智能变电站站域后备保护原理及实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,传统的阶梯式后备保护存在动作延时长、整定配合困难、容易引起连锁跳闸事故等缺陷,始终是电网稳定运行的薄弱环节,已经越来越不适应智能电网的建设要求。智能变电站中采用了非常规互感器、智能一次设备和IEC61850通信标准等新技术,实现了信息采集的数字化、信息传输的网络化以及信息建模的统一化,为研究基于信息共享的新型后备保护提供了极为有利的条件。据此,本文围绕适用于智能变电站的站域后备保护原理及实现技术进行深入研究,完成的主要工作如下:
     提出了电流差动站域后备保护原理(Substation-area Differential Backup Protection, SDBP)及实现方法。对站域保护做了明确定义,分析了站域保护概念的内涵和外延。定义了边界差动区、站内差动区、元件差动区和搜寻差动区等不同类型的差动区。SDBP根据各差动区的动作状态可以精确定位故障元件,并根据主保护动作信息和断路器位置信息完成整个变电站的后备保护功能。SDBP摈弃了传统后备保护的阶梯式整定原则;动作时间固定并小于一个时间级差;具有绝对的选择性和较高的灵敏度;不受潮流转移引起的过负荷影响,避免了传统后备误动引起的连锁反应。讨论了SDBP的差动判据动作特性、整定原则及灵敏度等关键问题;分析了TA饱和、励磁涌流对SDBP的影响及对策。利用PSCAD仿真软件,对正常运行状态、区内外各种类型故障进行了大量仿真实验,验证了SDBP原理的正确性。
     针对站域后备保护数据处理量极大的特点,提出了适合于SDBP原理的数据处理新方法,即以傅里叶运算为基础的实用修正算法。新方法不需要进行数据插值和采样率转换,而是直接对采样值序列进行傅里叶运算,然后根据实测的信号频率对有效值和相位进行修正。相比于全数字化保护中广泛采用的数据插值、抽取的预处理方法,新方法大大缩减了计算量,并省去了抗混叠低通滤波环节,从而避免低通环节引入的附加量化误差和滤波器延时。通过ATP和MATLAB等工具验证了新方法完全适用于SDBP等采用相量比较原理的继电保护应用。
     提出了基于窄带滤波器的变数据窗相量求取新算法—NBDF-Phaselet算法。先利用1/4周期数据窗的Phaselet算法得到窄带滤波器的近似初值,对采样值序列进行窄带滤波,再使用不同数据窗长的Phaselet算法进行精确相量估计。采用新算法后,站域后备保护可以接收相邻变电站的Phaselet数据替代采样值数据,可有效降低SDBP原理对站间数据通信的要求,简化了站域后备保护的设计。通过PSCAD和RTDS试验数据,验证了NBDF-Phaselet算法应用于相量电流差动原理的有效性。
     设计了站域后备保护装置的实现方案,研制了满足站域后备保护需求的高性能软硬件平台,采用了CPU+DSP的多处理器架构和嵌入式实时多任务操作系统。由PowerPC模块完成管理和网络通信等功能,具备过程层多路千兆以太网通信接口;采用浮点DSP作为数据协处理器。软件上对采样值传输、GOOSE信息的收发等关键模块进行了优化设计,提高了信息处理的实时性。建立了符合IEC61850标准和Q/GDW396标准的站域后备保护信息模型。提出了基于IEC61850标准利用EoS和广域以太网技术扩展过程层网络直接传输采样值的通信方案。
The traditional stepped backup protection is always the weakness of power system stability because of its action delay, difficulty to setting and easy to cause a chain of accidents. Therefore the traditional backup protection has become increasingly unsuited to the requirements of smart grid. The intelligent substation adopts a number of new technologies, such as non-conventional instrument transformers, intelligent primary equipment and IEC61850communication standard. As a result, it achieves the digitized information collection, the information transmission network and unification information modeling. All the technologies provide extremely favorable conditions to study the new type of backup protection based on information sharing. So the main research contents of the dissertation are protection principle and implementation technology of substation-area backup protection for intelligent substation.
