, J. C. Jules, et al. Strong infrared spectral broadening in low-lossAs-S chalcogenide suspended core microstructured optical fibers[J]. Opt. Express,2010,18(5):4547-4556.
    [42]韩建军,李永涛,刘晓霞等.传输紫外激光空芯光纤系统的研究[J].激光与红外.2006,9:882-885
    [43]汤晓黎,石艺尉.吸收介质膜/金属空芯光纤的太赫兹波传输特性[J].光学学报.2009,10:2681-2685.
    [44]高建平,卞蓓亚,武忠仁.卤化银光纤原料的高真空熔炼提纯[J].硅酸盐学报.2000,28(5):494-496.
    [45]赵华新蒋永翔罗天穹等.基于表面等离子体共振原理的空芯光纤传感器[J].光学学报.2012,6:157-159.
    [46] J. A. Wysocki, R. G. Wilson, A. G. Standlee. Aging Effects in Bulk and Fiber TiBr-TiI[J].Appl.Phys.1988(63):4365-4371.
    [47] V. Artjushenko, I. Antoniv and I. Garapina. Formation and Interaction of Defects in SilverHalide Crystals[J]. SPIE,1990(1228):140-149.
    [48]侯蓝田,周桂耀,杨育林等.多晶空芯传能光纤的研究与进展[J].材料导报,2000,14(6):12-14.
    [49] Y. Matsuura, T. Abel, J. A. Harrington. Optical Properties of Small-bore Hollow GlassWaveguides[J]. Appl. Opt.1995,34(30):6842-6847.
    [50] Christopher Gregory. Hollow waveguides[C]. CRC Press LLc,1998:23-120.
    [51]林宵石艺尉隋可融.多层介质膜红外空芯光纤的传输特性[J].红外与毫米波学报.2010,4:278-282.
    [52] Y. Matsuura, M. Miyagi. Bending Losses and Beam Profiles of Rinc Selenide-Coated SilverWaveguides for Carbon Dioxide Laser Light[J]. Appl. Opt.1992(31):6441-6445.
    [53] C. C. Gregory, J. A. Harrington. Attenuation, Modal, Polarization Properties of n<1, HollowDielectric Waveguides[J]. Appl. Opt.1993(32):5302-5309.
    [54] Y.Matsuura, M.Miyagi and A.Hongo. Loss Reduction of Dielectric-Coated Metallic HollowWaveguide for CO2Laser Light Transmission[J]. Optics&Laser Technology,1990,22(2):141-145.
    [55] Hongo,Kenichi Morosawa, K.Matsumoto, T.Shiota et al. Transmission of Kilowatt-CoatedMetallic Hollow Waveguides for Material Processing[J]. Applied Optics,1992,31(24):5114-5120.
    [56] Richard Michael Jenkins, Robert W.J.Devereux. Dispersion Phenomena in Hollow AluminaWaveguides[J]. IEEE Journal of Quantum Electronics,1986,21(10):1722-1727.
    [57] Inberg, M.Oksman and N.Croitoru. Novel Copper Hollow Waveguides for IR LaserRadiation[C]. SPIE,1996(2928):28-38.
    [58] E. Garmire, T. Mcmahon, M. Bass. Flexible Infrared Waveguides for High-PowerTransmission[J]. IEEE J. Quant. Elect.1980, QE-16:23-32.
    [59] Hou Lantian, Sun Yingzhi and Zhao Bin. Study on the Mode Losses and Bending Losses ofHollow-core Optical Fiber of GeO2and SiO2Bases for Transmitting CO2Laser Energy[J].Chinese Journal of Lasers,1996,B5(1):27-32.
    [60] M. Miyagi and S. Karasawa. Waveguide Losses in Sharply Bent Circular Hollow Waveguides[J].Appl. Opt.1990(29):367-370.
    [61] N.Coritoru.Hollow Waveguide for IR Application[J].SPIE.1993(1893):94-99.
    [62] R.Dahan,J.Dror,N.Crotoru.Characterization of Chemically Formed Silver Iodide Layers forHollow Infrared Guide.Mater[J].Res.Ball,1992(27):761-766.
    [63] J. A. Harrington, C. Rabii, D. Dobin, D, Haan. Hollow Glass and Plastic Waveguides for theDelivery of Er:YAG and CO2Laser Radiation[C]. SPIE,1998(3199):89-93.
