Cp-PMO和Co-PMO材料的制备、表征及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1999年以来,周期介孔有机硅材料(PMOs)因其具有高的比表面积,高度有序的孔结构,均一可调的孔径,高的水热稳定性、机械稳定性和化学稳定性,同时材料中有机物负载量高、分布均匀可控、化学活性位点多,可进一步被修饰等特点,在色谱、分离、催化、吸附、存储等领域越来越受到人们的关注
     PMOs材料的物理和化学性质取决于前躯体种类、制备方法和条件等,而其性质决定了这类材料的应用领域。环戊二烯具有共轭双键和亚甲基上的活泼氢原子,性质较为活泼,可进行聚合、氢化、卤化、加成、氧化、缩合及还原等反应;同时它还是稀土金属有机配合物很好的配体。因此,我们选取环戊二烯作为功能基团,采用共聚法创新性的合成了环戊二烯掺杂乙烷桥联有序介孔材(Cp-PMO);在此基础上,我们以Cp-PMO为载体,负载Py-Co(Ⅲ)制备Co-PMO,并采用各种表征手段对样品进行了结构表征,同时以丁醇和乙酸乙酯的酯交换反应以及环己醇氧化反应为探针反应,分别考察了Cp-PMO和Co-PMO的催化性能。
     在本工作中,主要包括以下内容:
     首次合成出前躯体(2-(环戊基-1,3-二烯基)乙基)三乙氧基硅烷(TEECp)。整个实验过程均采用无水无氧技术,所有操作均在氮气气氛中进行。合成过程主要分为3个步骤:1)以乙烯基三氯硅烷为原料,与溴化氢气体在过氧化苯甲酰存在下进行反马氏加成反应,生成2-溴乙基三氯硅烷2)2-溴乙基三氯硅烷与无水乙醇进行醇解反应,生成2-溴乙基三乙氧基硅烷,3)与环戊二烯基钠进行金属化反应,即得产物TEECp。我们对合成的中间产物及TEECp进行了NMR、IR表征,结果表明,所合成的产物为目标产物TEECp。
     以单硅酯(2-(环戊基-1,3-二烯基)乙基)三乙氧基硅烷(TEECp)和含有亚乙基桥键的硅酯1,2-二(三乙氧基硅基)乙烷(BTEE)为硅源,三嵌段共聚物P123为结构导向剂,合成了环戊二烯掺杂乙烷桥联有序介孔材料(Cp-PMO),并采用小角X射线衍射、N2物理吸附、透射电镜、红外光谱和热重等技术对样品进行了表征,结果表明,环戊二烯成功引入到材料中,该材料具有高度有序的二维六方相介孔孔道,随着环戊二烯含量的增加,材料的孔径、比表面积、孔容均有所减少,孔壁变厚;在乙酸乙酯与正丁醇的酯交换反应中,该材料表现出明显的催化活性,其催化性能不仅与活性中心数目有关,也和材料结构有关。
     在Cp-PMO上,通过Diels-Alder反应将羧基引入PMO材料中,然后通过配位,将Py- Co(Ⅲ)引入到材料中,合成出Co-PMO。采用小角X射线衍射、N2物理吸附、透射电镜、红外光谱和热重等技术对样品进行了表征,结果表明,Py- Co(Ⅲ)引入到材料中,且材料的孔径、比表面积、孔容均有所减少,孔壁变厚;随着环戊二烯含量的增加,Py-Co(Ⅲ)的负载量也逐渐增加,有序性有所降低。在催化环已醇氧化成环己酮的反应中,该材料表现出明显的催化活性。当Co-PMO-x为20%时,材料保持了较好的介孔结构,且活性中心数目较多,呈现出最高的催化性能。
Since 1999, periodic mesoporous organic silicon materials (PMOs) play important roles in the fields of chromatography, separation, catalysis, adsorption, storage and other fields. Because of its high specific surface area, highly ordered pore structure, uniform adjustable pore size, high hydrothermal stability, mechanical stability and chemical stability, and the high load of organic material, controlled distribution, and more active sites.