     This dissertation defines substation-area protection specifically, analyses the concept's connotation and extension, and puts forward a substation-area backup protection scheme based on current differential principle (abbr. SDBP). The new scheme defines boundary differential zone, inner-station differential zone, extended differential zone and equipment differential zone. SDBP can accurately locate the fault component according whether the differential zones lie in restraining state or operating state, and implement backup trip according the act information of main protection and breaker. Several particular problems are discussed, including operation characteristic, setting principle and sensitivity. Then the author analyses the impact of TA saturation and inrush current, and gives the corresponding countermeasures. SDBP abandons the stepped setting principle of traditional backup protection, and has the following advantages: action time is fixed and is less than a At; it has absolute selectivity and high sensitivity; it is not affected by overload impact due to flow transferring and can avoid chain reaction caused by backup protection malfunction. The validity of SDBP has been verified by PSCAD simulation software under the condition of normal state and fault state with different types and locations.
     This dissertation presents the practical correction method to meet the data processing requirements of SDBP, which does not require interpolation, decimation or sample rate conversion. The new method applies the Fourier algorithm immediately to equal-interval sampling data, then amends the sine/cosine items according to real-time frequency, and finally acquires the signal's virtual value and phase. Compared with the data processing scheme of interpolation and decimation in complete digital relays, the new method not only greatly reduces computation amount, but also eliminates the anti-aliasing low-pass filtering which will introduce additional quantization error and filter delay. The new method is completely suitable for the application of phasor based protective relays, especially for SDBP, verified by ATP and MATLAB.
     A variable data-window algorithm is put forward for phasor estimation based on narrow band-pass filter and Phaselet, abbr. NBDF-Phaselet. Firstly the approximate initial values of the Narrow Band-pass Digital Filter are get by Phaselet method with1/4cycle data-window. Then the sampled value sequence is filtered by the NBDF. Finally the accurate phasor is estimated by Phaselet method with different data-window. SDBP which employs the new algorithm can receive Phaselet of adjacent substation instead of sampled value. Therefore it can reduce the communication demand between substations and simplify the implementation of SDBP. The simulation with PSCAD and RTDS show that the NBDF-Phaselet algorithm is effective when applied to phase current differential principle.
     Finally the author designs the implement scheme of substation-area backup protection. The high performance hardware-software platform which suits for SDBP specially has been developed, which adopts multi-processor architecture and RTOS. The platform is mainly composed of PowerPC module and DSP module. The former realizes network communication function with Gigabit Ethernet interface and the latter acts as a data association processor. The critical software including sampled values transmission module and GOOSE transceiver module have been improved, which can enhance the real-time of information processing. The SDBP's information model based on IEC61850and Q/GDW396standards is established. The communication solution which directly transmits sampled values is introduced into SDBP. The solution extends the process-level network from substation internal to between-substation by EoS and wide-area Ethernet technology based on IEC61850.
引文
[1]国家电网公司.数字化变电站技术现状及发展分析报告[R].北京,2009.
    [2]国家电网公司.Q/GDW 383-2009智能变电站技术导则[S].北京:中国电力出版社,2009.
    [3]高翔.数字化变电站应用技术[M].北京:中国电力出版社,2008.
    [4]范金华,万炳才.华东电网智能变电站的试点研究分析[J].华东电力,2010,38(7):955-958.
    [5]Kim H H, Lee J J, Kang D J. A platform for smart substations [J]. Proceedings of Future Generation Communication and Networking, FGCN,2007,1:579-582.
    [6]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8.
    [7]Fiber Optics Sensors Working Group. Optical Current Transducers for Power Systems:a Review [J]. IEEE Transactions on Power Delivery,1994,9(4):1778-1788.
    [8]尚秋峰.光学电流互感器实用化方法的研究[D].北京:华北电力大学,2004.
    [9]王红星,张国庆.郭志忠,等.电子式互感器及其在数字化变电站中应用[J].电力自动化设备,2009,29(09):115-120.
    [10]胡国,唐成虹,徐子安,等.数字化变电站新型合并单元的研制[J].电力系统自动化,2010,34(24):51-54.
