血浆网膜素-1、白介素-18和白介素-16水平与冠心病关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     肥胖和胰岛素抵抗(IR)与动脉粥样硬化(AS)发病风险升高相关,肥胖的IR病人患冠心病的风险较同样肥胖的对胰岛素敏感的病人升高。细胞因子水平变化可促使IR发生。炎症反应出现于AS从开始的脂质条纹到晚期复杂病灶的每个阶段,致炎性细胞因子可促使冠状动脉内斑块纤维帽变薄、斑块破裂,继而血栓形成,引发冠心病。因此,研究冠心病患者细胞因子的表达水平有着重要的意义。
     网膜素是一种脂肪细胞因子,高表达于内脏网膜脂肪组织。网膜素的基因表达和血浆网膜素水平在肥胖和超重人群中较体型消瘦者明显减低,低的网膜素水平与肥胖程度和IR相关。网膜素被证实参与机体炎性反应。在慢性炎症性肠病患者,网膜素的mRNA表达水平不同;在风湿性关节炎患者,关节滑液中的网膜素浓度减低。以上提示网膜素与肥胖、IR和炎症反应相关。网膜素-1是血浆中网膜素的主要循环形式,其在冠心病患者中研究的资料较少。
     白介素-18(interleukin-18,IL-18)是一种炎性细胞因子,在肥胖人的血清,其水平升高。研究发现,IL-18与IR相关,在具有IR的多囊卵巢综合征患者,血清IL-18水平与体质量指数、IR指数相关。IL-18最初称为Y干扰素(IFN-γ)诱导因子,IFN-γ是一种致炎性细胞因子,可激活巨噬细胞和其它多种细胞,参与AS斑块破裂过程。IL-18在AS斑块中表达增加,与斑块的不稳定性相关。有研究发现冠心病患者血清IL-18水平明显高于对照组,提示IL-18是反映冠状动脉粥样硬化病变的炎症反应的主要指标之一。
     白介素-16(interleukin-16, IL-16)是CD4+细胞的趋化因子。IL-16可增强抗原刺激的外周血单核细胞分泌IFN-γ,研究表明IFN-Y可促进动脉粥样硬化的形成。在IL-16作用下,单核细胞和成熟的巨噬细胞可分泌IL-1β、IL-6、TNF-α和IL-15,而这些细胞因子与动脉粥样硬化或(和)冠心病的发生和发展密切相关。IL-16可能通过影响多种炎症介质的分泌参与动脉粥样硬化的形成和发展。最近有文献报道IL-16rs11556218G/T基因多态性与患冠心病风险明显相关。目前未见有血浆IL-16水平与冠心病关系的研究报道。
     本研究检测冠心病患者和正常对照组血浆中网膜素-1、白介素-18和白介素-16的水平,探讨这些细胞因子与冠心病的关系。
     第一部分
     血浆网膜素-1和白介素-18水平与冠心病关系的研究
     目的检测冠心病患者和正常对照组血浆中网膜素-1和白介素-18的水平,探讨这两种细胞因子与冠心病的关系。
     方法选择收集从2011年5月至2011年11月住院的患者87例进行研究。66例患者为冠心病组,冠心病组分为2个亚组,其中38例为不稳定型心绞痛(UAP)组,28例为稳定型心绞痛(SAP)组。21例患者为对照组。对所有患者测量其身高、体质量、血压、描记心电图;抽取空腹静脉血,检测血糖、总胆固醇、甘油三酯、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇;行冠状动脉造影检查,对冠状动脉狭窄病变应用Gensini积分系统进行评分;应用酶联免疫吸附测定法(ELISA)测定血浆网膜素-1和IL-18水平。
     结果1.冠心病组血浆网膜素-1水平较对照组低,两组差异有统计学意义(P<0.01);冠心病组血浆IL-18水平和Gensini积分较对照组高,两组差异有统计学意义(P<0.01);而网膜素-1、IL-18水平及Gensini积分在UAP组与SAP组之间无明显差异(P>0.05)。2.网膜素-1与体质量指数(BMI)负相关(r=-0.016,P<0.01),IL-18与BMI正相关(r=0.154,P<0.01)。3.IL-18与Gensini积分正相关(r=0.092,P<0.01)。4.收缩压、FG、TC、HDL-C、LDL-C、网膜素-1、IL-18和Gensini积分分别与冠心病相关(2<0.05或P<0.01)。5.网膜素-1、1L-18与冠心病分别相关(P<0.05或2<0.01)。
     结论冠心病患者,血浆网膜素-1水平降低,IL-18水平升高,并分别与冠心病相关,提示网膜素-1和IL-18在冠心病的发病或进展中发挥了一定作用,这为我们干预冠心病的发病和进展提供了新的思路。
     第二部分
     血浆白介素-16水平与冠心病关系的研究
     目的检测冠心病患者和正常对照组血浆中白介素-16的水平,探讨其与冠心病的关系。
     方法选择收集从2011年5月至2011年11月住院的患者87例进行研究。66例患者为冠心病组,冠心病组分为2个亚组,其中38例为不稳定型心绞痛(UAP)组,28例为稳定型心绞痛(SAP)组。21例患者为对照组。对所有患者测量其身高、体质量、血压、描记心电图;抽取空腹静脉血,检测血糖、总胆固醇、甘油三酯、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇;行冠状动脉造影检查,对冠状动脉狭窄病变应用Gensini积分系统进行评分:应用酶联免疫吸附测定法(ELISA)测定血浆IL-16水平。
     结果1.冠心病组血浆IL-16水平较对照组高,两组差异有统计学意义(P=0.01);而IL-16水平在UAP组与SAP组之间无明显差异(p>0.05)。冠心病组Gensini积分较对照组高,两组差异有统计学意义(p<0.01)。2.收缩压、FG、TC、 HDL-c、LDL-c、IL-16和Gensini积分分别与冠心病相关(p<0.05或p<0.01)。3.IL-16与冠心病相关(p<0.05)。
     结论冠心病患者,血浆IL-16水平升高,与冠心病相关,提示IL-16在冠心病的发病中起一定作用。这将为我们干预冠心病的发病提供新的靶点。
Background and Objective
     Obesity and insulin resistance (IR) are associated with elevated risk of atherosclerosis disease. Compared with equally obese insulin-sensitive patients, those obese patients with IR suffered from increased risk for coronary heart disease (CHD). Change of cytokine levels may promote the occurrence of IR. Inflammatory reaction could occur at various stages of the atherosclerotic which from the beginning of lipid stripes to the late of complex lesions. Proinflammatory cytokines may promote coronary plaque fibrous cap to get thinning and plaque-rupturing, followed by thrombosis, and lead to the occurrence of CHD. Therefore, it is of great significance to study the relationship between cytokine expression levels and CHD.
     Omentin is a adipocytokine, and is highly expressed in visceral omental adipose tissue. The gene expression and plasma levels of omentin in obese and overweight population were significantly lower than that in the lean population, low level of omentin was related to the degree of obesity and IR. Omentin has been shown to participate in the inflammatory response of the body. In patients with chronic inflammatory bowel disease, omentin mRNA expression levels were different. The omentin concentrations of synovial fluid in patients with rheumatoid arthritis decreased. From above-mentioned, it's suggested that omentin was correlated with obisity, IR and inflammatory response. Omentin-1is the main circulating form of omentin in plasma, and the study data related to omentin-1in patients with CHD was little.
     Interleukin-18(IL-18) is an inflammatory cytokine, and its level increased in obese human serum. It's found that IL-18is related to IR. Serum IL-18levels were related to body mass index (BMI), IR index in patients with polycystic ovary syndrome with IR. IL-18was originally known as gamma interferon (IFN-γ)-inducing factor, IFN-γ is a proinflammatory cytokine, which can activate macrophages and a variety of other cells, and is involved in the antherosclerotic plaque-rupturing process. One study found that serum IL-18levels increased significantly in patients with CHD compared with that in the control group, which suggesting that IL-18is one of the important markers of reflecting inflammatory response of coronary disease.
     Interleukin-16(IL-16) is a chemotactic factor of CD4+cells. IL-16could enhance antigen-stimulated peripheral blood mononuclear cells to secrete IFN-γ, studies have shown that IFN-γ could promote the formation of atherosclerosis. Under the role of IL-16, monocytes and mature macrophages could secrete interleukin-1β, interleukin-6, TNF-α and interleukin-15, and these cytokines were closely related to the occurrence and development of atherosclerosis or (and) CHD. IL-16may participate in the formation and development of atherosclerosis through impacting on secretion of various inflammatory mediators. Recently it was reported in the literature that in Chinese Han population, IL-16rs11556218G/T gene polymorphism was significantly related to the risk for CHD. So far, there wasn't report about the relationship between plasma IL-16levels and CHD.
     In this study, we would explore the relationship of plasm omentin-1, IL-18and IL-16levels with CHD through detecting these cytokines levels of patients with CHD and patients in the control group.
     Part Ⅰ
     The study of the relationship between plasma omentin-1, interleukin-18levels and coronary heart disease
     Objective
     To investigate the relationship between plasma omentin-1, interleukin-18(IL-18) levels and the pathogenesis of coronary heart disease (CHD) through detecting plasma omentin-1and IL-18levels of patients with CHD and patients in the control group.
     Methods
     87patients hospitalized from May2011to November2011were divided into two groups66cases in the coronary heart disease group (38cases in the unstable angina pectoris group,28cases in the stable angina pectoris group), and21cases in the control group. The height, body mass and blood pressure of all the patients were measured, and electrocardiograph (ECG) was graphed. Fasting venous blood of each of selected candidates was extracted to assay fasting glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol. Coronary angiography was conducted in a week after hospitalized, Gensini score rating was used to evaluate the extent of coronary stenosis. The enzyme-linked immunosorbent assay (ELISA) was used to detect plasma omentin-1and IL-18levels.
     Results
     1. The plasma omentin-1level in CHD was lower than that in the control group, and the difference between the two groups was statistically significant (p<0.01). The plasma IL-18level, Gensini score in CHD group was higher than that in the control group, and the difference between the two groups was statistically significant (p<0.01), while the omentin-1, IL-18level and Gensini score in the UAP group and SAP group were not statistically significant (P>0.05).
     2. Omentin-1was negatively correlated with BMI (r=-0.016,.P<0.01), while IL-18was positively correlated with BMI (r=0.154, P<0.01).
     3. IL-18was positively correlated with Gensini score (r=0.092,P<0.01).
     4. Systolic blood pressure, FG, TC, HDL-c, LDL-c, omentin-1, IL-18and Gensini score were correlated with CHD (P<0.05or P<0.01).
     5. Omentin-1and IL-18level were correlated with CHD respectively (P<0.05or P<0.01).
     Conclusions
     Plasma omentin-1levels decrease and IL-18levels increase in patients with CHD, and omentin-1and IL-18are associated with CHD, which suggesting that omentin-1 and IL-18play a role in the pathogenesis and development of CHD, and this provides new ideas for intervening pathogenesis and development of CHD.
     Part Ⅱ
     The study of the relationship between plasma interleukin-16levels and coronary heart disease
     Objective
     To investigate the relationship between plasma interleukin-16(IL-16) levels and the pathogenesis of coronary heart disease (CHD) through detecting plasma IL-16levels of patients with CHD and patients in the control group.
     Methods
     87patients hospitalized from May2011to November2011were divided into two groups66cases in the coronary heart disease group (38cases in the unstable angina pectoris group,28cases in the stable angina pectoris group), and21cases in the control group. The height, body mass and blood pressure of all the patients were measured, and ECG was graphed. Fasting venous blood of each of selected candidates was extracted to assay fasting glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol. Coronary angiography was conducted in a week after hospitalized, Gensini score rating was used to evaluate the extent of coronary stenosis. The enzyme-linked immunosorbent assay (ELISA) was used to detect plasma IL-16level.