     The physical and chemical properties of PMOs materials depends on the type of precursor species and preparation methods. The physical and chemical properties of PMOs materials determine these materials applications. Cyclopentadiene which has double bonds and active hydrogen atoms of methylene can be used in polymerization, hydrogenation, halogenation, addition, oxidation, condensation and reduction reactions; and it is also the good ligands of rare earth metal organic complexes. Therefore, we selected cyclopentadienyl group as a functional group, and preparated inovatively the Cp-PMO; On this basis, Co-PMO was preparated by selecting Cp-PMO as carriers and loading Py-Co(Ⅲ). Cp-PMO and Co-PMO were characterized by various technologies. The catalytic performance of Cp-PMO and Co-PMO were investigated for transesterification of butanol and ethyl acetate and oxidation reaction of cyclohexanol to detective a high catalytic performance and environmentally friendly catalyst.
     This work included the following:
     precursor(2-(cyclopentyl-1,3-dieneyl)ethyl)triethoxysilane(TEECp) was synthesized firstly. All reactions were carried out under dry N2 using the vacuum-line technique. The whole process was divided into three steps:1) anti-Markovnikov addition reaction was conducted between vinyl trichlorosilane and hydrogen bromide in the presence of benzoyl peroxide, producing 2-bromo-ethyl trichlorosilane;2) Then the product alcoholize with absolute ethyl alcohol to obtain (2-bromoethyl)triethoxysilane; 3)After that, (2-bromoethyl) triethoxysilane reacted with sodium cyclopentadienide to obtain (2-(cyclopenta-1,3-dienyl)- ethyl)triethoxysilane. The TEECp and the intermediate products were confirmed by NMR and FT-IR.
     Cp-PMO was synthesized by copolymerization, using TEECp and the ethylene bridge silicon ester 1,2-bis(triethoxysilyl silicon)ethane(BTEE) as silica source, triblock copolymer P123 as structure directing agent. The prepared material samples were characterized by X-ray dif-fraction, N2 adsorption-desorption, transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analsis. The results showed that cyclopentadiene was successfully incorporated into the material, which had highly ordered hexagonal mesostructure. With increasing cyclopentadiene loading, the mesostructure order, pore size, BET surface area, and pore volume of Cp-PMO decreased, while the pore wall widths increased. Cp-PMO showed significant catalytic activity in the transesterification reaction of ethyl acetate and n-butyl alcohol. The catalytic performance was not only related to the number of active centers, but also related to structure of material.
     Carboxyl group was introduced into the Cp-PMO through the Diels-Alder reaction and the Py-Co(Ⅱ) was introduced by coordination, producing Co-PMO. The prepared material samples were characterized by X-ray dif-fraction, N2 adsorption-desorption, transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analsis. The results showed that, Py-Co(Ⅲ) was introduced into the material and the material pore size, surface area, pore volume decreased, while the pore wall widths increased. With the increase of the content of cyclopentadiene, Py-Co(Ⅲ) loading was gradually increased and ordering was gradually decreased. In the catalytic conversion of cyclohexanol into cyclohexanone experiments, the material showed significant catalytic activity. When the x of Co-PMO-x is 20%, the material showed the highest catalytic performance due to the good pore structure, and the more number of active sites.
引文
[1]Inagaki S, Guan S, Fukushima Y, et al. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks[J]. J. Am. Chem. Soc.,1999,121:9611-9614.
    [2]Melde B J, Holland B T, Stein A, et al. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks [J]. Chem. Mater.,1999,11:3302-3308.
    [3]Asefa T, MacLachlan M J, Ozin G A, et al. Periodic Mesoporous Rganosilicas with Organic Groups Inside the Channel Walls[J]. Nature,1999,402:867-871.
    [4]MUTH O, SCHELLBACH C, FROBA M. Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores[J]. Chem. Commun.,2001: 2032-2033.
    [5]LU Y F, FAN H Y, DOKE N, et al. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality [J]. J. Am. Chem. Soc.,2000,122:5258-5261.
    [6]WYNDHAM K D, O'GARA J E, WALTER T H, et al. Characterization and Evaluation of C18 HPLC Stationary Phases Based on Ethyl-Bridged Hybrid Organic/Inorganic Particles[J].Anal. Chem.,2003,75:6781-6788.