    [11]刘慧源,郝后堂,李延新,等.数字化变电站同步方案分析[J].电力系统自动化,2009,33(03),55-58.
    [12]殷志良,刘万顺,杨奇逊,等.基于IEEE1588实现变电站过程总线采样值同步新技术[J].电力系统自动化,2005,29(13):60-63.
    [13]赵上林,胡敏强,窦晓波,等.基于IEEE1588的数字化变电站时钟同步技术研究[J].电网技术,2008,32(21):97-103.
    [14]张斌,倪益民,马晓军,等.变电站综合智能组件探讨[J].电力系统自动化,2010,34(21):91-94.
    [15]刘有为,邓彦国,吴立远.高压设备智能化方案及技术特征[J].电网技术,2010,34(7):1-4.
    [16]王松,黄晓明GOOSE报文过滤方法研究[J].电力系统自动化,2008,32(19):54-57.
    [17]张结IEC61850的结构化模型分析[J].电力系统自动化,2004,28(18):90-93.
    [18]向珉江,高厚磊,史先好,等.基于IEC61850标准的线路保护功能建模[J].电力系统保护与控制,2011,39(3):127-131.
    [19]徐天奇.基于IEC61850的数字化变电站信息系统构建及可靠性研究[D].武汉:华中科技大学,2009.
    [20]王勇,何光宇,梅生伟.基于IEC61850的数字化变电站互操作试验[J].电力自动化设备, 2009,29(2):136-139.
    [21]李瑞生,王锐,许沛丰,等.基于61850规约的洛阳金谷园110 kV数字化变电站工程应用实践[J].电力系统保护与控制,2009,37(10):76-78.
    [22]杨德先,陈德树,张凤鸽,等.现代电力系统动态模拟实验室建设和运行[J].电力系统保护与控制,2010,38(09):118-12],125.
    [23]RTDS Technologies Incorporated. RTDS User's Manual Set [M]. Manitoba, Canada. November, 2010.
    [24]Gao Guangling, Pan Zhencun, Gao Houlei, et al. Study on electrical digital simulation system following IEC61850 [C]. Asia-Pacific Power and Energy Engineering Conference 2009, China, March, pp:2024-2027.
    [25]吴科成,林湘宁,鲁文军.分层式电网区域保护系统的原理和实现[J].电力系统自动化,2007,31(3):72-78.
    [26]薛禹胜,徐伟,Zhaoyang DONG,等.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15),1-5.
    [27]王阳光.应对灾变的广域保护信息处理及通信技术研究[D].武汉:华中科技大学,2010.
    [28]李振兴,尹项根,张哲.等.有限广域继电保护系统的分区原则与实现方法[J].电力系统自动化,2010,34(19):48-52.
    [29]尹项根,汪旸,张哲.适应智能电网的有限广域继电保护分区与跳闸策略[J].中国电机工程学报,2010,30(7):1-7.
    [30]王慧芳,何奔腾.输电线路集合保护及其实现[J].电网技术,2005.29(14):49-53.
    [31]王慧芳,何奔腾.利用现状态量信息的集合保护规范化判据研究[J]中国电机工程学报,2008,28(22):81-86.
    [32]董新洲,丁磊,刘琨,等.基于本地信息的系统保护[J].中国电机工程学报,2010,30(22):7-13.
    [33]Rockerfeller G D. Fault Protection with Digital Computer [J]. IEEE Transactions on Power Apparatus and Systems,1969,88(4):438-464.
    [34]Armando Guzman, Mark G Gutzmann, Pratap G Mysore. Integrated Transformer, Feeder and Breaker Protection:An Economic and Reliable Solution for Distribution Substations [R]. SEL publication,1999.
    [35]易永辉,曹一家,张金江.基于IEC61850标准的新型集中式IED[J].电力系统自动化,2008,32(12):36-40.
    [36]黎强,李延新.基于数字化变电站的系统保护装置设计[J].电力系统自动化,2009,33(18):77-80.