     Results
     1. The plasma IL-16level in CHD group was higher than that in the control group (p=0.01), while there was no significant difference between the IL-16level in the UAP group and SAP group (p>0.05). Gensini score in CHD group was higher than that in the control group, the difference was statistically significant (p<0.01).
     2. Systolic blood pressure, FG, TC, HDL-C, LDL-c, IL-16and Gensini score were correlated with CHD (p<0.05orp<0.01).
     3. IL-16was correlated with CHD (p<0.05).
     Conclusions
     Plasma IL-16levels increase in patients with CHD, and IL-16level is associated with CHD, which suggesting that IL-16may play a role in the pathogenesis of CHD, and this will provide new target for intervening the pathogenesis of CHD.
     Objective To investigate the relationship between plasma omentin-1, interleukin-18(IL-18) levels and the pathogenesis of coronary heart disease through detecting plasma omentin-1and IL-18levels of patients with coronary heart disease and patients in the control group. Methods87patients (without diabetes mellitus) hospitalized from May2011to November2011were divided into two groups66cases in the coronary heart disease group (38cases in the unstable angina pectoris group,28cases in the stable angina pectoris group), and21cases in the control group. Venous blood samples were collected from the patients after an overnight fast after admission to hospital, and electrocardiograph of each patient was traced, coronary angiography was conducted. The plasma omentin-1and IL-18levels were detected by enzyme-linked immunosorbent assay (ELISA), and the height, body mass, blood pressure, fasting blood sugar, total cholesterol, triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol, Gensini score and other indicators were measured. Results The plasma omentin-1level in the coronary heart disease group was lower than that in the control group, and the difference between the two groups was statistically significant(P<0.01). The plasma IL-18level and the Gensini score in the coronary heart disease group were higher than that in the control group, and the difference between the two groups was statistically significant (P<0.01). The plasma omentin-1level was negatively correlated with BMI (r=-0.016, p<0.01), IL-18level was positively correlated with BMI (r=0.154, p<0.01). The plasma IL-18level was positively correlated with Gensini score in the coronary heart disease (r=0.092,p<0.01). The plasma omentin-1level and the plasma IL-18level were correlated with coronary heart disease respectively. Conclusion The plasma omentin-1levels decrease and IL-18levels increase in patients with coronary heart disease, and the levels of these two cytokines are correlated with CHD respectively, which suggesting that these two cytokines may play a role in the pathogenesis and development of the coronary heart disease.
     Objective To investigate the relationship between plasma interleukin-16(IL-16) levels and the pathogenesis of coronary heart disease through detecting plasma IL-16levels of patients with coronary heart disease and patients in the control group. Methods87patients (without diabetes mellitus) hospitalized from May2011to November2011were divided into two groups66cases in the coronary heart disease group(38cases in the unstable angina pectoris group,28cases in the stable angina pectoris group), and21cases in the control group. Venous blood samples were collected from the patients after an overnight fast after admission to hospital, and electrocardiograph of each patient was traced, coronary angiography was conducted. The plasma IL-16levels were detected by enzyme-linked immunosorbent assay(ELISA), and the height, body mass, blood pressure, fasting blood sugar, total cholesterol, triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol, Gensini score and other indicators were measured. Results The plasma IL-16level in the coronary heart disease group was higher than that in the control group, and the difference between the two groups was statistically significant (p=0.01). The Gensini score in the coronary heart disease group was higher than that in the control group, and the difference between the two groups was statistically significant (P<0.01). The plasma IL-16level was correlated with coronary heart disease. Conclusion Plasma IL-16levels increase in patients with CHD, and IL-16level is associated with CHD, which suggesting that IL-16may play a role in the pathogenesis of CHD, and this will provide new target for intervening the pathogenesis of CHD.
引文
1.Matsuzawa Y. Therapy Insight:adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med,2006,3:35-42.
    2.McLaughlin T, Abbasi F, Kim HS, et al. Relationship between insulin resistance, weight loss, and coronary heart disease risk in healthy, obese women. Metabolism, 2001,50(7):795-800.
    3. Cook SA, Aitman T, Naoumova RP. Therapy Insight:heart disease and the insulin-resistant patient. Nat Clin Pract Cardiovasc Med,2005,2(5):252-260.
    4. Carey AL, Lamont B, rkopoulos S, et al. Interleukin-6 gene expression is increased in insulin resistant rat skeletal muscle following insulin stimulation. Biochem Biophys Res Commun,2003,302(4):837-840.
    5. de Souza Batista CM, Yang RZ, Lee MJ, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes,2007,56(6):1655-1661.
    6. Zhao Q. Inflammation, autoimmunity and athrosclerosis. Discov Med,2009,8(40): 7-12.
    7.丁瑞敏Hs-CRP联合1L-18检测对冠心病应用价值.中国医药导报,2008,5(14):103.
    8. Yang RZ, Lee MJ, Hu H, et al. Indentification of ometin as a novel depot-specific adipokine in human adipose tissue:possible role in modulating insulin action. Am J Physiol Endocrinol Metab,2006,290(6):E1253-1261.
    9. Schaffler A, Zeitoun M, Wobser H, et al. Frequecy and significance of the novel single nucleotide missense polymorphism Va1109Asp in the human gene encoding omentin in Caucasian patients with type 2 diabetes mellitus or chronic inflammatory bowel diseases. Cardiovasc Diabetol,2007,13; 6:3.
    10. Senolt L, Polanska M, Filkova M et al. Vaspin and omentin:new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann Rheum Dis,2010,69(7):1410-1411.
    11. Yamawaki H, Kuramoto J, Kameshima S, et al. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun,2011,408(2):339-343.
    12. Straczkowski M, Kowalska I, Nikolajuk A, et al. Increased serum interleukin-18 concentration is associated with hypoadiponectinemia in obesity, independently of insulin resistance. Int J Obes (Lond),2007,31(2):221-225.
    13. Fischer CP, Perstrup LB, Berntsen A, et al. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol,2005,117(2):152-160.
    14. Yang Y, Qiao J, Li R, et al. Is interleukin-18 associated with polycystic ovary syndrome? Reprod Biol Endocrinol.2011, Jan 18; 9:7.
    15. Nakamura K, Okamura H, Wada M, et al. Endotoxin-induced serum factor that stimulates gamma inteferon production. Infect Immun,1989,57(2):590-595.
    16.张兆志,孟晓萍,王莉.急性冠脉综合征患者血清TNF-α、IFN-γ、MMP-9和oxLDL水平的检测及其临床意义.吉林大学学报(医学版),2011,37(3):534-537.
    17. Everett BM, Bansal S, Rifai N, et al. Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis,2009,202(1): 282-288.
    18. Wright RS, Anderson JL, Adams CD, et al.2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. J Am Coll Cardiol, 2011,57(19):e215-367.
    19. Kim Fox, Chairperson, London (UK), et al. Guidelines on the management of stable angina pectoris. European Heart Journal doi:10.1093/eurheartj/eh1002.
    20.陈新,孙瑞龙,王思让,等.黄宛临床心电图学.第6版.北京,人民卫生出版社,2009,6:70-81.
    21.Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis,2005,182(2):241-248.
    22. Kwan T, Feit A, Alam M, et al. ST-T alternans and myocardial ischemia. Angiology,1999,50(3):217-222.
    23. Machado DB, Crow RS, Boland LL, et al. Electrocardiographic findings and incident coronary heart disease among participants in the Atherosclerosis Risk in Communities (ARIC) study. Am J Cardiol,2006,97(8):1176-1181.
    24. Schaffler A, Neumeier M, Herfarth H, et al. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta, 2005,1732(1-3):96-102.
    25. Fu M, Gong DW, Damcott C, et al. Systematic analysis of omentin 1 and omentin 2 on 1q23 as candidate genes for type 2 diabetes in the old order amish. Diabetes, 2004,53:A59.
    26. Jean PS, Husueh WC, Mitchell B, et al. Association between diabetes, obesity, glucose and insulin levels in the old older amish and SNPs on 1q21-23. Am J Hum Genet,2000,67:332-337.
    27. Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract,2010,88(1):29-33.
    28. Rodrigues TC, Biavatti K, Almeida FK, et al. Coronary artery calcification is associated with insulin resistance index in patients with type 1 diabetes. Braz J Med Biol Res,2010,43(11):1084-1087.
    29. Bertoluci MC, QUadros AS, Sarmento-Leite R, et al. Insulin resistance and triglyceride/HDLc index are associated with coronary artery disease. Diabetol Metab Syndr,2010,3; 2:11.
    30. Pemberton AD, Rose-Zerilli MJ, Holloway JW, et al. A single-nucleotide polymorphism in intelectin 1 is associated with increased asthma risk. J Allergy Clin Immunol,2008,122:1033-1034.
    31. Kuperman DA, Lewis CC, Woodruff PG, et al. Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol,2005,116: 305-311.
    32. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet,2008,40:955-962.
    33. Tan BK, Pua S, Syed F, et al. Decreased plasma omentin-1 levels in Type 1 diabetes mellitus. Diabet Med,2008,25:1254-1255.
    34. Moreno-Navarrete JM, Ortega F, Castro A,et al. Circulating omentin as a novel biomarker of endothelial dysfunction. Obesity (Silver Spring),2011,19(8):1552-1559.
    35. Thanyasiri P, Celermajer DS, Adams MR. Endothelial dysfunction occurs in peripheral circulation patients with acute and stable coronary artery disease. Am J Physiol Heart Circ Physiol,2005,289:H513-517.
    36. Yamawaki H, Tsubaki N, Mukohda M, et al. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun, 2010,393(4):668-672.
    37. Napoli C, de Nigris F, Williams-Ignarro S, et al. Nitric oxide and atherosclerosis: an update. Nitric Oxide,2006,15(4):265-279.
    38. O'Leary DH, Polak JF, Kronmal RA, et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med,1999, 340(1):14-22.
    39. Shibata R, Takahashi R, Kataoka Y, et al. Association of a fat-derived plasma protein omentin with carotid artery intima-media thickness in apparently healthy men. Hypertens Res,2011,34(12):1309-1312.
    40. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340(2): 115-126.
    41. Libby P. Inflammation in atherosclerosis. Nature,2002,420(6917):868-874.
    42. Zhong X, Zhang HY, Tan H, et al. Association of serum omentin-1 levels with coronary artery disease. Acta Pharmacologica Sinica,2011,32(7):873-878.
    43. Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis:an assessment of the evidence and need for future research. Circulation, 1997,96(11):4095-4103.
    44. Jackson LA, Campbell LA, Schmidt RA, et al. Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma:evaluation of the innocent bystander hypothesis. Am J Pathol,1997,150(5):1785-1790.
    45. Melnick JL, Adam E, Debakey ME. Cytomegalovirus and atherosclerosis. Bioessays,1995,17(10):899-903.
    46. Gupta S, Leatham EW, Carrington D, et al. Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation,1997,96(2):404-407.
    47. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease:is there a link? Lancet,1997,350(9075):430-436.
    48. Tsuji S, Uehori J, Matsumoto M, et al. Human intelectin is a novel soluble lectin that recog-nizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem,2001,276(26):23456-23463.
    49. Komiya T, Tanigawa Y, Hirohashi S. Cloning of the novel gene intelectin, which is expressed in intestinal Paneth cells in mice. Biochem Biophys Res Commun,1998, 251(3):759-762.