    [7]BURLEIGH M C, MARKOWITZ M A, JAYASUNDERA S, et al. Mechanical and Hydrothermal Stabilities of Aged Periodic Mesoporous Organosilicas[J]. J. Phys. Chem. B.,2003,107:12628-12634.
    [8]YANG Q, KAPOOR M P, INAGAKI S, et al. Catalytic Application of Sulfonic Acid Functionalized Mesoporous Benzene-Silica with Crystal-like Pore Wall Structure in Esterification[J]. J. Mol. Catal.,2005,230:85-89.
    [9]HAMOUDI S, ROYER S, KALIAGUINE S, Propyl- and Arene-sulfonic Acid Functionalized Periodic Mesoporous Organosilicas[J]. Microporous Mesoporous Mater,2004,71:17-25.
    [10]YUAN X, LEE H I, KIM J W, et al. Periodic Mesoporous Organosilicas Functionalized with Sulfonic Acid Group. Synthesis and Alkylation of Phenol[J]. Chem. Lett.,2003,32:650-657.
    [11]YANG Q, LIU J, YANG J, et al. Synthesis, Characterization and Catalytic Activity of Sulfonic Acid Functionalized Periodic Mesoporous Organosilicas[J].J. Catal.,2004, 228:265-272.
    [12]ZHANG L, ZHANG W. SHI J, et al. A New Thioether Functionalized Organic-Inorganic Mesoporous Composite as a Highly Selective and Capacious Hg2+ Adsorbent[J]. Chem. Commun.,2003,210-211.
    [13]KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature, 1992,359:710-712.
    [14]BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J.Am. Chem. Soc.1992,114, 10834-10843.
    [15]TUEL A. Modification of Mesoporous Silicas by Incorporation of Heteroelements in the Framework[J]. Microporous and Mesoporous Mater,1999,27:151—169.
    [16]HOFFMANN F, CORNELIUS M, MORELL J, et al.Silica-Based Mesoporous Organic-Inorganic Hybrid Materials[J]. Angew. Chem. Int. Ed.,2006,45, 3216-3251.
    [17]ASEFA T; YOSHINA-ISHII C, OZIN G A, et al. New nanocomposites:putting organic function "inside" the channel walls of periodic mesoporous silica Journal of Materials Chemistry[J].J. Mater. Chem.,2000,10(8):1751-1755.
    [18]LOY D A, SHEA K J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials[J]. Chem. Rev.,1995,95:1431-1442.
    [19]SHEA K J, LOY D A. Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic-Inorganic Materials[J]. Chem. Mater.,2001,13:3306-3319.
    [20]WAHAB M A, IMAE I, KAWAKAMI Y, et al. Periodic Mesoporous Organosilica Materials Incorporating Various Organic Functional Groups:Synthesis, Structural Characterization, and Morphology [J]. Chem. Mater.,2005,17 (8),2165-217
    [21]ASEFA T, MACLACHLAN M J, OZIN G A, et al. Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs:Synthesis, Characterization, Properties and in-Situ Selective Hydroboration-Alcoholysis Reactions of Functional Groups[J]. J. Am. Chem. Soc.,2001,123 (35),8520-8530.
    [22]DUBE D, RAT M. BEAND F, et al. Sulfonic Acid Functionalized Periodic Mesostructured Organosilica as Heterogeneous Catalyst[J]. Micropous and Mesoporous Mater.,2008,111:596-603.
    [23]BURLEIGH M C, MARKOWITZ M A, SPECTOR M S, et al. Direct Synthesis of Periodic Mesoporous Organosilicas:Functional Incorporation by Co-condensation with Organosilanes[J].J. Phys. Chem. B.,2001,105,9935-9942.
    [24]GAO P F, ZHANG T M, ZHAO Y X, et al. Spaced-amine Modified SBA-15: Synthesis and Characterization[J]. Mater. Lett.,2011,65:260-263.