    [64] M. Miyagi and S. Karasawa. Waveguide Losses in Sharply Bent Circular Hollow Waveguides[J].Appl. Opt.1990(29):367-370.
    [65] J. A. Harrington. A review of IR Transmitting, Hollow Waveguides[J]. Fiber and IntegratedOptics,2000(19):211-217.
    [66] J. A. Harrington.Laser Power Delivery in Infrared Fiber Opticals[J]. SPIE.1992(1649):14-17.
    [67] S. Sato, K. Shimizu, Y. Shi, M. Miyagi. High-power5-μm-band CO laser and its new hollowwaveguides for industrial applications[C]. SPIE-The International Society for OpticalEngineering.1998,32(68):47-56.
    [68] Y. Shi, Wang You, Y. Abe et al. Fabrication of Cyclic Olefin Polymer COP-Coated SilverHollow Glass Waveguides for the Infrared[C]. SPIE.1998,32(62):96-101.
    [69] Y. Matsuura, M. Miyagi. Aluminum-Coated Hollow Glass Fibers for Arf-Excimer Laser LightFabricated by Metallorganic Chemical-Vapor Deposition[J]. Appl. Opt.1999,38(12):2458-2462.
    [70] M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami. Fabrication of Germanium Coated NickelHollow Waveguides for Infrared Trans-mission[J]. Appl. Phys. Lett.1983(43):430-432.
    [71]郝润蓉等.无机化学丛书(碳硅锗分族)[M].北京:科学出版社1988:346.
    [72]许肇均.传热学.北京:机械工业出版社[M].1980:55-68.
    [73] T. Hidaka. Loss calculations of the hollow-core, oxide-glass cladding, middle-infrared opticalwaveguide[J]. J. Appl. Phys.1982,53(1):93-96.
    [74] Y. Komachi, M. Wakaki, G. Kanai. Fabrication of Hollow Waveguides for CO2Lasers[J]. Appl.Opt.2000,39(10):1555-1559.
    [75] A. Hongo, K. Morosawa, K. Matsumoto et al. Transmission of Kilowatt-Class CO2Laser LightThrough Dielectric-Coated Metallic Hollow Waveguides for Material Processing[J]. Appl.Opt.1992,31:5114-5120.
    [76] Tong Limin, Shen Yonghang, Chen Fangmin et al. Plastic Banding of Sapphire Fibers forInfrared Sensing and Power Delivery Appli-cations[J]. Applied Optics.2000,39(A):494-501.
    [77] T. Limin, S. Yonghang, C. Fangmin et al. Plastic Banding of Sapphire Fibers for InfraredSensing and Power-Delivery Applications[J]. Appl. Opt.2000,39(A):494-501.
    [78] D. J. Haan, D. J. Gibii, J. A. Harrington. Recent Advance in the Fabrication of Hollow GlassWaveguides[C]. SPIE.1998(3262):103-107.
    [79]周桂耀,侯峙云等.空芯光纤中沉积多晶态GeO2薄膜的实验研究[J].材料科学与工艺,2001,9(1):52-55.
    [80] Zhou Guiyao, Hou Zhiyun, Hou Lantian. Research on Transmitting High Power Hollow-CoreFiber[C]. APLS’2000.
    [81] K. Uichi, H. Yuichi. Hollow Light Guide Tube for CO2Laser Beam[C]. SPIE,1986,713:17-21.
    [82] M. Miyagi and S. Karasawa. Waveguide Losses in Sharply Bent Circular Hollow Waveguides[J].Appl. Opt.1990,29:367-370.
    [83] Hou Lantian, Sun Yingzhi and Zhao Bin. Study on the Mode Losses and Bending Losses ofHollow-core Optical Fiber of GeO2and SiO2Bases for Transmitting CO2Laser Energy[J].Chinese Journal of Lasers,1996,5(1):27-32.
    [84] R. J. George, J. A. Harrington. New coatings for metal-dielectric hollow waveguides[C].SPIE-The International Society for Optical Engineering,2002,4616:129-134.
    [85] D. J. Haan, J. A. Harrington. Hollow Waveguides for Gas Sensing and Near-IR Applications[C].SPIE.1999,3596:43-49.