    50. Pemberton AD, Knight PA, Wright SH, et al. Proteomic analysis of mouse jejunal epithelium and its response to infection with the intestinal nematode, Trichinella spiralis. Proteomics,2004,4(4):1101-1108.
    51. Datta R, deSchoolmeester ML, Hedeler C, et al. Identification of novel genes in intestinal tissue which are regulated post infection with an intestinal nematode parasite. Infection and Immunity,2005,73(7):4025-4033.
    52. Gu N, Kang G, Jin C, et al. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and-3 expression in lung epithelial cells and promotes allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol,2010,298(3):L290-296.
    53. Suzuki YA, Shin K, Lonnerdal B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry,2001,40(51):15771-15779.
    54. Pemberton AD, Knight PA, Gamble J, et al. Innate BALB/c enteric epithelial responses to Trichinella spiralis:inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J Immunol,2004,173(3): 1894-1901.
    55. Shibata R, Ouchi N, Kikuchi R, et al. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis,2011,219(2):811-814.
    56. Hung J, McQuillan BM, Chapman CM, et al. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulinresistance. Arterioscler Thromb Vasc Biol,2005,25(6):1268-1273.
    57. Flier JS. Obesity wars:molecular progress confronts an expanding epidemic. Cell, 2004,116 (2):337-350.
    58. Che JJ, Li LP, Wang ED, et al. Serum autoantibodies against human oxidized low-density lipoproteins are inversely associated with severity of coronary stenotic lesions calculated by Gensini score. Cardiol J,2011,18(4):364-370.
    59. Senturk T, Sarandol E, Gullulu S, et al. Association between paraoxonase 1 activity and severity of coronary artery disease in patients with acute coronary syndromes. Acta Cardiol,2008,63(3):361-367
    60. Krecki R, Krzeminska-Pakula M, Drozdz J, et al. Relationship of serum angiogenin, adiponectin and resistin levels with biochemical risk factors and the angiographic severity of three-vessel coronary disease. Cardiology Journal,2010, 17(6):599-606.
    61. Leick L, Lindegaard B, Stensvold D, et al. Adipose tissue interleukin-18 mRNA and plasma interleukin-18:effect of obesity and exercise. Obesity (Silver Spring), 2007,15(2):356-363.
    62. an Guilder GP, Hoetzer GL, Greiner JJ, et al. Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults. Obesity (Silver Spring),2006,14(12):2127-2131.
    63. Tan HW, Liu X, Bi XP, et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis, 2010,208(2):350-357.
    64. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation,2009,120(16): 1640-1645.
    65. Smart MC, Dedoussis G, Yiannakouris N, et al. Genetic variation within IL18 is associated with insulin levels, insulin resistance and postprandial measures. Nutr Metab Cardiovasc Dis,2011,21(7):476-484.
    66. Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation,2001,104 (14): 1598-1603.
    67. de Nooijer R, Thusen von der JH, Verkleij CJ, et al. Over expression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E deficient mice. Arterioscler Thromb Vasc Biol,2004,24(12): 2313-2319.
    68. Yamagami H, Kitagawa K, Hoshi T, et al. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler Thromb Vasc Biol,2005,25(7): 1458-1462.
    69. Hulthe J, McPheat W, Samnegard A, et al. Plasma interleukin(IL)-18 concentra-tions is elevated in patients with previous myocardial infarction and related to severity of coronary atherosclerosis independently of C-reactive protein and IL-6. Atherosclerosis,2006,188(2):450-454.
    70. Stein S, Lohmann C, Handschin C, et al. ApoE2/2 PGC-1a2/2 mice display reduced IL-18 Levels and do not develop enhanced atherosclerosis. PLoS One,2010, 22;5(10):el3539.
    71. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atheroscle-rosis in apo-lipoprotein E-/-mice through release of interferongamma. Circ Res, 2002,90(2):E34-E38.
    72. Gerdes N, Sukhova GK, Libby P, et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for atherogenesis. J Exp Med,2002,195(2):245-257.
    73. Ranjbaran H, Sokol SI, Gallo A, et al. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol,2007,178(1):592-604.
    74. Libby P. The molecular bases of the acute coronary syndromes. Circulation, 1995,91(11):2844-2850.
    75. Amento EP, Ehsani N, Palmer H, et al. Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis,1991,11(5):1223-1230.
    76. Cybulsky MI, Gimbrone MA, Libby P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol,1993,143(6):1551-1559.
    77. Chung HK, Lee IK, Kang H, et al. Statin inhibits interferon-gamma induced expression of intercellular adhesion molecule-1 (ICAM-1) in vascular endothelial and smooth muscle cells. Exp Mol Med,2002,34(6):451-461.
    78. Puren AJ, Fantuzzi G, Gu Y, et al. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-lbeta via TNFalpha production from non-CD14+human blood mononuclear cells. J Clin Invest,1998,101(3):711-721.
    79. Yoshimoto T, Min B, Sugimoto T, et al. Nonredundant roles for CD1d-restricted natural killer T cells and conventional CD4+T cells in the induction of immunoglo-bulin E antibodies in response to interleukin 18 treatment of mice. J Exp Med,2003, 197(8):997-1005.
    80. Mach F, Schonbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature,1998,394(6689):200-203.
    81. Schonbeck U, Sukhova GK, Shimizu K, et al. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A, 2000,97(13):7458-7463.
    82. Lutgens E, Gorelik L, Daemen MJ, et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med,1999,5(11):1313-1316.
    83. Khan DA, Ansari WM, Khan FA. Pro/anti-inflammatory cytokines in the pathogenesis of premature coronary artery disease. J Interferon Cytokine Res,2011, 31(7):561-567.
    84. Chalikias GK, Tziakas DN, Kaski JC, et al. Interleukin-18:interleukin-10 ratio and in-hospital adverse events in patients with acute coronary syndrome. Atherosclerosis,2005,182(1):135-143.
    85. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women. Results from the MONICA/KORA Augsburg case-cohort study,1984-2002. Arterioscler Thromb Vasc Biol,2006, 26(12):2745-2751.
    86. Souza JR, Oliveira RT, Blotta MH, et al. Serum levels of interleukin-6, interleukin-18 and C-reactive protein inpatients with Type-2 diabetes and acute coronary syndrome without ST-segment elevation. Arq Bras Cardiol,2008,90(2): 86-90.
    87. Diverse populations collaboration. Smoking, body weight, and CHD mortality in diverse populations. Prev Med,2004,38(6):834-840.
    88. Haverkate F, Thompson SG, Pyke SD, et al. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European concerted action on thrombosis and disabilities angina pectoris study group. Lancet,1997,349(9050): 462-466.
    1. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999; 340(2): 115-126.
    2.杨丽,孙根义,刘玉洁,等.不同类型冠心病患者血清炎症细胞因子水平比较.临床心血管病杂志,2009,25(2):152-153.
    3. Zhao Q. Inflammation,autoimmunity and athrosclerosis. Discov Med,2009,8(40): 7-12.
    4.丁瑞敏Hs-CRP联合IL-18检测对冠心病应用价值.中国医药导报,2008,5(14):103.
    5. Center DM, Berman JS, Kornfeld H, et al. The lymphocyte chemoattractant factor. J Lab Clin Med,1995,125(2):167-172.
    6. Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol,1982,128(6): 2563-2568.
    7. Pinsonneault S, El Bassam S, Mazer B, et al. IL-16 inhibits IL-5 production by antigen-stimulated T cells in atopic subjects. J Allergy Clin Immunol,2001,107(3): 477-482.
    8. Reardon CA, Blachowicz L,White T, et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice.Arterioscler Thromb Vasc Biol,2001,21(6):1011-1016.
    9. Mathy NL, Scheuer W, Lanzendorfer M, et al. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology,2000,100 (1):63-69.
    10. Le Naour R, Lussiez C, Raoul H, et al. Expression of cell adhesion molecules at the surface of in vitro human immunodeficiency virus type 1-infected human monocytes:relationships with tumor necrosisfactor a, interleukin 1β, and interleukin 6 syntheses. AIDS Res Hum Retroviruses,1997,13(10):841-855.
    11. Musso T, Calosso L, Zucca M, et al. Interleukin-15 activates proinflammatory and antimicrobial functions in polymorphonuclear cells. Infect Immun,1998,66(6): 2640-2647.
    12. Simon AD, Yazdani S, Wang W, et al. Circulating levels of IL-lb, a prothrombotic cytokine, are elevated in unstable angina versus stable angina. J Thromb Thrombolysis,2000,9(3):217-222.
    13. Ikeda U, Ito T, Shimada K. Interleukin-6 and acute coronary syndrome. Clin Cardiol,2001,24 (11):701-704.
    14. Mendall MA, Patel P, Asante M, et al. Relation of serum cytokine concentrations to cardiovascular risk factors and coronary heart disease. Heart,1997,78(3):273-277.
    15. Liuzzo G, Baisucci LM, Gallore JR, et al. Enhanced inflammatory response in patients with preinfarction unstable angina. J Am Coll Cardiol,1999,34(6): 1696-1703.
    16. Gokkusu C, Aydin M,Ozkok E, et al. Influences of genetic variants in interleukin-15 gene and serum interleukin-15 levels on coronary heart disease. Cytokine,2010,49(1):58-63.
    17. Parada NA, Center DM, Kornfeld H, et al. Synergistic activation of CD4+T cells by IL-16 and IL-2. The Journal of Immunology,1998,160(5):2115-2120.
    18. Gotsman I, Sharpe AH, Lichtman AH. T-cell costimulation and coinhibition in atherosclerosis. Circ Res,2008,103(11):1220-1231.
    19. Yucheng Chen, Hao Huang, Si Liu, et al. IL-16 rs11556218 gene polymorphism is associated with coronary artery disease in the Chinese Han population. Clinical Biochenmistry,2011,44(13):1041-1044.
    20. Wright RS, Anderson JL, Adams CD, et al.2011 ACCF/AHA Focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. J Am Coll Cardiol. 2011,57(19):e215-367.
    21. Kim Fox, Chairperson, London (UK), et al. Guidelines on the management of stable angina pectoris. European Heart Journal doi:10.1093/eurheartj/eh1002.
    22.陈新,孙瑞龙,王思让,等.黄宛临床心电图学.第6版.北京,人民卫生出版社.2009,1:70-81.
    23. Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis,2005,182(2):241-248.
    24. Kwan T, Feit A, Alam M, et al. ST-T alternans and myocardial ischemia. Angiology,1999,50(3):217-222.
    25. Machado DB, Crow RS, Boland LL, et al. Electrocardiographic findings and incident coronary heart disease among participants in the Atherosclerosis Risk in Communities (ARIC) study. Am J Cardiol,2006,97(8):1176-1181
    26. Yarnell JWG, Baker IA, Sweetnam PM, et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. Circulation,1991, 88(3):836-844.
    27. van derWal AC, Becker AE, van der Loos CM, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994,89(1):36-44.
    28. Serneri GGN, Prisco D, Martini F, et al. Acute T-cell activation is detectable in unstable angina. Circulation,1997,95(7):1806-1812.
    29. Wu DM, Zhang Y, Parada NA, et al. Processing and release of IL-16 from CD4+ but not CD8+T cells is activation dependent. J Immunol,1999,162(3):1287-1293.
    30. Laberge S, Cruikshank WW, Kornfeld H, et al. Histamine-induced secretion of lymphocyte chemoattractant factor from CD8+T cells is independent of transcription and translation. Evidence for constitutive protein synthesis and storage. J Immunol, 1995,155(6):2902-2910.
