氧化钛及掺杂氧化硅介孔材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有特殊形貌的介孔氧化钛在环境、催化、能源等领域的重要应用前景,有关这类材料的合成及其性能研究已成为近年来介孔材料领域的热点研究课题。
     本文以十二烷二胺(DADD)和聚乙烯吡咯烷酮(PVP K-30)作为模板剂,钛酸四丁酯为钛源,正硅酸乙酯为硅源,通过水热法合成了具有漂亮球形形貌的介孔TiO_2和SiO_2/TiO_2。采用小角X-射线衍射法(XRD)、氮气吸脱附法和透射电镜(TEM)、扫描电镜(SEM)考察了合成材料的形貌特征,采用光催化降解罗丹明B的实验考察材料的催化性能。
     实验结果表明:合成的介孔氧化钛具有介孔结构(孔径为5.16 nm),比表面积为50.92 m~2/g,对于罗丹明B的降解具有良好的催化性能;与介孔二氧化钛相比较,掺杂二氧化硅合成的钛硅混合氧化物的孔径有所减小(3.77 nm),比表面积和光催化活性却得到了大幅度提高,同时,加入二氧化钛合成的钛硅混合氧化物的热稳定性也得到了显著的提高,说明掺杂氧化硅对提高介孔氧化钛的稳定性和光催化性能具有重要意义。
     另外,为了考察介孔氧化钛做为钛源对钛酸锂性能的影响,本实验中以制备的介孔氧化钛为钛源,碳酸锂为锂源,固相法合成了钛酸锂材料,并以该材料作为电极,以锂片为另一电极制作纽扣电池,通过XRD、SEM、充放电测试仪和内阻测试仪等对材料的结构和性能进行了表征。为了探索合成温度对钛酸锂材料性能的影响,本实验分别在700/750/800度合成钛酸锂;为了探索不同锂源对材料性能的影响,本实验用醋酸锂代替碳酸锂做了对比实验。
     试验结果表明:本实验固相法合成的钛酸锂材料是尖晶石型结构,与Li4Ti5O12的标准XRD谱图完全吻合,且随着温度的升高,材料的结晶度越好,杂相越少。材料的比容量在140 mAh/g左右,比同等条件下P25为钛源合成的钛酸锂的比容量要小。电池0.1 C倍率下,20个充放电循环内,比容量基本无衰减,说明制备的钛酸锂材料在低倍率下有很好的循环性能。另外本实验通过不同温度下制备的钛酸锂性能的对比,发现在合成温度为700℃时,XRD谱图显示钛酸锂材料中有少量金红石型TiO_2存在,制备温度为750℃时尖晶石型的钛酸锂初步形成,没有其他杂质的存在,但在800℃时合成的钛酸锂材料的XRD谱图峰强比750℃时更强,且更尖锐,说明800℃时制备的钛酸锂结晶度更好,性能测试显示性能更优良;且通过不同锂源的对比实验,发现以碳酸锂为锂源合成的钛酸锂材料的性能明显优于以醋酸锂为锂源合成得到的钛酸锂材料。
Mesoporous titania with special morphologies has widely applications in the field of environment, catalysis, energy and so on. Nowadays, the synthesis and performance evaluation of these materials has become a hot topic in mesoporous materials community.
     Firstly, mesoporous TiO_2 and SiO_2/TiO_2 with spherical morphology were synthesized by using Dodecane diamine (DADD) and polyvinyl pyrrolidone (PVP K-30) as templates, tetrabutyl titanate as titanium source and TEOS as silica source. The structures of the synthesized samples were investigated by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy(SEM)and transmission electron microscopy ( TEM). And then the photocatalytic performances of the synthesized samples were investigated by photodegradation of Rhodamine B.
     The experimental results showed that the systhesized TiO_2 sample had a mosoporous structure (pore size: ca. ?5.16 nm) with a high specific surface area (ca. 50.92 m~2/g) and good photocatalytic performance in photodegradation of Rhodamine B. Comparing with mesoporous TiO_2,the mean pore size of the mesoporous doped-silica TiO_2 was smaller (ca. ?3.77 nm), but its specific surface area, photocatalytic activity and thermal stability increased greatly because of the addition of silica. Above results showed that the addition of silica to mesoporous TiO_2 is significative for improving the thermal stability and photocatalytic activities of mesoporous TiO_2.