    [37]Jani V, PekkaV A, Hakala R. Increasing cost-efficiency of substation automation systems by centralised protection functions[C].20th International Conference on Electricity Distribution, Prague,8-11 June 2009.
    [38]吴国旸,王庆平,李刚.基于数字化变电站的集中式保护研究[J].电力系统保护与控制,2009,37(10):15-18.
    [39]韩伟,杨小铭,仇新宏,等.基于数字化采样的集中式保护装置[J].电力系统自动化,2010,34(11):101-104.
    [40]和敬涵,朱光磊,薄志谦.基于多Agent技术的电力系统集成保护[J].电工技术学报,2007,22(06):141-147.
    [41]Bo Z Q, Klimek A, Xu R D, et al. Integrated positional protection of transmission systems using global positioning system [C]. Transmission and Distribution Conference and Exposition:Latin America,2008, IEEE/PES:1-7.
    [42]Bo Z Q, Han M, Klimek A, et al. A centralized protection scheme based on combined positional protection techniques [C]. Power and Energy Society General Meeting,2009, IEEE/PES:1-6.
    [43]董新洲,丁磊.数字化集成保护与控制系统结构设计方案研究[J].电力系统保护与控制,2009,37(01):1-5.
    [44]Yingli Ren, Jinghan He, Bo Z Q. Research on Real-Time Communication Capacity of IEC61850 Applied in Integrated Protection Systems [C]. Developments in Power System Protection,2008. DPSP 2008, IET 9th International Conference on,218-223.
    [45]Kowalik R, Januszewski M. Distance protections coordination using the exchange of binary signals in the IEC61850 protocol [C]. PowerTech,2009 IEEE Bucharest:1-5.
    [46]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):87-93.
    [47]丛伟,潘贞存,赵建国,等.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(03):91-95,110.
    [48]Serizawa Y, Imamura H, Sugaya N. Experimental examination of wide-area current differential backup protection employing broadband communication and time transfer systems [C]. IEEE Power Engineering Society Summer Meeting, Edmonton, Alberta, Canada,1999:1070-1075.
    [49]汪华,张哲,尹项根,等.基于故障电压分布的广域后备保护算法[J].电力系统自动化,2011,35(07):48-52.
    [50]曾飞,苗世洪,林湘宁,等.基于序分量的电网广域后备保护算法[J].电力系统自动化,2010,34(23):57-63.
    [51]马静,李金龙,叶东华,等.基于故障匹配度的广域后备保护新原理[J].电力系统自动化,2010,34(20):55-59.
    [52]Kim, Hyung-Kyu,Sang-Hee Kang.Soon-Ryul Nam. Improved operating scheme using an IEC61850-based distance relay for transformer backup protection [C]. PowerTech,2009 IEEE Bucharest:1-6.
    [53]陈杰明.基于GOOSE的10kV简易母线保护研究和应用[J].电力系统自动化,2011,35(04):96-99.
    [54]周良才,张保会,薄志谦.广域后备保护系统的自适应跳闸策略[J].电力系统自动化,2011,35(01):55-60,65.
    [55]张保会,周良才,汪成根,等.具有容错性能的广域后备保护算法[J].电力系统自动化,2010.34(05):66-71.
    [56]李振兴,尹项根,张哲.等.基于多信息融合的广域继电保护新算法[J].电力系统自动化,2011,35(09):14-18.
    [57]马云龙,王来军,文明浩,等.数字化变电站集中式保护应对边界信息缺失新方法研究[J].电力系统保护与控制,2011,39(06):84-89.
    [58]刘宇,舒治淮,程逍,等.从巴西电网“2.4”大停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(08):12-5,71.
    [59]U.S.-Canada Power System Outage Task Force. Final Report on the August 14,2003 Blackout in the United States and Canada:Causes and Recommendations. April 2004.
    [60]National Grid Company Plc. Investigation Report into the Loss of Supply Incident affecting parts of South London at 18:20 on Thursday,28 August 2003. London, UK.10, September,2003.
    [61]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(09):14-17.
    [62]Phadke A G. Thorp J S. Expose hidden failures to prevent cascading outages [J]. IEEE Computer Applicaitons in Power,1996,9(03):20-23.