    31. Laberge S, Ernst P, Ghaffar O, et al. Increased expression of interleukin-16 in bronchial mucosa of subjects with atopic asthma. Am J Respir Cell Mol Biol,1997, 17(2):193-202.
    32. Elssner A, Doseff AI, Duncan M, et al. IL-16 is constitutively present in peripheral blood monocytes and spontaneously released during apoptosis. J Immunol, 2004,172(12):7721-7725.
    33. Rand TH, Cruikshank WW, Center DM, et al. CD4-mediated stimulation of human eosinophils:lymphocyte chemoattractant factor and other CD4-binding ligands elicit eosinophilic migration. J Exp Med,1991,173(6):1521-1528.
    34. Cruikshank WW, Berman JS, Theodore AC, et al. Lymphokine activation of T4+ T lympho-cytes and monocytes. J Immunol,1987,138:3817-3823.
    35. Kaser A, Dunzendorfer S, Offner FA, et al. A role for IL-16 in the cross-talk between dendritic cells and T cells. J Immunol,1999,163(6):3232-3238.
    36. Lynch EA, Heijens CA, Horst NF, et al. Cutting edge:IL-16/CD4 preferentially induces Thl cell migration:requirement of CCR5. J Immunol,2003,171(10):4965-4968.
    37. Cruikshank WW, Center DM, Nisar N, et al. Molecular and functional analysis of a lymphocyte chemoattractant factor:Association of biologic function with CD4 expression. Proc Natl Acad Sci USA,1994,91(11):5109-5113.
    38. Center DM, Kornfeld H, Cruikshank WW. Interleukinl6 and its function as a CD4 ligand. Immunol,1996,17(10):476-481.
    39. Qin XJ, Shi HZ, Huang ZX, et al. Interleukin-16 in tuberculous and malignant pleural effusions. Eur Respir J,2005,25:605-611.
    40. Crikshank ww, Long A,Tarpy RE, et al. Early identification of interleukin-16 (lymphocyte chemoattractant factor)and macrophage inflammatory protein 1 alpha(MIPl alpha) in bronchial-veolar lavage fluid of antigen-challenged asthmatics. Am J Respir cell Mol Biol,1995,13(6):738-747.
    41. Lee S, Kaneko H, Sekigawa I, et al. Circulating interleukin-16 in systemic lupus erythematosus. Br J Rheumatol,1998,37(12):1334-1337.
    42. Laberge S, Ghaffar O, Boguniewicz M, et al. Association of increased CD4+ T-cell infiltration with increased IL-16 gene expression in atopic dermatitis. J Allergy Clin Immunol,1998,102(4 Pt 1):645-650.
    43. Laberge S, Durham SR, Ghaffar O, et al. Expression of IL-16 in allergen-induced late-phase nasal responses and relation to topical glucocorticosteroid treatment. J Allergy Clin Immunol,1997,100(4):569-574.
    44. Harvey EJ, Ramji DP. Interferon-gamma and atherosclerosis:pro- or antiathero-genic? Cardiovasc Res,2005,67(1):11-20.
    45. Li H, Cybulsky MI, Gimbrone MA Jr, et al. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb,1993,13(2):197-204.
    46. Jonasson L, Holm J, Skalli O, et al. Expression of class Ⅱ transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest,1985,76(1): 125-131.
    47. Gupta S, Pablo AM, Jiang X, et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest,1997,99(11):2752-2761.
    48. Munro JM, Cotran RS. The pathogenesis of atherosclerosis:atherosclerosis and inflamma. Lab Invest,1988,58:249-261.
    49. Radhakrishnan G, Suzuki R, Maeda H, et al. Inhibition of neointimal hyperplasia development by MCI-186 is correlated with downregulation of nuclear factorkappaB pathway. Circ J,2008,72(5):800-806.
    50. Vadas MA, Gamble JR, Rye K, et al. Regulation of leucocyte endothelial interactions of special relevance to atherogenesis. Clin Exp Pharmacol Physiol,1997, 24(5):A33-A35.
    51. Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1 induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest,1996,97(3):769-776.
    52. Ozeren A, Aydin M, Tokac M, et al. Levels of serum IL-1β, IL-2, IL-8 and tumor necrosis factor-a in patients with unstable angina pectoris. Mediators Inflamm, 2003,12(6):361-365.
    53. Balbay Y, Tikiz H, Baptiste RJ, et al. Circulating interleukin-1beta, interleukin-6, tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology,2001,52(2):109-114.
    54. Shibata M, Ueshima K, Harada M, et al. Effect of magnesium sulfate pretreatment and dignificance of matrix metalloproteinase-1 and interleukin-6 levels in coronary reperfusion therapy for patients with acute myocardial infarction. Angiology,1999,50(7):573-582.
    55. Yamashita H, Shimada K, Seki E, et al. Concentrations of interleukins, interferon, and C-reactive protein in stable and unstable angina pectoris. Am J Cardiol,2003, 91(2):133-136.
    56. Pasini AF, Anselmi M, Garbin U, et al. Enhanced levels of oxidized low-density lipoprotein prime monocytes to cytokine overproduction via upregulation of CD 14 and toll-Like receptor 4 in unstable angina. Arterioscler Thromb Vasc Biol,2007, 27(9):1991-1997.
    57. Tracey KJ, Cerami A. Tumor Necrosis Factor:A pleitropic cytokine and therapeutic target. Ann Rev Med,1994,45:491-503.
    58. Dejana E, Brevario F, Erroi A, et al. Modulation of endothelial cell functions by different molecular species of interleukin 1. Blood,1987,69(2):695-699.
    59. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol, 1992,10:411-452.
    60. Ohta H, Wada H, Niwa T, et al. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Athero-sclerosis,2005,180(1):11-17.
    61. Mizia-Stec K, Gasior Z, Zahorska-Markiewicz B, et al. Serum tumour necrosis factor-alpha, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes. Coron Artery Dis,2003,14(6):431-438.
    62. Avice MN, Demeure CE, Delespesse G, et al. IL-15 promotes IL-12 production by human monocytes via T celldependent contact and may contribute to IL-12-mediated IFN-gamma secretion by CD41 T cells in the absence of TCR ligation. J Immunol,1998,161(7):3408-3415.
    63. Badolato R, Ponzi AN, Millesimo M, et al. Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood,1997, 90(7):2804-2809.
    64. Alleva DG, Kaser SB, Monroy MA, et al. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production:evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol,1997,159(6):2941-2951.
    65. Wilkinson PC, Liew FY. Chemoattraction of human blood T lymphocytes by interleukin-15. J Exp Med,1995,181(3):1255-1259
    66. Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15. Blood,1996,88(1):230-235.
    67. Mottonen M, Isomaki P, Luukkainen R, et al. Interleukin-15 up-regulates the expression of CD154 on synovial fluid T cells. Immunology,2000,100(2):238-244.
    68. Wuttge DM, Eriksson P, Sirsjo A, et al. Expression of interleukin-15 in mouse and human atherosclerotic lesions. Am J Pathol,2001,159(2):417-423.
    69. Aukrust P, Muller F, Ueland T, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Circulation,1999,100 (6): 614-620.
    70. Lee Y, Lee WH, Lee SC, et al. CD40L activation in circulating platelets in patients with acute coronary syndrome. Cardiology,1999,92(1):11-16.
    71. Garlichs CD, Eskafi S, Raaz D, et al. Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart,2001,86(6):649-655.
    72. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature,1998,391(6667):591-594.
    73. Lievens D, Zernecke A, Seijkens T, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood,2010,116(20):4317-4327.
    74. Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med,2003,348(12):1104-1111.
    75. Mach F, Schonbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998,394(6689):200-203.
    76. Kimura N, Itoh S, Nakae S, et al. Interleukin-16 deficiency suppresses the development of chronic rejection in murine cardiac transplantation model. J Heart Lung Transplant,2011,30(12):1409-1417.
    77. Zou GM, Tam YK. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur Cytokine Netw,2002,13(2):186-199.
    78. Mazzone A, De Servi S, Vezzoli M, et al. Plasma levels of interleukin 2,6,10 and phenotypic characterization of circulating T lymphocytes in ischemic heart disease. Atherosclerosis,1999,145(2):369-374.
    79. Stemme S, Holm J, Hansson, GK. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler Thromb,1992,12(2):206-211.
    80. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of mouse helper T cell clone. I. Definition according to profile of lymphokine activities and secreted proteins. J Immunol,1986,136(7):2348-2357.
    81. Cherwinski HM, Schumacher JH, Brown KD, et al. Two types of mouse helper T cell clone. Ⅲ. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med,1987,166(5):1229-1244.
    82. Wierenga EA, Snoek M, de Groot C, et al. Evidence for compartmentalization of functional subsets of CD4+ T lymphocytes in atopic patients. J Immunol,1990, 144(12):4651-4656.
    83. Haanen JB, de Waal Malefijt R, Res PC, et al. Selection of a human T helper type 1-like T cell subset by mycobacteria. J Exp Med,1991,174(3):583-592.
    84. Yssel H, Shanafelt MC, Soderberg C, et al. B. burgdog7 activates T cells to produce a selective pattern oflymphokines in Lyme arthritis. J Exp Med,1991,174: 593-601.
    85. Del Prete GF, De Carli M, Mastromauro C, et al. Purified protein derivative of mycobacterium tuberculosis and excretory-secretory antigen(s) of toxocara canis expand in vitro human T cells with stable and opposite (type 1 helper or type 2 helper) profile of cytokine production. J Clin Invest,1991,88(1):346-350.
    86. Hansson, GK, et al. T lymphocytes inhibit the vascular response to injury. Proc Natl Acad Sci USA,1991,88(23):10530-10534.
    87. Fernandes JL, Mamoni RL, Orford JL, et al. Increased Th1 activity in patients with coronary artery disease. Cytokine,2004,26(3):131-137.
    88. Lee ME, Bucur SZ, Gillespie TW, et al. Recombinant human CD40 ligand inhibits simian immunodeficiency virus replication:A role for interleukin-16. J Med Primatol,1999,28(4-5):190-194.
    89. Arima M, Plitt J, Stellato C, et al. Expression of interleukin-16 by human epithelial cells:inhibition by dexamethasone. Am J Respir Cell Mol Biol,1999,21(6): 684-692.
    90. El Bassam S, Pinsonneault S, Kornfeld H, et al. Interleukin-16 inhibits interleukin-13 production by allergen-stimulated blood mononuclear cells. Immunology,2006,117(1):89-96.
    91. Zhen G, Park SW, Nguyenvu LT, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol,2007,36(2):244-253.
    92. Della Bella S, Nicola S, Timofeeva I, et al. Are interleukin-16 and thrombopoietin new tools for the in vitro generation of dendritic cells? Blood,2004, 104(13):4020-4028.
    93. Tsuji S, Uehori J, Matsumoto M, et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem,-2001,276(26):23456-23463.
    94. Che J, Li G, Wang W, et al. Serum autoantibodies against human oxidized low-density lipoproteins are inversely associated with severity of coronary stenotic lesions calculated by Gensini score. Cardiol J,2011,18(4):364-370.
    95. Senturk T, Sarandol E, Gullulu S, et al. Association between paraoxonase 1 activity and severity of coronary artery disease in patients with acute coronary syndromes. Acta Cardiol,2008,63(3):361-367.
    96. Krecki R, Krzeminska-Pakula M, Drozdz J, et al. Relationship of serum angiogenin, adiponectin and resistin levels with biochemical risk factors and the angiographic severity of three-vessel coronary disease. Cardiology Journal,2010, 17(6):599-606.