     In addition, lithium titanate was synthesized by solid phase method, above prepared mesoporous TiO_2 was used as titania source, lithium carbonate as lithium source. And we investigated the performance of the prepared lithium titanate by using it in battery. Button batteries were made by using prepared lithium titanate as anode material and Li piece as cathode material. And the structures and properties of the prepared lithium titanate were investigated by XRD, SEM, charge-discharge and internal resistance testing instruments. The materials were synthesized at 700/750/800℃respectively for exploring the influence of synthesis temperature on the performance of lithium titanate. And lithium acetate was used as lithium sources instead of lithium carbonate for exploring the influence of different lithium sources on the material properties.
     The experimental results showed the prepared lithium titanate had a spinel structure, its XRD results was consistent with the standard XRD spectrum of Li4Ti5O12 completely. And the higher the synthesis temperatures of the sample,the better its crystallinity and fewer miscellaneous phases in its XRD reflection. Specific capacity of the material was ca. 140 mAh/g, which was smaller than that of the materials synthesized by using P25 as titania source. The prepared lithium titanate had good cycle performances at low magnification. The specific capacity of battery did not decline during the 20 cycles charge-discharge process at 0.1C rate. By comparing the XRD reflection of lithium titanate prepared at different temperatures, we found that lithium titanate material synthesized at 700℃had a few of rutile TiO_2, spar-type lithium titanates were formed at 750℃,and the lithium titanate material prepared at 800℃showed better crystalline and performance than others. At last, we found that the performance of the lithium titanate prepared by using lithium carbonate as lithium sources were better than that of lithium acetate as lithium sources.
引文
[1] IUPAC manual of symbol sand terminology[J]. Pure Appl. Chem.,1972, 31: 578-638.
    [2] Corma A. From Microporous To Mesoporous Molecular Sieve Materials And Their Use In Catalysis[J]. Chem. Rev.,1997, 97: 2373-2419.
    [3] Davis M.E. Ordered Porous Materials For Emerging Application[J]. Nature 2002, 417: 813-821.
    [4] Stein A, Melde B.J, Schroden R.C. Hybrid Inorganic-Organic Mesoporous Silicates-Nanoscopic Reactors Coming of Age[J]. Adv. Mater., 2000, 12: 1403-1419.
    [5] Corma A, Camblor M A, Esteve P, et al. Activity of Ti-beta catalyst for the selective oxidation of alkenes and alkanes[J]. J. Catal.,1994, 145(1): 151-158.
    [6] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature, 1994, 368(6469): 321-323.
    [7] Corma A, Martinez A, Martinez S V, et al. Hydrocracking of vacuum gas oil on the novel mesoporous MCM-41 aluminosilicate catalyst[J]. J. Catal., 1995, 153(1): 25-31.
    [8] Han Y, Meng X, Guan H, et al. Stable iron-incorporated mesoporous silica materials (MFS-9) prepared in strong acidic media[J]. Microporous Mesoporous Mater., 2003, 57(2): 191-198.
    [9] Meng X, Li D, Yang X, et al. Synthesis, characterization, and catalytic activity of mesostructured titano-silicates assembled from polymer surfactants with preformed titano-silicate precursors in strongly acidic media[J]. J. Phys. Chem. B, 2003, 107(34): 8972-8980.
    [10] Margelefsky E L, Zeidan R K, Dufaud V, et al. Organized surface functional groups: Cooperative catalysis via thiol/sulfonic acid pairing[J]. J. Am. Chem. Soc., 2007, 129(44): 13691-13697.
    [11] Zeidan R. K, Hwang S. J, Davis M. E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids[J]. Angew. Chem. Int. Ed., 2006, 45(38): 6332-6335.
    [12] Ryoo R, Joo S H, Jun S.Synthesis of Highly Ordered Carbon Molecular Sieves viaTemplate-Mediated Structural Transformation.J Phys Chem B,1999,103:7743-7746.
    [13] Jun S, Joo S H, Ryoo R, Kruk M, etal.Synthesis of New Nanoporous Carbon with Hexagonally Ordered Mesostructure.J Am Chem Soc.,2000,122:10712-10714.
    [14] Kruk M, Jaroniec M, Kim T W, Ryoo R.Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes.Chem Mater.,2003,15:2815-2823.
    [15] Vinu A, Anandan S, Anand C, Srinivasu P, Ariga K. Fabrication of partially graphitic three -dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method.Micro Meso Mater.,2008,109:398-404.