    [25]WAHAB M A, IMAE I, KAWAKAMI Y, et al. Periodic Mesoporous Organosilica Materials Incorporating Various Organic Functional Groups:Synthesis, Structural Characterization, and Morphology[J]. Chem. Mater.,2005,17,2165-2174.
    [26]HAMOUDI S, YANG Y, MOUDRSKOVSKI I L, et al. Synthesis of Porous Organosilicates in the Presence of Alkytrimethylammonium Chlorides:Effect of the Alkyl Chain Length[J]. J. Phys. Chem. B,2001,105:9118-9123.
    [27]ASEFA T, MACLACHLAN M J, GRONDEY H, et al. Metamorphic Channels in Periodic Mesoporous Methylenesilica[J]. Angew. Chem.,2000,112:1878-1881.
    [28]HAMOUDI S, YANG Y, MOUDRSKOVSKI I L, et al. Synthesis of Porous Organosilicates in the Presence of Alkytrimethylammonium Chlorides:Effect of the Alkyl Chain Length[J]. J.Phys. Chem. B,2001,105,9118-9123.
    [29]REN T, ZHANG X. SUO J. Synthesis of Periodic Mesoporous Organosilicas Via the "S+X-T+" Route[J]. Microporous and Mesoporous Mater.,2002,54:139-144.
    [30]PARK S Y, KIM T J, CHUNG Y M, et al. Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalyst Supported on SO3H-Functionalized SBA-15[J]. Catal. Lett.,2009,130:296-300.
    [31]BURLEIGH M C, MARKOWITZ M A, SPECTOR M S, et al. Amine-Functionalized Periodic Mesoporous Organosilicas[J]. Chem. Mater.2001,13:4760-4766.
    [32]BURLEIGH M C, MARKOWITZ M A, WONG E M, et al. Synthesis of Periodic Mesoporous Organosilicas with Block Copolymer Templates[J]. Chem. Mater.,2001, 13:4411-4412.
    [33]CHO E B, KIM D, GORKA J, et al. Periodic Mesoporous Benzene-and Thiophene-Silicas Prepared Using Aluminum Chloride as an Acid Catalyst:Effect of Aluminum Salt/Organosilane Ratio and Stirring Time[J]. J. Phys. Chem. C.,2009, 113:5111-5119.
    [34]CHO E B, KIM D, JARONIEC M. Monodisperse Particles of Bifunctional Periodic Mesoporous Organosilica[J]. J. Phys. Chem. C.,2008,112:4897 4902.
    [35]SUN Z P, ZHANG X G, TONG H, et al.Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation[J]. J. Colloid Interface Sci., 2009,337:614-618.
    [36]YOSHINA-ISHII C, ASEFA T, COOMBS N, et al. Periodic Mesoporous Organosilicas, PMOs:Fusion of Organic and Inorganic Chemistry'inside'the Channel Walls of Exagonal Mesoporous Silica[J]. Chem. Commun.,1999, 2539-2540.
    [37]TEMTSIN G, ASEFA T, BITTNER S,et al. Aromatic PMOs:Tolyl, Xylyl and Dimethoxyphenyl Groups Integrated within the Channel Walls of Hexagonal Mesoporous Silicas[J]. J. Mater. Chem.,2001,11:3202-3206.
    [38]MUTH O, SCHELLBACH C, FRVBA M. Triblock Copolymer Assisted Synthesis of Periodic Mesoporous Organosilicas (PMOs) with Large Pores[J]. Chem. Commun., 2001,2032-2033.
    [39]BURLEIGH M C, MARKOWITZ M A, WONG E M, et al. Synthesis of Periodic Mesoporous Organosilicas with Block Copolymer Templates[J]. Chem. Mater.,2001, 13:4411-4412.
    [40]GUO W, PARK J-Y, OH M-O, et al. Triblock Copolymer Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilicas with the Aid of Inorganic Salts[J]. Chem. Mater.,2003,15:2295-2298.
    [41]BAO X Y, ZHAO X S, LI X, et al. A Novel Route toward the Synthesis of High-Quality Large-Pore Periodic Mesoporous Organosilicas[J]. J. Phys. Chem. B, 2004,108:4684-4689.