    1. Yang RZ, Xu A, Pray J, et al. Cloning of omentin,a new adipocytokine from omental fat tissue in human. Diabetes,2005,52(suppl1):A1.
    2.吴立玲,李丽,向若兰.脂肪细胞因子与心血管疾病.科学出版社:2008,Vol.60.
    3. Yan P, Liu D, Long M, et al. Changes of serum omentin levels and relationship between omentin and adiponectin concentrations in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes.2011,119(4):257-263.
    4.顾复生.胰岛素抵抗和高胰岛素血症与高血压和冠心病.中华心血管病杂志.1993,21:260.
    5. McLaughlin T, Abbasi F, Kim HS, et al. Relationship between insulin resistance, weight loss, and coronary heart disease risk in healthy, obese women. Metabolism. 2001,50(7):795-800.
    6. Cook SA, Aitman T, Naoumova RP. Therapy Insight:heart disease and the insulin-resistant patient. Nat Clin Pract Cardiovasc Med,2005,2(5):252-260.
    7. Bertoluci MC, QUadros AS, Sarmento-Leite R, et al. Insulin resistance and triglyceride/HDLc index are associated with coronary artery disease. Diabetol Metab Syndr,2010 Feb 3;2:11.
    8. Yang RZ, Lee MJ, Hu H, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue:possible role in modulating insulin action. Am J Physiol Endocrinol Metab,2006,290(6):E1253-1261.
    9. Schaffler A, Neumeier M, Herfarth H, et al. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta, 2005,1732(1-3):96-102.
    10. Nishihara T, Wyrick RE, Working PK, et al. Isolation and characterization of a lectin from the cortical granules of Xenopus laevis eggs. Biochemistry,1986,25(20): 6013-6020.
    11. Lee JK, Schnee J, Pang M, et al. Human homologs of the Xenopus oocyte cortical granule lectin XL35. Glycobiology,2001,11(1):65-73.
    12. Chang BY, Peavy TR, Wardrip NJ, et al. The Xenopus laevis cortical granule lectin:cDNA cloning, developmental expression, and identification of the eglectin family of lectins. Comp Biochem Physiol A Mol Integr Physiol,2004,137(1): 115-129.
    13. Lee JK, Buckhaults P, Wilkes C, et al. Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development. Glycobiology,1997,7(3):367-372.
    14. Komiya T, Tanigawa Y, Hirohashi S. Cloning of the novel gene intelectin which is expressed in intestinal paneth cells in mice. Biochem Biophys Res Commun,1998, 251(3):759-762.
    15. Pemberton AD, Knight PA, Gamble J, et al. Innate BALB/c enteric epithelial responses to Trichinella spiralis:inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J Immunol,2004,173 (3): 1894-1901.
    16. Tsuji S, Uehori J, Matsumoto M, et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem,2001,276 (26):23456-23463.
    17. Pemberton AD, Knight PA, Wright SH, et al. Proteomic analysis of mouse jejunal epithelium and its response to infection with the intestinal nematode, Trichinella spiralis. Proteomics,2004,4(4):1101-1108.
    18. Datta R, deSchoolmeester ML, Hedeler C, et al. Identification of novel genes in intestinal tissue which are regulated post infection with an intestinal nematode parasite. Infection and Immunity,2005,73(7):4025-4033.
    19. Kuperman DA, Lewis CC, Woodruff PG, et al. Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol,2005,116(2): 305-311.
    20. Gu N, Kang G, Jin C, et al. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and -3 expression in lung epithelial cells and promotes allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol,2010,298(3):L290-296.
    21. Suzuki YA, Shin K, Lonnerdal B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry,2001,40(51):15771-15779.
    22. Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis:an assessment of the evidence and need for future research. Circulation, 1997,96(11):4095-4103.
    23. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease:is there a link? Lancet,1997,350(9075):430-436.
    24. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet,2008,40(8): 955-962
    25. Pemberton AD, Rose-Zerilli MJ, Holloway JW, et al. A single nucleotide polymorphism in intelectin-1 is associated with increased asthma risk. J Allergy Clin Immunol,2008,122(5):1033-1034.
    26. Cantarini L, Simonini G, Fioravanti A, et al. Circulating levels of the adipokines vaspin and omentin in patients with juvenile idiopathic arthritis, and relation to disease activity. Clin Exp Rheumatol,2011,29(6):1044-1048.
    27. de Souza Batista CM, Yang RZ, Lee MJ, et al. Omentin plasma levels and gene expression are decreased in obesity. DIABETES,2007,56(6):1655-1661.
    28. Moreno-Navarrete JM, Catalan V, Ortega F, et al. Circulating omentin concentration increases after weight loss. Nutr Metab (Lond),2010, Apr 9; 7:27.
    29. Yamawaki H, Tsubaki N, Mukohda M, et al. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun, 2010,393(4):668-672.
    30. Moreno-Navarrete JM, Ortega F, Castro A, et al. Circulating Omentin as a Novel Biomarker of Endothelial Dysfunction. Obesity (Silver Spring),2011,19(8):1552-1559.
    31. Thanyasiri P, Celermajer DS, Adams MR. Endothelial dysfunction occurs in peripheral circulation patients with acute and stable coronary artery disease. Am J Physiol Heart Circ Physiol,2005,289(2):H513-517.
    32. Napoli C, de Nigris F, Williams-Ignarro S, et al. Nitric oxide and atherosclerosis: an update. Nitric Oxide,2006,15(4):265-279.
    33. Shibata R, Takahashi R, Kataoka Y, et al. Association of a fat-derived plasma protein omentin with carotid artery intima-media thickness in apparently healthy men. Hypertens Res,2011,34(12):1309-1312.
    34. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340(2): 115-126.
    35. Libby P. Inflammation in atherosclerosis. Nature,2002,420(6917):868-874.
    36. Yamawaki H. Vascular Effects of Novel Adipocytokines:Focus on Vascular Contractility and Inflammatory Responses. Biol Pharm Bull,2011,34(3):307-310.
    37. Yamawaki H, Kuramoto J, Kameshima S, et al. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun,2011,408(2):339-343.
    38. Kollias A, Tsiotra PC, Ikonomidis I, et al. Adiponectin levels and expression of adiponectin receptors in isolated monocytes from overweight patients with coronary artery disease. Cardiovasc Diabetol,2011, Feb 1; 10:14.
    39. Karaca E, Kayikcioglu M, Onay H, et al. The effect of interleukin-10 gene promoter polymorphisms on early-onset coronary artery disease. Anadolu Kardiyol Derg,2011,11(4):285-289
    40. Antman EM, Braunwald E. Acute myocardial infarction. In Braunwald,Zipes, Libby (eds). Heart Disease (6th edition). London:WB Saunders Company,2001: 1114-1127.
    41. Worthley SG, Osende JI, Helft G, et al. Coronary artery disease:pathogenesis and acute coronary syndromes. Mt Sinai J Med,2001,68(3):167-181.
    42. Neri Serneri GG, Prisco D, Martini F, et al. Acute T-cell activation is detectable in unstable angina. Circulation,1997,95(7):1806-1812.
    43. Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation,2000,101(25):2883-2888.
    44. Ozeren A, Aydin M, Tokac M, et al. Levels of serum IL-1b, IL-2, IL-8 and tumor necrosis factor-a in patients with unstable angina pectoris. Mediators Inflamm, 2003,12(6):361-365.
    45. Reddy P. Interleukin-18:recent advances. Curr Opin Hematol,2004,11(6):405-410.
    46. Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol,2001,19:423-474.
    47. Ranjbaran H, Sokol SI, Gallo A, et al. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol,2007,178(1):592-604.
    48.张兆志,孟晓萍,王莉.急性冠脉综合征患者血清TNF-α、IFN-γ、MMP-9和oxLDL水平的检测及其临床意义.吉林大学学报(医学版),2011,37(3):534-537.
    49. Libby P. The molecular bases of the acute coronary syndromes. Circulation, 1995,91(11):2844-2850.
    50. Amento EP, Ehsani N, Palmer H, et al. Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis,1991,11(5):1223-1230.
    51. Robertson AK, Hansson GK. T cells in atherogenesis:for better or for worse? Arterioscler Thromb Vase Biol,2006,26(11):2421-2432.
    52. Leon ML, Zuckerman SH. Gamma interferon:a central mediator in atherosclerosis. Inflamm Res,2005,54(10):395-411.
    53. Cybulsky MI, Gimbrone MA, Libby P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol,1993,143(6):1551-1559.
    54. Chung HK, Lee IK, Kang H, et al. Statin inhibits interferon-gamma induced expression of intercellular adhesion molecule-1 (ICAM-1) in vascular endothelial and smooth muscle cells. Exp Mol Med,2002,34(6):451-461.
    55. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol,2001,21(12):1876-1890.
    56. Yoshimoto T, Min B, Sugimoto T, et al. Nonredundant roles for CD1d-restricted natural killer T cells and conventional CD4+T cells in the induction of immunoglobulin E antibodies in response to interleukin 18 treatment of mice. J Exp Med,2003,197(8):997-1005.
    57. Schonbeck U, Sukhova GK, Shimizu K, et al. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A, 2000,97(13):7458-7463.
    58. Von der Thusen JH, Kuiper J, van Berkel TJ, et al. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev,2003,55(1):133-166.
    59. Puren AJ, Fantuzzi G, Gu Y, et al. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-lbeta via TNFalpha production from non-CD 14+human blood mononuclear cells. J Clin Invest,1998,101(3):711-721.
    60. Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation,2001,104 (14): 1598-1603.
    61. Gerdes N, Sukhova GK, Libby P, et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for atherogenesis. J Exp Med,2002,195(2):245-257.
    62. de Nooijer R, Thusen von der JH, Verkleij CJ, et al. Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E deficient mice. Arterioscler Thromb Vasc Biol,2004,24(12): 2313-2319.
    63. Tan HW, Liu X, Bi XP, et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 2010,208(2):350-357.
    64. Everett BM, Bansal S, Rifai N, et al. Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis.2009,202(1): 282-288.
    65. Khan DA, Ansari WM, Khan FA. Pro/anti-Inflammatory cytokines in the pathogenesis of premature coronary artery disease. J Interferon Cytokine Res,2011, 31(7):561-567.
    66. Mallat Z, Henry P, Alouani S, et al. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart,2002,88(5):467-469.
    67. Hung J, McQuillan BM, Chapman CM, et al. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulinresistance. Arterioscler Thromb Vasc Biol,2005,25(6):1268-1273.
    68. Bosch M, Lopez-Bermejo A, Vendrell J, et al. Circulating IL-18 concentration is associated with insulin sensitivity and glucose tolerance through increased fat-free mass. Diabetologia,2005,48(9):1841-1843.
    69. Rabkin SW. The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat Clin Pract Cardiovasc Med,2009,6(3):192-199.
    70. an Guilder GP, Hoetzer GL, Greiner JJ, et al. Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults. Obesity(Silver Spring),2006,14(12):2127-2131.
    71. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation,2009,120(16): 1640-1645.
    72. Smart MC, Dedoussis G, Yiannakouris N, et al. Genetic variation within IL18 is associated with insulin levels, insulin resistance and postprandial measures. Nutr Metab Cardiovasc Dis,2011,21(7):476-484.
    73.黄志军.冠心病合并2型糖尿病患者白细胞介素18的变化及意义.山东医药,2008,48(34):88-89.
    74. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women. Results from the MONICA/KORA Augsburg Case-Cohort Study,1984-2002. Arterioscler Thromb Vasc Biol,2006, 26(12):2745-2751.