    [16]孙永安,贾美林.一种新型介孔碳材料的合成与表征.吉林大学报,2008.11,46(6):1197-1201.
    [17] Wang X Q, Dai S.A simple method to ordered mesoporous carbons containing nickel nanoparticles.Adsorption,2009,15:138-144.
    [18] Wan Y, Qian X F, Zhao D Y. Direct Triblock-Copolymer-Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon.Chem Mater.,2008,20:1012-1018.
    [19] Zhu Y F, Emanuel K, Stefan K. Nanocasting Route to Ordered Mesoporous Carbon with FePt Nanoparticles and Its Phenol Adsorption Property.J Phys Chem C.,2009,113: 5998-6002.
    [20] Qi B, Peng X J, Fang J, Guo L P. Ordered Mesoporous Carbon Functionalized with Polythionine for Electrocatalytic Application.Electroanalysis.,2009,21(7):875-880.
    [21] Antonelli D M, Ying J Y.Synthesis of Hexagonally Packed Mesoporous TiO_2 by a Modified Sol–Gel Method. Angew. Chem., Int. Ed.,1995,34(18):2014-2017.
    [22] Jan R, Hanno S, Tanya T.Mesoporous CeO_2: synthesis by nanocasting, characterisation and catalytic properties. Microporous Mesoporous Mater.,2007,101:335-340.
    [23] Guo S,Wu Z B,Wang H Q,Dong F. Synthesis of mesoporous TiO_2 nanorods via a mild template -free sonochemical route and their photocatalytic performances.Catal Commun.,2009,10:1766-1770.
    [24] Wang D S,Xie T,Peng Q,Li Y D. Ag, Ag2S, and Ag2Se Nanocrystals: Synthesis, Assembly, and Construction of Mesoporous Structures.J Am chem soc.,2008,130:4016-4021.
    [25] Tong D G,Chu W,Zeng X L,Tian W. Synthesis of mesoporous Co–B alloy in room tempera -ture ionic liquids and its electrochemical properties.Mater Lett.,2009,63:1555-1557.
    [26] Yusuke Y,Azusa T,Masaki K.Vapor Infiltration of a Reducing Agent for Facile Synthesis of Mesoporous Pt and Pt-Based Alloys and Its Application for the Preparation of Mesoporous Pt Microrods in Anodic Porous Membranes.Chem Mater.,2008,20:1004-1011.
    [27] Zhao D Y, Luan Z H, Kevan L. Synthesis of thermally stable mesoporous hexagonal alumino- phosphate molecular sieves[J]. Chem. Commun., 1997, 1997(11): 1009-1010.
    [28] Feng P Y, Xia Y, Feng J L, et al. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route[J]. Chem. Commun., 1997, 1997(10): 949-950.
    [29] Wang Y D, Ma C L, Sun X D. Synthesis and characterization of mesoporous TiO_2 with wormhole-like framework structure[J]. Applied Catalysis A, 2003, 246: 161-170.
    [30] Tian C X, Zhang Z, et al. Surfactant/co-polymer template hydrothermal synthesis of thermally stable mesoporous TiO_2 from TiOSO4[J]. Mater. Lett., 2008, 62: 77–80.
    [31] Kao L H, Hsu T Ch, Cheng K K. Novel synthesis of high-surface-area ordered mesoporous TiO_2 with anatase framework for photocatalytic applications[J]. J. Colloid Interface Sci., 2010, 341: 359-365.
    [32] Li H, Shi J L, Liang J, et al. Synthesis of well-ordered mesoporous titania powder with crystallized framework[J]. Mater. Lett., 2008, 62: 1410–1413.
    [33] Zhou M H, Xu J, Yu H G, et al. Low-temperature hydrothermal synthesis of highly photoactive mesoporous spherical TiO_2 nanocrystalline[J]. J. Phys. Chem. Solids, 2010, 71: 507–510.
    [34] Tian C X, Zhang Z, Hou J, et al. Surfactant co-polymet template hydrothermal synthesis of thermally stable mesoporous TiO_2 fromTiOSO4[J]. Mater. Lett., 2008, l: 77-80.
    [35] Guo S, Wu Z B, Wang H Q, et al. Synthesis of mesoporous TiO_2 nanorods via a mild template-free sonochemical route and their photocatalytic performances[J]. Catal. Commun., 2009, 10: 1766–1770.