    [42]ZHU H, JONES D J, ZAJAC J, et al. Periodic Large Mesoporous Organosilicas From Lyotropic Liquid Crystal Polymer Templates Electronic Supplementary Information (ESI) Available:TEM Image, MAS NMR and FT-IR Spectra, and BJH Pore Size Distribution for PMO Materials[J]. Chem. Commun.,2001,24:2568-2569.
    [43]CHO E B, KWON K-W. CHAR H. Mesoporous Organosilicas Prepared with PEO-Containing Triblock Copolymers with Different Hydrophobic Moieties[J]. Chem. Mater.,2001,13:3837-3839.
    [44]GUO W, KIM I, HA C-S. Highly Ordered Three-dimensional Large-pore Periodic Mesoporous Organosilica with Im3m Symmetry[J]. Chem. Commun.,2003, 2692-2693.
    [45]Zhao L, Zhu G, Zhang D, et al. Synthesis and Structural Identification of a Highly Ordered Mesoporous Organosilica with Large Cagelike Pores[J]. J. Phys. Chem. B, 2005.109:764-768.
    [46]刘丽,邹景霞,王为,等.周期性介孔有机官能化氧化硅材料(PMOs)表面修饰的研究现状[J].材料导报,2006,20(5):41-43.
    [47]ASEFA T, YOSHINA I C, MACLACHLAN M J, et al. New Nanocomposites: Putting Organic Function "inside" the Channel Walls of Periodic Mesoporous Silica[J].J.Mater.Chem.,2000,10:1751-1755.
    [48]CHO E B, KIM D, GORKA J, et al. Periodic Mesoporous Benzene-and Thiophene-Silicas Prepared Using Aluminum Chloride as an Acid Catalyst:Effect of Aluminum Salt/Organosilane Ratio and Stirring Time[J]. J. Phys. Chem. C.,2009, 113:5111-5119.
    [49]INAGAKI S, GUAN S, FUKUSHIMA Y, et al. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks[J]. J. Am. Chem. Soc.,1999,121:9611-9614.
    [50]MAKOTE R, CONLLINSON M M. Template Recognition in Inorganic-Organic Hybrid Films Prepared by the Sol-Gel Process[J]. Chem. Mater.,1998,10: 2440-2445.
    [51]VARTULI J C, SCHMITT K D, KRESGE C T, et al. Effect of Surfactant/silica Molar ratios on The Formation of Mesoporous Molecular Sieves:Inorganic Mimicry of Surfactant Liquid-crystal Phases and Mechanistic Implications[J]. Chem. Mater., 1994,6:2317-2326.
    [52]POLARZ S, SMARSLY B, ANTONIETTI M. The Interplay of Colloidal Organization and Oxo-Cluster Chemistry:Polyoxometalate-Silica Hybrids-Materials with a Nanochemical Function[J].Adv. Mater.,2000,12:1503-1512.
    [53]PANG J B, QIU K Y, WEI Y. Preparation of Mesoporous Silica Materials with Non-surfactant Hydroxy-carboxylic Acid Compounds as Templates via Sol-gel Process[J]. J. Non-Cryst. Solids.,2001,283:101-108.3
    [54]ZHENG J Y, PANG J B, QIU K Y, et al. Synthesis of Mesoporous Titanium Dioxide Materials by Using a Mixture of Organic Compounds as a Non-surfactant Template[J]. J. Mater. Chem.,2001,11:3367-3369.
    [55]DAVIS S A, BURKETT S L, MENDELSON N H, et al. Bacterial Templating of Ordered Marcostructures in Silica and Silica-surfactant Mesophases[J]. Nature,1997, 385:420-423.
    [56]POLARZ S, SMARSLY B, BRONSTEIN L, et al. Cyclodextrin-based Porous Silica Materials as in Situ Chemical "Nanoreactors" for the Preparation of Variable Metal-Silica Hybrids[J]. Chem. Mater.,2001,13:3915-3919.
    [57]HUO Q, MARGOLESE D I, CIESLA U, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays[J]. Chem. Mater.,1994,6:1176-1191.