    [86] Y. Matsuura, M. Miyagi. Hollow Fibers for Delivery of High-Power Lasers[C]. SPIE.2000,4065:294-300.
    [87] Y. W. Shi, Y. Abe, S. Mori, Y. Matsuura et al. Polymer-Coated Hollow Fibers for MedicalInfrared Lasers-Fabrication, Transmission and End Sealing[C]. SPIE.2000,3911:268-275.
    [88] N. Grotoru, A. Inberg, M. Oksman, M. Ben-David. Hollow Silica, Metal and PlasticWaveguides for Hard Tissue Medical Applications[C]. SPIE.1997,2977:30-35.
    [89]安俊鸽,武保剑,李智.光纤损耗对抽运消耗光纤参变过程的影响分析[J].光学学报.2012,6:126-130.
    [90] Yi-Wei Shi, Yukio Abe, Yuji Matsuura et al. Low Loss Smart Hollow Waveguides with NewPolymer Coating Material[J]. Optics&Laser Technology,1999,31:135-140.
    [91] T.K.Abel, J.G.Hirsch and J.A.Harrington. Hollow Glass Waveguides for Broadband InfraredTransmission[J]. Optics Letters,1994,19(14):1034-1036.
    [92] C.D.Rabii, J.A.Harrington. Mechanical Properties of Hollow Glass Waveguide[J]. Opt.Eng.,1999(38):1490-1499.
    [93] Y. Matsuura, T. Abel, J. A. Harrington. Optical Properties of Small-bore Hollow GlassWaveguides[J]. Appl. Opt.1995,34(30):6842-6847.
    [94] Shi Yi-Wei, Pan Zhi-Yun, M. Miyagi. New and Simple Method for Fabricating Polymer-coatedSilver Hollow Fibers with Large Mechanical Strength[J]. Opt.&Laser Tech.2000(32):273-275.
    [95] Shi Yi-Wei, Wang You, A.Yukio. Cyclic Olefin Polymer-coated Silver Hollow GlassWaveguides for the Infrared[J]. Appl. Opt.1998,37(33):7758-7762.
    [96] Shi Yi-Wei, Wang You, A.Yukio. Fabrication of Cyclic Olefin Polymer (COP)-coated SilverHollow Glass Waveguides for the Infrared[C]. SPIE,1998(3262):96-102.
    [97] Shi Yi-Wei, Wang You, A.Yukio. Low Loss Smart Hollow Waveguides with New PolymerCoating Material[J]. Opt.&Laser Tech.1999(31):135-140.
    [98] R.K.Nubling, J.A.Harrington. Launch Conditions and Mode Coupling in Hollow-GlassWaveguides[J]. Opt.Eng.,1998,37(9):2454-2458.
    [99] You Wang, A.Hongo, Yuji Kato, Takehiro Shimomura and Daisuke Miura. Thickness andUniformity of Fluorocarbon Polymer Film Dynamically Coated inside Silver Hollow GlassWaveguides[J]. Applied Optics,1997,36(13):2886-2892.
    [100] Yuji Matsuura, J.A.Harrington. Infrared Hollow Glass Waveguides Fabricated by ChemicalVapor Deposition[J]. Optics Letters,1995,20(20):2078-2080.
    [101] J.A.Harrington, C.C.Gregory. Hollow Sapphire Fibers for the Delivery of CO2Laser Energy[J].Optics Letters,1990,15(10):541-543.
    [102] T.Abel, J.Hirsch and J.A.Harrington. Hollow Glass Waveguides for Broadband InfraredTransmission[J]. Optics Letters,1994,19(14):1034-1036.
    [103]周桂耀,侯峙云,侯蓝田.纳米GeO2在空芯光纤中的化学气相沉积[J].燕山大学学报,2001,25(2):131-134.
    [104]庞辉,侯峙云,侯蓝田等.宽波段红外空芯传能光纤的制备与特性研究[J].燕山大学学报,2010,34(1):39-43.
    [105] H. E. LaBelle. EFG the Invention and Application to Sapphire Growth[J]. J. Cryst Growth.1980(50):8-17.
    [106] D. H. Jundt, M. M. Fejer, R. L. Byer. Characterization of Single-Crystal Sapphire Fibers forOptical Power Delivery system[J]. Appl. Phys. Lett.1989(55):2170-2172.