    75. Weiss TW, Seljeflot I, Hjerkinn EM, et al. Adipose tissue pro-inflammatory gene expression is associated with cardiovascular disease. Int J Clin Pract,2011,65(9): 939-944.
    76. Hernesniemi JA, Anttila K, Nieminen T, et al. IL-18 gene polymorphism, cardiovascular mortality and coronary artery disease. Eur J Clin Invest,2010,40(11): 994-1001.
    77. Yamashita H, Shimada K, Seki E, et al. Concentrations of interleukins, interferon, and C-reactive protein in stable and unstable angina pectoris. Am J Cardiol,2003, 91(2):133-136.
    78. Krug N, Cruikshank WW, Tschernig T, et al. Interleukin 16 and T-cell chemoattractant activity in bronchoalveolar lavage 24 hours after allergen challenge in asthma. Am J Respir Crit Care Med,2000,162(1):105-111.
    79. Lee S, Kaneko H, Sekigawa I, et al. Circulating interleukin-16 in systemic lupus erythematosus. Br J Rheumatol,1998,37(12):1334-1337.
    80. Franz JK, Kolb SA, Hummel KM et al. Interleukin-16, produced by synovial fibroblasts, mediates chemoattraction for CD4+T lymphocytes in rheumatoid arthritis. Eur J Immunol,1998,28(9):2661-2671.
    81. Zhou P, Devadas K, Tewari D, et al. Processing, secretion, and anti-HIV-1 activity of IL-16 with or without a signal peptide in CD4+T cells. J Immunol,1999, 163(2):906-912.
    82. Arima M, Plitt J, Stellato C, et al. Expression of interleukin-16 by human epithelial cells:inhibition by dexamethasone. Am J Respir Cell Mol Biol,1999,21(6): 684-692.
    83. Mathy NL, Bannert N, Norley SG, Kurth R. Cutting edge:CD4 is not required for the functional activity of IL-16. J Immunol,2000,164(9):4429-4432.
    84. Mathy NL, Scheuer W, Lanzendorfer M, et al. IL-16 stimulates the expression and production of proinflammatory cytokines by human monocytes. Immunology, 2000,100(1):63-69.
    85. Musso T, Calosso L, Zucca M, et al. Interleukin-15 activates proinflammatory and antimicrobial functions in polymorphonuclear cells. Infect Immun,1998,66(6): 2640-2647.
    86. Parada NA, Center DM, Kornfeld H, et al. Synergistic Activation of CD4+T Cells by IL-16 and IL-2.J Immunol,1998,160(5):2115-2120.
    87. Dinarello CA. Interleukin-1. Adv Pharmacol,1994,25:21-51.
    88. Munro JM, Cotran RS. Biology of disease. The pathogenesis of atherosclerosis: atherosclerosis and inflammation. Lab Invest,1988,58(3):249-261.
    89. Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1 beta decreases the severity of atherosclerosis in ApoEdeficient mice. Arterioscler Thromb Vase Biol, 2003,23(4):656-660.
    90. Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1 induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest,1996,97(3):769-776.
    91. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood,1996,87(6): 2095-2147.
    92. Young JL, Libby P, Schonbeck U. Cytokines in the pathogenesis of atherosclerosis. Thromb Haemost,2002,88(4):554-567.
    93. Radhakrishnan G, Suzuki R, Maeda H, et al. Inhibition of neointimal hyperplasia development by MCI-186 is correlated with downregulation of nuclear factorkappaB pathway. Circ J,2008,72(5):800-806.
    94. Vadas MA, Gamble JR, Rye K, et al. Regulation of leucocyteendothelial interactions of special relevance to atherogenesis. Clin Exp Pharmacol Physiol,1997, 24(5):A33-A35.
    95. Ozeren A, Aydin M, Tokac M, et al. Levels of serum IL-1(3, IL-2, IL-8 and tumor necrosis factor-a in patients with unstable angina pectoris. Mediators Inflamm, 2003,12(6):361-365.
    96. Balbay Y, Tikiz H, Baptiste RJ, et al. Circulating interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology,2001,52(2):109-114.
    97. Simon AD, Yazdani S, Wang W, et al. Circulating levels of IL-1b, a prothrombotic cytokine, are elevated in unstable angina versus stable angina. J Thromb Thrombolysis,2000,9(3):217-222.
    98. Sopasakis VR, Sandqvist M, Gustafson B, et al. High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes Res, 2004,12(3):454-460
    99. Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J Biol Chem,2006,281(14):9507-9516.
    100. Klover PJ, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology,2005,146(8):3417-3427.
    101. Stouthard JM, Levi M, Hack CE, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost,1996,76(5):738-742.
    102. Shibata M, Ueshima K, Harada M, et al. Effect of magnesium sulfate pretreatment and dignificance of matrix metalloproteinase-1 and interleukin-6 levels in coronary reperfusion therapy for patients with acute myocardial infarction. Angiology,1999,50(7):573-582.
    103. Tracey KJ, Cerami A. Tumor Necrosis Factor:A pleitropic cytokine and therapeutic target. Ann Rev Med,1994,45:491-503.
    104. Dejana E, Brevario F, Erroi A, et al. Modulation of endothelial cell functions by different molecular species of interleukin 1. Blood,1987,69(2):695-699
    105. Mizia-Stec K, Gasior Z, Zahorska-Markiewicz B, et al. Serum tumour necrosis factor-alpha, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes. Coron Artery Dis,2003,14(6):431-438.
    106. Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science,1994, 264(5161):965-968.
    107. Oppenheimer-Marks N, Brezinschek RI, Mohamadzadeh M,et al. Interleukin 15 is produced by endothelial cells and increases the transendothelial migration of T cells in vitro and in the SCID mouse-human rheumatoid arthritis model in vivo. J Clin Invest,1998,101(6):1261-1272.
    108. Quinn LS, Haugk KL, Grabstein KH. Interleukin-15:a novel anabolic cytokine for skeletal muscle. Endocrinology,1995,136(8):3669-3672.
    109. McInnes IB, al-Mughales MJ, Field M, et al. The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat Med,1996,2(2): 175-182.
    110. Avice MN, Demeure CE, Delespesse G, et al. IL-15 promotes IL-12 production by human monocytes via T celldependent contact and may contribute to IL-12-mediated IFN-gamma secretion by CD41 T cells in the absence of TCR ligation. J Immunol,1998,161(7):3408-3415.
    111. Badolato R, Ponzi AN, Millesimo M, et al. Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood,1997, 90:2804-2809.
    112. Alleva DG, Kaser SB, Monroy MA, et al. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production:evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol,1997,159(6):2941-2951.
    113. Wilkinson PC, Liew FY. Chemoattraction of human blood T lymphocytes by interleukin-15. J Exp Med,1995,181(3):1255-1259.
    114. Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15. Blood,1996,88(1):230-235.
    115. Mottonen M, Isomaki P, Luukkainen R, et al. Interleukin-15 up-regulates the expression of CD154 on synovial fluid T cells. Immunology,2000,100(2):238-244.
    116. Houtkamp MA, van Der Wal AC, de Boer OJ, et al. Interleukin-15 expression in atherosclerotic plaques an alternative pathway for T-Cell activation in atherosclerosis? Arterioscler Thromb Vasc Biol,2001,21 (7):1208-1213.
    117. Wuttge DM, Eriksson P, Sirsjo A, et al. Expression of Interleukin-15 in Mouse and Human Atherosclerotic Lesions. Am J Pathol,2001,159(2):417-423.
    118. Gokkusu C, Aydin M, Ozkok E, et al. Influences of genetic variants in interleukin-15 gene and serum interleukin-15 levels on coronary heart disease. Cytokine,2010,49(1):58-63.
    119. Spriggs MK, Fanslow WC, Armitage RJ, et al. The biology of the human ligand for CD40. J Clin Immuno,1993,13(6):373-380.
    120. Mach F, Schonbeck U, Bonnefoy J-Y, et al. Activation of monocyte/ macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation,1997,96(2): 396-399.
    121. Schonbeck U, Mach F, Sukhova GK, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes:a role for CD40 signaling in plaque rupture. Circ Res,1997,81(3): 448-454.
    122. Schonbeck U, Mach F, Bonnefoy JY, et al. Ligation of CD40 activates interleukin 1beta-converting enzyme (caspase-1) activity in vascular smooth muscle and endothelial cells and promotes elaboration of active interleukin 1beta. J Biol Chem,1997,272(31):19569-19574.
    123. Garlichs CD, John S, Schmeiber A, et al. Upregulation of CD40 and CD40 ligand (CD154) in patients with moderate hypercholesterolemia. Circulation,2001, 104(20):2395-2400.
    124. Semb AG, van Wissen S, Ueland T, et al. Raised serum Levels of soluble CD40 ligand in patients with familial hypercholesterolemia:down regulatory effect of statin therapy. J Am Coll Cardiol,2003,41(2):275-279.
    125. Schonbeck U, Varo N, Libby P, et al. Soluble CD40L and cardiovascular risk in women. Circulation,2001,104(19):2266-2268.
    126. Mach F, Schonbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature,1998,394(6689):200-203.
    127. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol,1995,57:791-804
    128. Hansson GK, Jonasson L, Seifert PS, et al. Immune mechanisms in atherosclerosis. Arteriosclerosis,1989,9(5):567-578.
    129. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med,2005,352(16):1685-1695.
    130. Mazzone A, De Servi S, Vezzoli M, et al. Plasma levels of interleukin 2,6,10 and phenotypic characterization of circulating T lymphocytes in ischemic heart disease. Atherosclerosis,1999,145(2):369-374.
    131. Stemme S, Holm J, Hansson GK. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler Thromb,1992,12(2):206-211.
    132. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of mouse helper T cell clone. Ⅰ. Definition according to profile of lymphokine activities and secreted proteins. J Immunol,1986,136(7):2348-2357.
    133. Wierenga EA, Snoek M, de Groot C, et al. Evidence for compartmentalization of functional subsets of CD4+T lymphocytes in atopic patients. J Immunol,1990, 144(12):4651-4656.
    134. Haanen JB, de Waal Malefijt R, Res PC, et al. Selection of a human Th-1 like T cell subset by Mycobacterium leprae antigens. J Exp Med,1991,174(3):583-592.
    135. Yssel H, Shanafelt MC, Soderberg C, et al. burgdog7 activates T cells to produce a selective pattern of lymphokines in Lyme arthritis. J Exp Med,1991,174: 593-601.
    136. Del Prete GF, De Carli M, Mastromauro C, et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest,1991,88(1):346-350.
    137. Hansson, GK, et al. T lymphocytes inhibit the vascular response to injury. Proc Natl Acad Sci USA,1991,88(23):10530-10534.
    138. Benagiano M, Azzurri A, Ciervo A, et al. T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc Natl Acad Sci U S A,2003, 100(11):6658-6663.
    139. Zhou X, Paulsson G, Stemme S, et al. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest,1998,101(8):1717-1725.
    140. Fernandes JL, Mamoni RL, Orford JL, et al. Increased Th1 activity in patients with coronary artery disease. Cytokine,2004,26(3):131-137.
    141. Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol,1982,128(6): 2563-2568.
    142. Center DM, Berman JS, Kornfeld H, et al. The lymphocyte chemoattractant factor. J Lab Clin Med,1995,125(2):167-172.
    143. Lynch EA, Heijens CA, Horst NF, et al. Cutting edge:IL-16/CD4 preferentially induces Thl cell migration. requirement of CCR5. J Immunol,2003,171(10): 4965-4968.