    [58]SHEA K J; LOY D A; WEBSTER O W. Arylsilsesquioxane Gels and Related Materials. New hybrids of Organic and Inorganic Networks[J]. J. Am. Chem. Soc., 1992,114:6700-6710.
    [59]OVIATT H W, JR.SHEA K J, SMALL J H. Alkylene-bridged Silsesquioxane Sol-gel Synthesis and Xerogel Characterization. Molecular Requirements for Porosity[J]. Chem. Mater.,1993,5:943-950.
    [60]CORRIU R J P, HOARAU C, MEHDI A, et al. Study of the Accessibility of Phosphorus Centres Incorporated within Ordered Mesoporous Organic-inorganic Hybrid Materials[J]. Chem. Commun.,2000,1:71-72.
    [61]MORELL J, TEIXEIRA C T, CORNELIUS M, et al. In situ Synchrotron SAXS/XRD Study on the Formation of Ordered Mesoscopic Hybrid Materials with Crystal-Like Walls[J]. Chem. Mater.,2004,16(26):5564-5566.
    [62]LI C M, LIU J, ZHANG L, et al. Mesoporous Organosilicas Containing Disulfide Moiety:Synthesis and Generation of Sulfonic Acid Functionality through Chemical Transformation in the Pore Wall[J]. Microporous Mesoporous Mater.,2008,113: 333-342.
    [63]ALAUZUN J, MEHDI A, REYE C, et al. Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation[J]. J. Am. Chem.Soc,2006, 128:8718-8719.
    [64]FUKUOKA A, SAKAMOTO Y, GUAN S, et al. Novel Templating Synthesis of Necklace-Shaped Mono-and Bimetallic Nanowires in Hybrid Organic-Inorganic Mesoporous Material [J]. J. Am. Chem. Soc.,2001,123:3373-3374.
    [65]BHAUMIK A, KAPOOR M P, INAGAKI S. Ammoximation of Ketones Catalyzed by Titanium-containing Ethane Bridged Hybrid Mesoporous Silsesquioxane[J]. Chem. Commun.,2003,3(4):470-471.
    [66]YUAN X, LEE H I, KIM J W, et al. Periodic Mesoporous Organosilicas Functionalized with Sulfonic Acid Group. Synthesis and Alkylation of Phenol[J]. Chem. Lett.,2003,32:650-657.
    [67]HU J C, CHEN L F, ZHU K K, et al. Aerobic Oxidation of Alcohols Catalyzed by Gold Nano-particles Confined in the Walls of Mesoporous Silica[J]. Catal. Today, 2007,122:277-283.
    [68]WANG P Y, YANG J, LIU J, et al. Chiral Mesoporous Organosilicas with R-(+)-Binol Integrated in The Framework[J]. Mieropor. Mesopor. Mater.,2009,117:91-97.
    [69]HUNKS W J, OZIN G A. Challenges and Advances in the Chemistry of Periodic Mesoporous Organosilicas (PMOs)[J]. J. Mater. Chem.,2005,15:3716-3724.
    [70]朱桂茹,杨启华,李灿.乙烷桥键介孔材料的制备及其在反相液相色谱中的应用[J].色谱,2007,25(4):505-508.
    [71]杨启华,刘健,钟华,等.介孔硅基有机-无机杂化材料的研究进展[J].无机材料学报,2009,24(4):641-649.
    [72]GUO W P, PARK J Y, OH M O, et al. Triblock Copolymer Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilicas with the Aid of Inorganic Salts[J]. Chem. Mater.,2003,15:2295-2298.
    [73]ZHONG H, LIU J, WANG P Y, et al. Inorganic Salt Aided Synthesis of Monolithic Silica with Meso/macro Hierarchical Structure[J]. Microporous and Mesoporous Mater.,2009,123:63-70.
    [74]ASEFA T, KRUK M, MACLACHLAN M J, et al. Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs:Synthesis, Characterization, Properties and in-Situ Selective Hydroboration Alcoholysis Reactions of Functional Groups[J].J. Am. Chem. Soc.,2001,123:8520-8530.