    [36] Miao Y C, Zhai Z B, et al. Synthesis characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates[J]. Mater. Sci. Eng., C, 2010, 30(6): 839-846.
    [37] Kim Y B,Cho D, Park W H.Fabrication and Characterization of TiO_2/Poly(dimethyl siloxane) Composite Fibers with Thermal and Mechanical Stability. J. Appl. Polym. Sci.,2010,116:449-454.
    [38]梁建鹤,杨锦霞,黄应兴,刘海清.在一种新的溶剂体系中通过静电纺丝制备TiO_2纳米纤维.化学学报.2010,68(17):1713-1718.
    [39] Surawut C, Jaturong J, Sagawa T, Yoshikawa S.Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO_2 Nanofibers.Appl. Mater. Interfaces,2009,1(5):1140-1143.
    [40] Yong M.J.Q., Wong A.S.W., Hoc G.W.Mesophase ordering and macroscopic morphology structuring of mesoporous TiO_2 film. Mater. Chem. Phys.,2009,116:563–568.
    [41] Shen Y,Tao J C, Gu F, Huang L, Bao J, Zhang J C, Dai N.Preparation and photoelectric properties of ordered mesoporous titania thin films. J. Alloys Compd.,2009,474:326–329.
    [42] Gan W Y , Zhao H J , Amal R.Photoelectrocatalytic activity of mesoporous TiO_2 thin film electrodes. Appl. Catal., A,2009,354:8-16.
    [43] Chen Y J,Suzanne L,Dionysios D.Dionysiou.Photocatalytic activity and electro- chemical response of titania film with macro/mesoporous texture.Thin Solid Films,2008,516:7930–7936.
    [44] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F.Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity.J. Am. Chem. Soc.,2007,129:8406-8407.
    [45] Kitazawa N, Sato ? H, Watanabe Y.Effects of post-deposition chemical treatment on the formation of mesoporous titania films.J Mater Sci.,2007,42:5074–5079.
    [46] Jung H G, Yoon C S, Prakash J, Sun Y K.Mesoporous Anatase TiO_2 with High Surface Area and Controllable Pore Size by F—Ion Doping: Applications for High-Power Li-Ion Battery Anode.J. Phys. Chem. C,2009,113:21258–21263.
    [47] Fei H L , Liu Y P, Li Y P, Sun P C , Yuan Z Y, Li B H, et al.Selective synthesis of borated meso- macroporous and mesoporous spherical TiO_2 with high photocatalytic activity. Microporous Mesoporous Mater.,2007,102:318-324.
    [48] Li J M, Wan W, Zhou H H, et al.Hydrothermal synthesis of TiO_2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteriesw.Chem.Commun, 2011, 47:3439–3441.
    [49] Jung C S, Cho Y J, Park J H, Lee C L.CdSSe layer-sensitized TiO_2 nanowire arrays as efficient photoelectrodes.J. Mater. Chem,2011,21:4553-4561.
    [50] Dara′nyi M′, Csesznok T, Kukovecz A′, Vajtai R.Layer-by-layer assembly of TiO_2 nanowire/carbon nanotube films and characterization of their photocatalytic activity.Nanotechnology,2011,22(195701):1-9.
    [51]汤佳,钟世安,肖文.ZnO/ TiO_2纳米管的制备及光降解性能研究.化工新型材料,2010,38(8):84-87.
    [52]黄祥平,王昭,张昌远,毛峰,魏慧丽.二氧化钛纳米棒自组装微米球的制备、性能及其生长机理.材料科学与工程学报,2009,27(5):709-712
    [53] Lim S H, Luo J Z, Zhong Z Y, et al. Room-temperature hydrogen uptake by TiO_2 nanotubes[J]. Inorg. Chem., 2005, 44: 4124-4126.
    [54] Mor G K, Varghese O K, Paulose M, et al. Fabrication of hydrogen sensors with transparent titaniumoxide nanotube-array thin films as sensing elements[J]. Thin Solid Films, 2006, 496: 42-48.
    [55] Yu J G, Wang G H, Cheng B. Effects of microwave drying on the microstructure and photocatalytic activity of bimodal mesoporous TiO_2 powders[J]. J. Phys. Chem. Solids., 2010, 71: 523–526.
    [56] Yu J C, Li G S, Wang X C, et al. An ordered cubic Im3m mesoporous Cr-TiO_2 visible light photo catalyst[J]. Chem. Commun., 2006, 25: 2717-2719.