    144. Geng YJ, Holm J, Nygren S, et al. Expression of the macrophage scavenger receptor in atheroma. Relationship to immune activation and the T cell cytokine, interferon-gamma. Arterioscler Thromb Vasc Biol,1995,15(11):1995-2002.
    145. Libby P, Clinton SK. Cytokines as mediators of vascular pathology. Nouv Rev Fr Hematol,1992,34(suppl):S47-S53.
    146. Rosner D, Stoneman V, Littlewood T, et al. Interferon-gamma induces Fas trafficking and sensitization to apoptosis in vascular smooth muscle cells via a PI3K-and Akt-dependent mechanism. Am J Pathol,2006,168(6):2054-2063.
    147. Geng YJ, Henderson LE, Levesque EB, et al. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol,1997,17(10):2200-2208.
    148. Cheng GC, Loree HM, Kamm RD, et al. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions:a structural analysis with histopathologic correlation. Circulation,1993,87(4):1179-1187.
    149. Davies MJ. Stability and instability:the two faces of coronary atherosclerosis: The Paul Dudly White Lecture,1995. Circulation,1996,94(8):2013-2020.
    150. Davies MJ, Richardson PD, Woolf N, et al. Risk of thrombosis in human atherosclerotic plaques:role of extracellular lipid, macrophage, and mooth muscle cell content. Br Heart J,1993,69(5):377-381.
    151. van der Wal AC, Becker AE, van der Loos CM, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994,89:36-44.
    152. Zhang Y, Center DM, Wu DM, et al. Processing and activation of pro-interleukin-16 by caspase-3. J Biol Chem,1998,273(2):1144-1149.
    153. Benoit M, Fenollar F, Raoult D, et al. Increased Levels of Circulating IL-16 and Apoptosis Markers Are Related to the Activity of Whipple's Disease. PLoS One, 2007, Jun 6; 2(6):e494.
    1.Matsuzawa Y. Therapy Insight:adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med,2006,3:35-42.
    2.McLaughlin T, Abbasi F, Kim HS, et al. Relationship between insulin resistance, weight loss, and coronary heart disease risk in healthy, obese women. Metabolism, 2001,50(7):795-800.
    3. Cook SA, Aitman T, Naoumova RP. Therapy Insight:heart disease and the insulin-resistant patient. Nat Clin Pract Cardiovasc Med,2005,2(5):252-260.
    4. Carey AL, Lamont B, rkopoulos S, et al. Interleukin-6 gene expression is increased in insulin resistant rat skeletal muscle following insulin stimulation. Biochem Biophys Res Commun,2003,302(4):837-840.
    5. de Souza Batista CM, Yang RZ, Lee MJ, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes,2007,56(6):1655-1661.
    6. Zhao Q. Inflammation, autoimmunity and athrosclerosis. Discov Med,2009,8(40): 7-12.
    7. Ding RM. The value of Hs-CRP combined with IL-18 detection of coronary artery disease. China Medical Herald,2008,5(14):103.
    8. Yang RZ, Lee MJ, Hu H, et al. Indentification of ometin as a novel depot-specific adipokine in human adipose tissue:possible role in modulating insulin action. Am J Physiol Endocrinol Metab,2006,290(6):E1253-1261.
    9. Schaffler A, Zeitoun M, Wobser H, et al. Frequecy and significance of the novel single nucleotide missense polymorphism Vall09Asp in the human gene encoding omentin in Caucasian patients with type 2 diabetes mellitus or chronic inflammatory bowel diseases. Cardiovasc Diabetol,2007,13; 6:3.
    10. Senolt L, Polanska M, Filkova M et al. Vaspin and omentin:new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann Rheum Dis,2010,69(7):1410-1411.
    11. Yamawaki H, Kuramoto J, Kameshima S, et al. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun,2011,408(2):339-343.
    12. Straczkowski M, Kowalska I, Nikolajuk A, et al. Increased serum interleukin-18 concentration is associated with hypoadiponectinemia in obesity, independently of insulin resistance. Int J Obes (Lond),2007,31(2):221-225.
    13. Fischer CP, Perstrup LB, Berntsen A, et al. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol,2005,117(2):152-160.
    14. Yang Y, Qiao J, Li R, et al. Is interleukin-18 associated with polycystic ovary syndrome? Reprod Biol Endocrinol.2011, Jan 18; 9:7.
    15. Nakamura K, Okamura H, Wada M, et al. Endotoxin-induced serum factor that stimulates gamma inteferon production. Infect Immun,1989,57(2):590-595.
    16. Zhang ZZ, Meng XP, Wang L. Serum TNF-α, IFN-γ, MMP-9 and oxLDL levels and its clinical significance in patients with acute coronary syndrome. Journal of Jilin University (Medicine Edition),2011,37(3):534-537.
    17. Everett BM, Bansal S, Rifai N, et al. Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis,2009,202(1): 282-288.
    18. Wright RS, Anderson JL, Adams CD, et al.2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. J Am Coll Cardiol, 2011,57(19):e215-367.
    19. Kim Fox, Chairperson, London (UK), et al. Guidelines on the management of stable angina pectoris. European Heart Journal doi:10.1093/eurheartj/ehl002.
    20. Cheng X, Sun RL, Wang SR, et al. Huang Wan clinical electrocardiography.6th edition. Beijing, People's Health Publishing House.2009,6:70-81.
    21. Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis,2005,182(2):241-248.
    22. Kwan T, Feit A, Alam M, et al. ST-T alternans and myocardial ischemia. Angiology,1999,50(3):217-222.
    23. Machado DB, Crow RS, Boland LL, et al. Electrocardiographic findings and incident coronary heart disease among participants in the Atherosclerosis Risk in Communities (ARIC) study. Am J Cardiol,2006,97(8):1176-1181.
    24. Schaffler A, Neumeier M, Herfarth H, et al. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta, 2005,1732(1-3):96-102.
    25. Fu M, Gong DW, Damcott C, et al. Systematic analysis of omentin 1 and omentin 2 on 1q23 as candidate genes for type 2 diabetes in the old order amish. Diabetes, 2004,53:A59.
    26. Jean PS, Husueh WC, Mitchell B, et al. Association between diabetes, obesity, glucose and insulin levels in the old older amish and SNPs on 1q21-23. Am J Hum Genet,2000,67:332-337.
    27. Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract,2010,88(1):29-33.
    28. Rodrigues TC, Biavatti K, Almeida FK, et al. Coronary artery calcification is associated with insulin resistance index in patients with type 1 diabetes. Braz J Med Biol Res,2010,43(11):1084-1087.
    29. Bertoluci MC, QUadros AS, Sarmento-Leite R, et al. Insulin resistance and triglyceride/HDLc index are associated with coronary artery disease. Diabetol Metab Syndr,2010,3; 2:11.
    30. Pemberton AD, Rose-Zerilli MJ, Holloway JW, et al. A single-nucleotide polymorphism in intelectin 1 is associated with increased asthma risk. J Allergy Clin Immunol,2008,122:1033-1034.
    31. Kuperman DA, Lewis CC, Woodruff PG, et al. Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol,2005,116: 305-311.
    32. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet,2008,40:955-962.
    33. Tan BK, Pua S, Syed F, et al. Decreased plasma omentin-1 levels in Type 1 diabetes mellitus. Diabet Med,2008,25:1254-1255.
    34. Moreno-Navarrete JM, Ortega F, Castro A, et al. Circulating omentin as a novel biomarker of endothelial dysfunction. Obesity (Silver Spring),2011,19(8):1552-1559.
    35. Thanyasiri P, Celermajer DS, Adams MR. Endothelial dysfunction occurs in peripheral circulation patients with acute and stable coronary artery disease. Am J Physiol Heart Circ Physiol,2005,289:H513-517.
    36. Yamawaki H, Tsubaki N, Mukohda M, et al. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun, 2010,393(4):668-672.
    37. Napoli C, de Nigris F, Williams-Ignarro S, et al. Nitric oxide and atherosclerosis: an update. Nitric Oxide,2006,15(4):265-279.
    38. O'Leary DH, Polak JF, Kronmal RA, et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med,1999, 340(1):14-22.
    39. Shibata R, Takahashi R, Kataoka Y, et al. Association of a fat-derived plasma protein omentin with carotid artery intima-media thickness in apparently healthy men. Hypertens Res,2011,34(12):1309-1312.
    40. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340(2): 115-126.
    41. Libby P. Inflammation in atherosclerosis. Nature,2002,420(6917):868-874.
    42. Zhong X, Zhang HY, Tan H, et al. Association of serum omentin-1 levels with coronary artery disease. Acta Pharmacologica Sinica,2011,32(7):873-878.
    43. Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis:an assessment of the evidence and need for future research. Circulation, 1997,96(11):4095-4103.
    44. Jackson LA, Campbell LA, Schmidt RA, et al. Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma:evaluation of the innocent bystander hypothesis. Am J Pathol,1997,150(5):1785-1790.
    45. Melnick JL, Adam E, Debakey ME. Cytomegalovirus and atherosclerosis. Bioessays,1995,17(10):899-903.
    46. Gupta S, Leatham EW, Carrington D, et al. Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation,1997,96(2):404-407.
    47. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease:is there a link? Lancet,1997,350(9075):430-436.
    48. Tsuji S, Uehori J, Matsumoto M, et al. Human intelectin is a novel soluble lectin that recog-nizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem,2001,276(26):23456-23463.
    49. Komiya T, Tanigawa Y, Hirohashi S. Cloning of the novel gene intelectin, which is expressed in intestinal Paneth cells in mice. Biochem Biophys Res Commun,1998, 251(3):759-762.
    50. Pemberton AD, Knight PA, Wright SH, et al. Proteomic analysis of mouse jejunal epithelium and its response to infection with the intestinal nematode, Trichinella spiralis. Proteomics,2004,4(4):1101-1108.
    51. Datta R, deSchoolmeester ML, Hedeler C, et al. Identification of novel genes in intestinal tissue which are regulated post infection with an intestinal nematode parasite. Infection and Immunity,2005,73(7):4025-4033.
    52. Gu N, Kang G, Jin C, et al. Intelectin is required for IL-13-induced monocyte chemotactic protein-1 and -3 expression in lung epithelial cells and promotes allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol,2010,298(3):L290-296.
    53. Suzuki YA, Shin K, Lonnerdal B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry,2001,40(51):15771-15779.
    54. Pemberton AD, Knight PA, Gamble J, et al. Innate BALB/c enteric epithelial responses to Trichinella spiralis:inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J Immunol,2004,173(3): 1894-1901.
    55. Shibata R, Ouchi N, Kikuchi R, et al. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis,2011,219(2):811-814.
    56. Hung J, McQuillan BM, Chapman CM, et al. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulinresistance. Arterioscler Thromb Vase Biol,2005,25(6):1268-1273.
    57. Flier JS. Obesity wars:molecular progress confronts an expanding epidemic. Cell, 2004,116 (2):337-350.
    58. Che JJ, Li LP, Wang ED, et al. Serum autoantibodies against human oxidized low-density lipoproteins are inversely associated with severity of coronary stenotic lesions calculated by Gensini score. Cardiol J,2011,18(4):364-370.
    59. Senturk T, Sarandol E, Gullulu S, et al. Association between paraoxonase 1 activity and severity of coronary artery disease in patients with acute coronary syndromes. Acta Cardiol,2008,63(3):361-367
    60. Krecki R, Krzeminska-Pakula M, Drozdz J, et al. Relationship of serum angiogenin, adiponectin and resistin levels with biochemical risk factors and the angiographic severity of three-vessel coronary disease. Cardiology Journal,2010, 17(6):599-606.