    [63]DL 755-2001电力系统安全稳定导则[S].北京:中国电力出版社,2001.
    [64]卢强,董新洲.继电保护与电力系统灾变防治[J].继电器,2005,33(14):1-5,.64.
    [65]Serizawa Y, Myoujin M, Kitamura K, et al. Wide-area current differential backup protection employing broadband communications and time transfer systems [J]. IEEE Transactions on Power Delivery,1998,13(4):1046-1052.
    [66]Tan J C, Crossley P A, Mclaren P G, et al. Application of a wide area backup protection expert system to prevent cascading outages [J]. IEEE Transactions on Power Delivery,2002,17(2): 375-380.
    [67]蔡运清,汪磊,Kip Morison,等.广域保护(稳控)技术的现状和展望[J].电网技术,2004,28(08):20-25.
    [68]Mehmet K, Joachim B, Lekva O, et al. Enhanced transmission utilization with an intergrated mesurement, protection and control system [J]. IEEE Transactions on Power Systems,2000,7(2): 837-842.
    [69]何志勤,张哲,尹项根,等.电力系统广域继电保护研究综述[J].电力自动化设备,2010,30(05):125-130.
    [70]阳世荣.基于电网广域测量信息的广域保护研究[D].武汉:华中科技大学,2006.
    [71]苗世洪,刘沛,林湘宁,等.基于数据网的新型广域后备保护系统实现[J].电力系统自动化,2008,32(10):32-36.
    [72]童晓阳,王晓茹,汤俊.电网广域后备保护代理的结构和工作机制研究[J].中国电机工程学报,2008,28(13):91-98.
    [73]沈晓凡,舒治淮,刘宇.2008年国家电网公司继电保护装置运行情况[J].电网技术,2010,34(3):173-177.
    [74]周玉兰.1999-2003年全国电网元件保护运行情况分析[J].中国电力,2005,38(5):13-19.
    [75]GB/T 14285-2006继电保护和安全自动装置技术规程[S].北京:中国标准出版社,2006.
    [76]国家电网公司.统一坚强智能电网关键设备(系统)研制规划[R].北京,2009.
    [77]李瑞生,李燕斌,周逢权.智能变电站功能架构及设计原则[J].电力系统保护与控制,2010,38(21):24-27.
    [78]杨卉卉.变压器负序差动保护的研究[D].北京:华北电力大学,2006.
    [79]罗小莉,赵安国,郭晓冬.新型变压器零序差动保护方案设计[J].电力自动化设备,2007,27(07):119-121.
    [80]丛伟.广域保护系统结构及故障判别算法研究[D].济南:山东大学,2005.
    [81]Horowitz S H, Phadke A G. Third zone revisited[J]. IEEE Transactions on Power Delivery,2006, 21(1):23-29.
    [82]DL/T 684-1999大型发电机变压器继电保护整定计算导则[S].北京:中国电力出版社,1999.
    [83]GB 1208-2006电流互感器[S].北京:中国电力出版社,2007.
    [84]崔川,高厚磊,向岷江,等.基于电子式互感器的线路差动保护判据及整定改进[C].第26届高校电力系统及其自动化专业学术年会,上海.2010,10.
    [85]韩小涛,李伟,尹项根,等。应用电子式电流互感器的变压器差动保护研究[J].中国电机工程学报,2007,27(04):48-53.
    [86]及洪泉,张健,杨以涵,等.计及电子式电流互感器的差动保护性能分析[J].电网技术,2006,30(23):61-66.
    [87]陈建玉,孟宪民,张振旗,等.电流互感器饱和对继电保护影响的分析及对策[J].电力系统自动化,2000,24(06):54-56.
    [88]王志鸿,郑玉平,贺家李.通过计算谐波比确定母线保护中电流互感器的饱和[J].电力系统及其自动化学报,2000,12(05),19-24.
    [89]李岩,陈德树,张哲,等.鉴别TA饱和的改进时差法研究[J].继电器,2001,29(11),1-4.