    [107] R. S. F Chang, S. Sengupta, G. J. Dixon et al. Growth of Small Laster Crystals for Study ofEnergy Kinetics and Spectroscopy[C]. SPIE.1989(1104):224-250.
    [108] S. J. Saggese, J. A. Harrington, G. H. J. Sigel. Hollow and Dielectric Waveguides for InfraredSpectroscopic Applications[C]. SPIE.1991(1437):44-53.
    [109] G. M. Clarke, D. Chadwick, R. K. Nubling et al. Sapphire Fibers for Three Micron Delivery ofEr:YAG Laser Energy[C]. SPIE.1995(2396):60-70.
    [110] A. P. Pryshlak, J. R. Pugan,, J. J. Fitzgibbon. Advancements in Sapphire Optical Fibers for theDelivery of Er:YAG Laser Energy and IR Sensor Applications[C]. SPIE.1996(2677):3-42.
    [111] R. S. F. chang, V. Phomsakha, N. Djeu. Recent Advances in Sapphire Fibers[C]. SPIE.1995(2396):48-53.
    [112] R. K. Nabling, R. L. Kozodoy, J. A. Harrington. Optical Properties of Clad and Unclad SapphireFiber[C]. SPIE.1994(2131):56-61.
    [113] G. N. Merberg, J. A. Harrington. Optical and Mechanical Properties of Single Crystal SapphireOptical Fibers[J]. Appl. Opt.1995(32):3201-3209.
    [114] R. Dahan, J. Dror, N. Crotoru. Characterization of Chemically Formed Silver Iodide Layers forHollow Infrared Guides[J]. Mater. Res. Bull.1992(27):761-766.
    [115] N. Groitoru, J. Dror, I. Gannot. Characterization of Hollow Fibers for the Transmission ofInfrared Radiation[J]. Appl. Opt.1990(29):1805-1809.
    [116] R. K. Nubling, J. A. Harrington. Hollow-Waveguide Delivery Systems for High-PowerIndustrial Laser[J]. Appl. Opt.1996,34(3):372-380.
    [117] R. K. Nubling, J. A. Harrington. Optical Properties of Single-Crystal Sapphire Fibers[J]. Appl.Opt.1997(36):5934-5940.
    [118] D. J. Gibson, J. A. Harrington. Transmission Properties of Hollow Glass Waveguides[C]. SPIE.1999(3849):143-148.
    [119] R. K. Nubling, J. A. Harrington. Single-Crystal Laser-Heated Pedestal-Growth Sapphire Fibersfor Er:YAG Laser Power Delivery[J]. Appl. Opt.1998,37(21):4777-4781.
    [120] Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi. Low Loss Smart Hollow Waveguides with NewPolymer Coating Material[J]. Optics and Laser Technology.1999(31):135-140.
    [121] Y. W. Shi, Z. Y. Pan, Y. Matsuura et al. New and Simple Method for FabricatingPolymer-Coated Silver Hollow Fibers with Large Mechanical Strength. Optics and LaserTechnology[J].2000(32):273-275.
    [122] Y. Matsuura, Daisuke, M. Miyagi. Fabrication of Hollow Fibers for CO2Laser by UsingMOCVD Method[C]. SPIE.1998(3262):119-124.
    [123] T. Yoshinobu, T. Fuyuki, H. Matsunami. Interface Modification by Hydrocarbon Gas MolecularBeams in Heteroepitaxy of SiC on Si[J]. Japanese Journal of Applied Physics.1991(30):1086-1088.
    [124] Hou Lantian, Fu Lianfu, Lu Ping et al. Pure Germanium Dioxide Hollow-Core FiberTransmitting CO2Laser[J]. Science China(Series A),1995,38(6):749-756.
    [125] Hou Lantian, Zhou Guiyao, Hou Zhiyun et al. Transmitting High Power Double-LayerDielectric Hollow Optical Fibers[J]. San Jose, USA.2001(4271):222-228.
    [126]侯蓝田,周桂耀,侯峙云.中国发明专利.多晶态纳米GeO2传能光纤[ZL01104453.5][P].
    [127]翁诗甫,高建平,徐怡庄等.国产中红外光纤的研制及其应用研究[J].光谱学与光谱分析,2004,24(5):628-630.