    [75]ZHU G R, YANG Q H, JIANG D M, et al. Synthesis of Bifunctionalized Mesoporous Organosilica Spheres for High-performance LiquidChromatography[J]. J. Chromatogr. A.,2006,1103:257-264.
    [76]BURLEIGH M C, MARKOWITZ M A, SPECTOR M S, et al. Direct Synthesis of Periodic Mesoporous Organosilicas:Functional Incorporation by Co-condensation with Organosilanes[J]. J. Phys. Chem. B.,2001,105:9935-9942.
    [77]JIANG D M, YANG Q H, YANG J, et al. Mesoporous Ethane Silicas Functionalized with trans-(1R,2R)-Diaminocyclohexane as Heterogeneous Chiral Catalysts[J]. Chem. Mater.,2005,17:6154-6160.
    [78]GAO J S, LIU J, JIANG D M, et al.l-Prolinamide Functionalized Mesoporous Silicas: Synthesis and Catalytic Performance in Direct Aldol Reaction[J]. J. Mol. Catal. A., 2009,313:79-87.
    [79]YANG Q H, LIU J, YANG J, et al. Synthesis, Characterization, and Catalytic Activity of Sulfonic Acid-functionalized Periodic Mesoporous Organosilicas[J]. J. Catal., 2004,228:265-272.
    [80]TAN B, RANKIN S E. Study of the Effects of Progressive Changes in Alkoxysilane Structure on Sol Gel Reactivity[J]. J. Phys. Chem. B.,2006,110:22353-22364.
    [81]LIU Y, ZHAO G M, LIU G, et al. Cyclopentadienyl-functionalized Mesoporous MCM-41 Catalysts for the Transesterification of Dimethyl Oxalate with Phenol[J]. Catal. Commun.,2008,9:2022-2025.
    [82]LIM M H, STEIN A. Comparative Studies of Grafting and Direct Syntheses of Inorganic Organic Hybrid Mesoporous Materials[J]. Chem. Mater.,1999,11: 3285-3295.
    [83]CHO E B, CHAR K. Macromolecular Templating Approach for the Synthesis of Hydrothermally Stable Mesoporous Organosilicas with High Periodicity and Thick Framework Walls[J]. Chem. Mater.,2004,16:270-275.
    [84]沈亚丽,李晓红,宋丽英,等.手性修饰的介孔树脂材料负载铂催化剂上丙酮酸乙酯的不对称氢化反应[J].高等学校化学学报,2009,30:1375-1379.
    [85]吴皓园,刘湘,陈明清,等.模板法制备介孔Ti02及其光催化性能研究[J].功能材料,2009,40(7):1074-1080.
    [86]Gao P F, Zhang T M, Zhao Y X, et al. Synthesis and Characterization of a Novel Neighboring Dicarboxyl-modified SBA-15 via the Diels-Alder Reaction[J]. Mater. Lett.,2010,64:2084-2086.
    [87]刘子玉,朱子彬,王仁远,等.以MCM-22为原料合成高水热稳定性的介孔材料[J].催化学报,2008,29(9):928-934.
    [88]Stein A, Melde B J, Schroden R C. Hybrid Inorganic-Organic Mesoporous Silicates-Nanoscopic Reactors Coming of Age[J]. Adv. Mater.,2000,12:1403-1419.
    [89]Stein A. Advances in Microporous and Mesoporous Solids-Highlights of Recent Progress[J]. Adv. Mater.,2003,15:763-775.
    [90]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报,1999,44:1905-1920.
    [91]江雪源,宋华.氧化法合成环己酮技术研究进展[J].工业催化,2005,13(11):41-46.
    [92]胡云光.环己醇脱氢催化剂技术进展[J].工业催化,2000,8(3):3-6.
    [93]赵睿,吕高孟,季东.氨丙基官能化SBA-15介孔分子筛的合成及催化性能的研究[J].分子催化,2005,19(2):115-120.
    [94]SARMAH P, CHAKRABARTY R, PHUKAN P, et al. Selective Oxidation of Alcohols Catalysed by a Cubane-like Co(Ⅲ) Oxo Cluster Immobilised on Porous Organomodified Silica[J]. J. Mol. Catal. A:Chem.,2007,268:36-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700