    [57] Shao G S, Wang F Y, et al. Hierarchical mesoporous phosphorus and nitrogen doped titania materials: Synthesis,characterization and visible-light photo catalytic activity[J]. Appl. Catal., B, 2009, 92: 61–67.
    [58] Wang X C, Yu J C, et al. ZrO_2-Modified Mesoporous Nanocrystalline TiO_2-xNx as Efficient Visible Light Photocatalysts[J]. Environ. Sci. Technol., 2006, 40: 2369-2374.
    [59] Zhou Z X, Zhu L H, Li J, et al. Electrochemical preparation of TiO_2/SiO_2 composite film and its high activity toward the photoelectrocatalytic degradation of methyl orange[J]. J Appl Electrochem, 2009, 39: 1745–1753.
    [60] Zhang F J, Chen M L, Zhang K, et al. Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes[J]. Bull Korean Chem Soc, 2010, 31(1): 133-139.
    [61] Gan W Y, Zhao H J, Amal R. Photoelectrocatalytic activity of mesoporous TiO_2 thin film electrodes[J]. Appl. Catal., A, 2009, 354: 8–16.
    [62] Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO_2[J]. Angew. Chem. Int. Ed., 2008, 47: 1766—1769.
    [63] Chen T, Feng Z C, Wu G P, et al. Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO_2 by in situ Fourier Transform IR and Time-Resolved IR Spectroscopy[J]. J. Phys. Chem. C, 2007, 111: 8005—8014.
    [64] Hou K, Tian B Z, et al. Highly crystallized mesoporous TiO_2 films and their applications in dye sensitized solar cells[J]. Mater.Chem., 2005, 15: 2414–2420.
    [65] Hiroshi I, Shinya H, et al. Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO_2 and Nb, Ge, Zr-Added TiO_2 Composite Electrodes[J]. Langmuir, 2006, 22: 11405-11411.
    [66]吴皓园,刘湘,陈明清,刘士荣.模板法制备介孔TiO_2及其光催化性能研究.功能材料,2009,7(20):1074-1080.
    [67]袁进,吕永康,李裕,李军平.介孔磁性光催化剂的制备及其催化降解硝基苯.催化学报,2010,331(5):597-603.
    [68]黄靓.二氧化钛介孔材料的制备及其光电催化性能的研究[D ].上海:东华大学, 2009.
    [69] GanW Y, Zhao H J.Photoelectrocatalytic activity of mesoporous TiO_2 thin film electrodes[ J] . Appl. Catal., A,2009, 354: 8 - 16.
    [70]次立杰,张绍岩,安伟,刘树.载银TiO_2纳米线的制备及其光吸收性能.化工新型材料,2010,38(1 2):41-43.
    [71] Chen C S, Pan F M .Electrocatalytic activity of Pt nanoparticles deposited on porous TiO_2 supports toward methanol oxidation. Appl. Catal., B.,2009,91:663–669.
    [72] Scharner S, WeppnerW, Schmid Beurm ann P. Evidenceo f two- phase forma tion upon lithium inse rtion into the Li1. 33T i1. 67 O4 [ J]. J E lectrochem Soc, 1999, 146 ( 3 ):857- 861.
    [73] Ronci F B, Stallworth P E, Alamgir F S, et al. Lithium - 7 nuclear magnetic resonance and Ti K-edge X-ray absorption spectroscopic investigation of electrochemical lithium insertion in L i4 /3 + x Ti5 /3 O4 [ J ]Power Sources, 2003, 119-121:631– 6361.
    [74] Ariyoshi K, Yamato R, Ohzuku T. Zerostraim insertion mechanism of L i[L i1/3 Ti5/3 ]O4 for advanced lithiumion batteries [ J ].Electrochimica Acta, 2005, 51: 1125-1129.
    [75] KAVAN L, GR″TZALM. Facile synthesis of nanocrystalline L i4 Ti5O12 ( Spinel)exhibiting fast L i insertion [ J ]. Electrochem. Solid-State Lett., 2002, 5 (2) : A39-421.
    [76] Wen Z Y, Gu Z H, Huang S H, et al. Research on spray dried lithium titanate as electrode materials for lithium ion batteries [ J ]. Power Sources, 2005, 146: 670-6731.
    [77] Shenouda A Y, Murali K R. Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J. Power Sources, 2008,176:332-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700