    [128]杨丽敏,徐智,张元福等.中红外光纤技术用于肿瘤在体原位诊断的研究[J].光谱学与光谱分析,2003,23(5):883-884.
    [129]潘庆华,王冰冰,来国桥等.傅里叶变换中红外光纤光谱法用于腮腺肿瘤的检测[J].高等学校化学学报,2007,28(5):843-846.
    [130]徐怡庄,张元福,杨丽敏等.中红外光纤技术用于口腔肿瘤在体原位检测的研究[J].高等学校化学学报,2004,25(2):348-350.
    [131]孙传文,徐怡庄,孙开华等.中红外光纤技术用于腮腺肿瘤诊断的研究[J].光谱学与光谱分析,1996,16(5):22-25.
    [132]周桂耀,黄嘉威等.中国实用新型专利.具有激光打孔雕刻功能的电脑绣花机[ZL200620127603.9][P].
    [133] Zhou Guiyao, Hou Zhiyun, Li Shuguang and Hou Lantian. Fabrication of glass photonic crystalfibers with a die-cast process[J]. Appl. Opt.,2006,45(18):4433-4436.
    [134] Zheng Yi, Zhang Yu-Ping, Huang Xiao-Jun et al. Supercontinuum Generation with15-fs pumppulses in a microstructure fiber with random cladding and core distributions[J]. Chinese PhysicsLetters,2004,21(4):750-753.
    [135] Xingtao Zhao, Guiyao Zhou, Shuguang Li et al. Photonic crystal fiber for dispersioncompensation[J]. Applied Optics.2008,47(28):5190-5196.
    [136]沈学础.半导体光学性质[M].北京:科学出版社,1992.
    [137] N.Croitoru,et.al,.Flexible Waveguides for Transmission of IR Radiation and SurgicalApplication[J].SPIE.1993(1893):122-125.
    [138] T.Hidaka, T.Morikawu and J.Shimard. Hollow-core Oxide-Glass Cladding Optical Fibers forMiddle-Infrared Region.[J].J.Appl.phys.1981(52):7-9.
    [139] Cliver A.Worrell. Infrared Optical Properties of Glass and Ceramics for Hollow WaveguidesOperating at10.6μm Wavelength[J].SPIE.1987(843):80-87.
    [140] Richard.M.J.,et.al,. Dispersion Phenomenon in Hollow Alumina Waveguides[J]. IEEEJ.Quantum Electrons.1985(21):10-12.
    [141] A.S.Barker. Infrared Lattic Vibrations and Dielectric Dispersions in Corundum. Phys.Rev.1963(132):1474-1481.
    [142] R.W.狄区本.光学(下册)[M].北京:高等教育出版社,1988.
    [143] M.Halus,J.Dror,R.Dahan,N.Crotoru.Plastic Hollow Fibers as a Selective Infrared RadiationTransmission Medium[J].Appl.Phys.1992(72):3878-3883.
    [144] J.Broeng, D.Mogllevstev, S.E.Barkou. Photonic Crystal Fibers: A New Class of OpticalWaveguides. Optical Fiber Technology.1999,5(3):305-330.
    [145] J.C.Knight, J.Broeng, T.A.Birks. et a1,. Photonic Band Gap Guidance in Optical Fibers.Science.1998(282):1476-1478.
    [146] T. AA. Broeng, S. E. Barkou, T.Sonderganrd. Anaysis of Air-Guiding Photonlc Bandgap Fibers.Optics LeRers.2000,25(2):96-98.
    [147] Birks, J.C.Knight, ESt..J.Russell. Endlessly Single-Mode Photonlc Crystal Fiber. Optics Letter.1997,22(13):961-963.
    [148] O.Danilov,M.Zintchenko,Y.Rubinov and E.Sosnov. Transmission Losses and Mode SelectionCharacteristics of a Curved Hollow Dielectric Waveguide with a Rough Surface.[J].J.Opt.Soc.Am.1990, B7:1785-1790.
    [149] C. A. Worrell, V. Sarda. CO2laser waveguides from germania based glass[J]. J. Appl. Phys. D1989(22):535-541.
    [150] A. W. Adanrson著.表面的物理化学[M].顾惕人译.北京:科学出版社,1985:20-57.