    [90]丁网林,骆健.西门子7U系列微机保护装置的原理分析及在发变组保护中的应用[J].电网技术,2001,25(6),41-43.
    [91]Kangvansaichol K, Crossley P A. Multi-zone differential protection for transmission networks[C]. Developments in Power System Protection. Eighth IEE International Conference,2004,2(5): 428-431.
    [92]刘伟,王毅.电力录波数据中浪涌干扰的识别及滤除[J].电力系统自动化,2008,30(10),57-60.
    [93]赵亮,钱玉春,刘宏君,等.数字化变电站抗异常数据的方法[J].电力系统自动化,2010,34(19):97-99.
    [94]IEC. IEC 60044 Instrument transformers-Part 8:Electronic current transformers [S]. Geneva: IEC,2002.
    [95]Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform [J]. Proceedings of the IEEE,1978,66(01):51-83.
    [96]徐广辉,李友军,王文龙,等.数字化变电站IED采样数据同步插值的设计[J].电力系统自动化,2009,33(04):49-52.
    [97]姜永晖,温渤婴,丁磊,等.基于数字化变电站IED接口的数据处理算法[J].电网技术,2010,34(2):190-193.
    [98]WANG Yan, ZHANG Yanxia. TANG Junci. Study of multi-sample-rate signal conversion in digital substation and wide area measurement of power system [C]. Sustainable Power Generation and Supply, SUPERGEN'09. International Conference on,2009.
    [99]吴崇昊,陆于平,侯喆.基于时域连续有限冲激响应滤波器的电子互感器采样数据站间同步算法[J].中国电机于程学报,2006,26(12):50-54.
    [100]刘慧源,郝后堂,李延新,等.数字化变电站同步方案分析[J].电力系统自动化,2009,33(3):55-58.
    [101]国家电网公司.Q/GDW 441-2010智能变电站继电保护技术规范[S].北京:中国电力出版社,2009.
    [102]周斌,鲁国刚,黄国方,等.基于线性Lagrange (?)(?)值法的变电站IED采样值接口方法[J].电力系统自动化,2007,31(3):86-89.
    [103]宗孔德.多抽样率信号处理[M].北京:清华大学出版社,1996.
    [104]牟龙华,金敏.微机保护傅里叶算法分析[J].电力系统自动化,2007,31(6):91-93,102.
    [105]Alan V Oppenheim, Ronald W Schafer, John R Buck. Discrete-Time Signal Processing Second Edition [M]. USA:Prentice Hall Press. Inc.,1999.
    [106]Liancheng Wang. Frequency responses of phasor-based microprocessor relaying algorithms [J]. IEEE Transactions on Power Delivery.1999,14(01):98-109.
    [107]Hou Daqing. Relay element performance during power system frequency excursions [C].2008 61st Annual Conference for Protective Relay Engineers,105-117.
    [108]UCA International Users Group. Implementation Guideline for Digital Interface to Instrument Transformers Using IEC 61850-9-2 [S].2006.
    [109]黄瀛.电力系统继电保护快速滤波算法研究[D].杭州:浙江大学,2004.
    [110]Niewczas P, et al. Error analysis of an optical current transducer operating with a digital signal processing system [J]. IEEE Transactions on Instrumentation and Measurement,2000,49(6): 1254-1259.
    [111]张可畏,王宁,段雄英等.用于电子式电流互感器的数字积分器[J].中国电机工程学报,2004,24(12):104-107.
    [112]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992.
    [113]梁国坚.基于母线差动保护的电子式与电磁式互感器同步应用[J].电力系统自动化,2011,35(03):97-99.
    [114]阳靖,周有庆,刘琨.电子式互感器相位补偿方法研究[J].电力自动化设备,2007,27(03):45-48.
    [115]IEC. IEC 61850 Communication networks and systems in substations-Part 5:Communication requirements for functions and device models [S]. Geneva:IEC,2003.
    [116]李仲青,周泽昕,黄毅,等.数字化变电站继电保护适应性研究[J].电网技术,2011,35(05):210-215.
    [117]Luckett R G, Munday P J and Murray B E. A Substation based computer for control and protection [C]. IEE Conference Publication No.125, London, March 1975.
    [118]Isaksson A. Digital protective relaying through recursive least-squares identification [J]. Generation, Transmission and Distribution, IEE Proceedings C.1988,135(5):441-449.
    [119]AlFuhaid A S, El-Sayed M A. A recursive least-squares digital distance relaying algorithm [J]. IEEE Trans on Power Delivery,1999,14(4):1257-1262.
    [120]索南加乐,宋国兵,许庆强,等.任意长度数据窗幅频特性一致的正交相量滤波器的设计[J].中国电机工程学报,2003,23(6):45-50.
    [121]袁宇波,陆于平,刘中平.基于相量法的短数据窗快速滤波算法[J].电力系统自动化,2004,28(03):58-63.
    [122]Sidhu T S, Ghotra D S, Sachdev M S. An Adaptive Distance Relay and Its Performance Comparison with a Fixed Data Window Distance Relay [J]. IEEE Trans on Power Delivery,2002, 17(3):691-697.
    [123]GE Power Management. L90 Line Differential Relay-UR Series Instruction Manual [M]. L90 Revision:5.2x.2007.
    [124]邰能灵,朱佳杰.小矢量算法在发电机继电保护中的应用分析[J]电力系统自动化,2006,30(13),51-54.
    [125]赵永彬,陆于平.基于小矢量算法的自适应椭圆制动特性变压器差动保护[J].中国电机工程学报,2008,28(07),72-78.
    [126]吴大立.输电线路保护新原理及实现技术的研究[D].武汉:华中科技大学,2008.
    [127]Wiszniewski A. How to Reduce Errors of Distance Fault Locating Algorithms [J]. IEEE Trans on Power Apparatus and Systems,1981, PAS-100(12):4815-4820.
    [128]文明浩,陈德树.小矢量算法浅析[J].电力系统自动化,2003,27(03),42-44.
    [129]E.O. Schweitzer Ⅲ, Daqing Hou. Filtering for Protective Relays [C].47th Annual Georgia Tech Protective Relaying Conference Atlanta, Georgia, April 28-30,1993.
    [130]李斌,李永丽,贺家李.一种提取基波分量的高精度快速滤波算法[J].电力系统自动化,2006,30(10):39-43,74.
    [131]朱声石.高压电网继电保护原理与技术(第3版)[M].北京:中国电力出版社,2005.
    [132]和敬涵.电力系统集成保护技术研究[D].北京:北京交通大学,2007.
    [133]王松,陆承宇.数字化变电站继电保护的GOOSE网络方案[J].电力系统自动化,2009,33(03):51-54,103.
    [134]窦晓波,周旭峰,胡敏强,等.1EC 61850快速报文传输服务在VxWorks中的实现[J].电力系统自动化,2008,32(12):41-47.
    [135]Texas Instrument. TMS320C67x DSP Library Programmer's Reference GuideLiterature (SPRU657C) [M]. January,2010.
    [136]辛耀中,卢长燕.电力系统数据网络技术体制分析[J].电力系统自动化,2000,24(21):1-6.
    [137]IEC61850-90-1, Communication networks and systems in substations-Part 90-1:Use of IEC 61850 for the communication between substations [S].2010.
    [138]Serizawa Y, Shimizu K, Fujikawa F, et al. ATM transmissions of microprocessor-based current differential teleprotection signals [J]. IEEE Transactions on Power Delivery,1999,14(2): 335-341.
    [139]Serizawa Y, Imamura H, Kiuchu M. Performance evaluation of IP-based relay communications for wide-area protection employing external time synchronization[J]. Proceedings of IEEE Power Engineering Society SummerMeeting:Vol 2, July 15-19,2001, Vancouver, BC, Canada: 909-914.
    [140]刘方楠.孙力军,白瑶晨.EoS的原理及其关键技术[J].通信技术.2007,40(7):19-21.
    [141]叶波,张立军,罗敏.2.5Gb/s Ethernet over SDH映射芯片实现[J].光通信技术.2009,(10):25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700