    [151] M. J. Richard. Dispersion Phenomenon in Hollow Alumina Waveguides[C]. IEEE J.QuantumElectrons,1985, QE-21(10):80-89.
    [152] Y.Komachi,M.Wakaki,G.Kanai.Fabrication of Hollow Waveguides for CO2Lasers[J].Appl.Opt.2000,39(10):1555-1559.
    [153] N.Nagano,M.Saito,M.Miyagi.TiO2-SiO2Based Glasses for Infrared Hollow Waveguides[J].Appl.Opt.1991,30(9):1074-1079.
    [154]陈衡.红外物理[M].北京:国防科技出版社,1985.
    [155]周桂耀,侯峙云,侯蓝田.介质反射膜光子带隙红外光纤.中国发明专利,201310008986.2.
    [156]侯峙云.传能空芯光纤的激光传输与耦合的研究[D].[燕山大学硕士论文].2002(3).
    [157] Hou Lantian, Wang Xinqi, et al. Transmission characteristic of GeO2hollow fiber. SPIE1999(2893):309-314.
    [158]黄永明,杨性愉.拉盖尔一高斯光束通过双透镜聚焦系统的传播[J].内蒙古大学学报(自然科学版),1999,30(1).
    [159] M Miyagi, K Hanada,S Kawakami. Wave propagation and attenuation in the general class ofcircular hollow waveguides with uniform curvature[C]. IEEE. Trans Microwave Theory andTechniques,1984(32):513-521.
    [160] FA. Jenkins, HE. White. Fundamental of Optics[J]. London: Mc.Graw Hill Inc.1979:p77-75.
    [161] A. Chester,R. Abrams. Mode losses in hollow-waveguide laser[J]. Appl. Phys. Lett.1999(21):576-578.
    [162] F. Roullard,M. Bass. Transmission mode control in high gain, millimeter bore, waveguidelasers[C]. IEEE. Quantum Elect.1977, QE-13:813-819.
    [163]杨义,侯峙云,周桂耀,侯蓝田. GeO2介质膜红外空芯传能光纤模式特性的实验研究[J]中国激光,2004,31(2):181-184.
    [164]杨义,周桂耀,侯峙云,堵久辉,侯蓝田. GeO2介质膜红外空芯传能光纤的传输特性分析[J].中国激光,2004,31(3):301-304.
    [165]堵久辉,侯蓝田,杨义,周桂耀,侯峙云.空芯光纤输出能量分布及其应用的研究[J].中国激光,2004,31(10):1261-1265.
    [166]洪少春. Nd:YAG激光医学应用的技术研究[J].吉林化工学院学报,2004,21(3).
    [167]刘明辉.太阳能传输用空芯光纤研究及收集装置的设计[D].武汉理工大学,2008.
    [168]汤烨.聚焦式太阳能热发电系统的发展综述[J].工程建设与计,2009(5).
    [169] M.J.Grout,G.J.Pert,and A.Djaoui. Effect of Coulomb Explosion Ion Heating in Optical-Fieldlonized Nitrogen X—ray Laser Schemes[J].Optics Communications.2000,177(1).
    [170]郁道银,谈恒英.工程光学[M].机械工业出版社,2005.
    [171]刘衍民.腹腔镜保胆手术的术式选择与适应证[J].腹腔镜外科杂志,2010,15(12),885-888.
    [172]文辉清,陆光生,刘衍民等.早期经皮肝胆道镜手术瘘道的实验研究[J].广州医学院学报.2005,33(6).57-58.
    [173]王冰冰,潘庆华,张元福等.傅里叶红外光谱法用于体表检测涎腺多形性腺瘤的研究[J].光谱学与光谱分析,2007,27(12):2427-2431.
    [174]李庆波,徐智,徐怡庄等.傅里叶变换红外光谱法用于体表无创性检测乳腺肿瘤的研究[J].高等学校化学学报,2004,25(11):2010-2012.
    [175]武惠忠,王百华,高学军.国产傅立叶变换红外光谱仪研制的动向----通用仪器向专用仪器的发展[J].现代仪器,2001(5):14-16.
    [176]张元福,徐怡庄,翁诗甫等.傅立叶变换中红外光纤光谱技术[J].现代仪器.2009,15(5):27-30..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700