    61. Leick L, Lindegaard B, Stensvold D, et al. Adipose tissue interleukin-18 mRNA and plasma interleukin-18:effect of obesity and exercise. Obesity (Silver Spring), 2007,15(2):356-363.
    62. an Guilder GP, Hoetzer GL, Greiner JJ, et al. Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults. Obesity (Silver Spring),2006,14(12):2127-2131.
    63. Tan HW, Liu X, Bi XP, et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis, 2010,208(2):350-357.
    64. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation,2009,120(16): 1640-1645.
    65. Smart MC, Dedoussis G, Yiannakouris N, et al. Genetic variation within IL18 is associated with insulin levels, insulin resistance and postprandial measures. Nutr Metab Cardiovasc Dis,2011,21(7):476-484.
    66. Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation,2001,104 (14): 1598-1603.
    67. de Nooijer R, Thusen von der JH, Verkleij CJ, et al. Over expression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E deficient mice. Arterioscler Thromb Vase Biol,2004,24(12): 2313-2319.
    68. Yamagami H, Kitagawa K, Hoshi T, et al. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler Thromb Vase Biol,2005,25(7): 1458-1462.
    69. Hulthe J, McPheat W, Samnegard A, et al. Plasma interleukin(IL)-18 concentrations is elevated in patients with previous myocardial infarction and related to severity of coronary atherosclerosis independently of C-reactive protein and IL-6. Atherosclerosis,2006,188(2):450-454.
    70. Stein S, Lohmann C, Handschin C, et al. ApoE2/2 PGC-1a2/2 mice display reduced IL-18 Levels and do not develop enhanced atherosclerosis. PLoS One,2010, 22;5(10):e13539.
    71. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atheroscle-rosis in apo-lipoprotein E-/- mice through release of interferongamma. Circ Res, 2002,90(2):E34-E38.
    72. Gerdes N, Sukhova GK, Libby P, et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for atherogenesis. J Exp Med,2002,195(2):245-257.
    73. Ranjbaran H, Sokol SI, Gallo A, et al. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol,2007,178(1):592-604.
    74. Libby P. The molecular bases of the acute coronary syndromes. Circulation, 1995,91(11):2844-2850.
    75. Amento EP, Ehsani N, Palmer H, et al. Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arteriosclerosis,1991,11(5):1223-1230.
    76. Cybulsky MI, Gimbrone MA, Libby P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol,1993,143(6):1551-1559.
    77. Chung HK, Lee IK, Kang H, et al. Statin inhibits interferon-gamma induced expression of intercellular adhesion molecule-1 (ICAM-1) in vascular endothelial and smooth muscle cells. Exp Mol Med,2002,34(6):451-461.
    78. Puren AJ, Fantuzzi G, Gu Y, et al. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-lbeta via TNFalpha production from non-CD14+human blood mononuclear cells. J Clin Invest,1998,101(3):711-721.
    79. Yoshimoto T, Min B, Sugimoto T, et al. Nonredundant roles for CD1d-restricted natural killer T cells and conventional CD4+T cells in the induction of immunoglo-bulin E antibodies in response to interleukin 18 treatment of mice. J Exp Med,2003, 197(8):997-1005.
    80. Mach F, Schonbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature,1998,394(6689):200-203.
    81. Schonbeck U, Sukhova GK, Shimizu K, et al. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A, 2000,97(13):7458-7463.
    82. Lutgens E, Gorelik L, Daemen MJ, et al. Requirement for CD 154 in the progression of atherosclerosis. Nat Med,1999,5(11):1313-1316.
    83. Khan DA, Ansari WM, Khan FA. Pro/anti-inflammatory cytokines in the pathogenesis of premature coronary artery disease. J Interferon Cytokine Res,2011, 31(7):561-567.
    84. Chalikias GK, Tziakas DN, Kaski JC, et al. Interleukin-18:interleukin-10 ratio and in-hospital adverse events in patients with acute coronary syndrome. Atherosclerosis,2005,182(1):135-143.
    85. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women. Results from the MONICA/KORA Augsburg case-cohort study,1984-2002. Arterioscler Thromb Vasc Biol,2006, 26(12):2745-2751.
    86. Souza JR, Oliveira RT, Blotta MH, et al. Serum levels of interleukin-6, interleukin-18 and C-reactive protein inpatients with Type-2 diabetes and acute coronary syndrome without ST-segment elevation. Arq Bras Cardiol,2008,90(2): 86-90.
    87. Diverse populations collaboration. Smoking, body weight, and CHD mortality in diverse populations. Prev Med,2004,38(6):834-840.
    88. Haverkate F, Thompson SG, Pyke SD, et al. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European concerted action on thrombosis and disabilities angina pectoris study group. Lancet,1997,349(9050): 462-466.
    1. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340(2): 115-126.
    2. Yang Li, Sun Genyi, Liu Yujie, et al. Compare of serum inflammatory cytokine levels in patients with different types of coronary heart disease. J Clin Cardiol (China),2009,25(2):152-153.
    3. Zhao Q. Inflammation,autoimmunity and athrosclerosis. Discov Med,2009,8(40): 7-12.
    4 Ding RM. The value of Hs-CRP combined with IL-18 detection of coronary artery disease. China Medical Herald,2008,5(14):103.
    5. Center DM, Berman JS, Kornfeld H, et al. The lymphocyte chemoattractant factor. J Lab Clin Med,1995,125(2):167-172.
    6. Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol,1982,128(6): 2563-2568.
    7. Pinsonneault S, El Bassam S, Mazer B, et al. IL-16 inhibits IL-5 production by antigen-stimulated T cells in atopic subjects. J Allergy Clin Immunol,2001,107(3): 477-482.
    8. Reardon CA, Blachowicz L,White T, et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice.Arterioscler Thromb Vasc Biol,2001,21(6):1011-1016.
    9. Mathy NL, Scheuer W, Lanzendorfer M, et al. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology,2000,100 (1):63-69.
    10. Le Naour R, Lussiez C, Raoul H, et al. Expression of cell adhesion molecules at the surface of in vitro human immunodeficiency virus type 1-infected human monocytes:relationships with tumor necrosisfactor a, interleukin 1β, and interleukin 6 syntheses. AIDS Res Hum Retroviruses,1997,13(10):841-855.
    11. Musso T, Calosso L, Zucca M, et al. Interleukin-15 activates proinflammatory and antimicrobial functions in polymorphonuclear cells. Infect Immun,1998,66(6): 2640-2647.
    12. Simon AD, Yazdani S, Wang W, et al. Circulating levels of IL-lb, a prothrombotic cytokine, are elevated in unstable angina versus stable angina. J Thromb Thrombolysis,2000,9(3):217-222.
    13. Ikeda U, Ito T, Shimada K. Interleukin-6 and acute coronary syndrome. Clin Cardiol,2001,24 (11):701-704.
    14. Mendall MA, Patel P, Asante M, et al. Relation of serum cytokine concentrations to cardiovascular risk factors and coronary heart disease. Heart,1997,78(3): 273-277.
    15. Liuzzo G, Baisucci LM, Gallore JR, et al. Enhanced inflammatory response in patients with preinfarction unstable angina. J Am Coll Cardiol,1999,34(6): 1696-1703.
    16. Gokkusu C, Aydin M,Ozkok E, et al. Influences of genetic variants in interleukin-15 gene and serum interleukin-15 levels on coronary heart disease. Cytokine,2010,49(1):58-63.
    17. Parada NA, Center DM, Kornfeld H, et al. Synergistic activation of CD4+ T cells by IL-16 and IL-2. The Journal of Immunology,1998,160(5):2115-2120.
    18. Gotsman I, Sharpe AH, Lichtman AH. T-cell costimulation and coinhibition in atherosclerosis. Circ Res,2008,103(11):1220-1231.
    19. Yucheng Chen, Hao Huang, Si Liu, et al. IL-16 rs11556218 gene polymorphism is associated with coronary artery disease in the Chinese Han population. Clinical Biochenmistry,2011,44(13):1041-1044.
    20. Wright RS, Anderson JL, Adams CD, et al.2011 ACCF/AHA Focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. J Am Coll Cardiol. 2011,57(19):e215-367.
    21. Kim Fox, Chairperson, London (UK), et al. Guidelines on the management of stable angina pectoris. European Heart Journal doi:10.1093/eurheartj/eh1002.
    22. Cheng X, Sun RL, Wang SR,et al. Huang Wan clinical electrocardiography.6th edition. Beijing, People's Health Publishing House.2009,1:70-81.
    23. Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis,2005,182(2):241-248.
    24. Kwan T, Feit A, Alam M, et al. ST-T alternans and myocardial ischemia. Angiology,1999,50(3):217-222.
    25. Machado DB, Crow RS, Boland LL, et al. Electrocardiographic findings and incident coronary heart disease among participants in the Atherosclerosis Risk in Communities (ARIC) study. Am J Cardiol,2006,97(8):1176-1181
    26. Yarnell JWG, Baker IA, Sweetnam PM, et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. Circulation,1991, 88(3):836-844.
    27. van derWal AC, Becker AE, van der Loos CM, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994,89(1):36-44.
    28. Serneri GGN, Prisco D, Martini F, et al. Acute T-cell activation is detectable in unstable angina. Circulation,1997,95(7):1806-1812.
    29. Wu DM, Zhang Y, Parada NA, et al. Processing and release of IL-16 from CD4+ but not CD8+T cells is activation dependent. J Immunol,1999,162(3):1287-1293.
    30. Laberge S, Cruikshank WW, Kornfeld H, et al. Histamine-induced secretion of lymphocyte chemoattractant factor from CD8+T cells is independent of transcription and translation. Evidence for constitutive protein synthesis and storage. J Immunol, 1995,155(6):2902-2910.
    31. Laberge S, Ernst P, Ghaffar O, et al. Increased expression of interleukin-16 in bronchial mucosa of subjects with atopic asthma. Am J Respir Cell Mol Biol,1997, 17(2):193-202.
    32. Elssner A, Doseff AI, Duncan M, et al. IL-16 is constitutively present in peripheral blood monocytes and spontaneously released during apoptosis. J Immunol, 2004,172(12):7721-7725.
    33. Rand TH, Cruikshank WW, Center DM, et al. CD4-mediated stimulation of human eosinophils:lymphocyte chemoattractant factor and other CD4-binding ligands elicit eosinophilic migration. J Exp Med,1991,173(6):1521-1528.
    34. Cruikshank WW, Berman JS, Theodore AC, et al. Lymphokine activation of T4+ T lympho-cytes and monocytes. J Immunol,1987,138:3817-3823.
    35. Kaser A, Dunzendorfer S, Offner FA, et al. A role for IL-16 in the cross-talk between dendritic cells and T cells. J Immunol,1999,163(6):3232-3238.
    36. Lynch EA, Heijens CA, Horst NF, et al. Cutting edge:IL-16/CD4 preferentially induces Thl cell migration:requirement of CCR5. J Immunol,2003,171(10):4965-4968.
    37. Cruikshank WW, Center DM, Nisar N, et al. Molecular and functional analysis of a lymphocyte chemoattractant factor:Association of biologic function with CD4 expression. Proc Natl Acad Sci USA,1994,91(11):5109-5113.
    38. Center DM, Kornfeld H, Cruikshank WW. Interleukinl6 and its function as a CD4 ligand. Immunol,1996,17(10):476-481.
    39. Qin XJ, Shi HZ, Huang ZX, et al. Interleukin-16 in tuberculous and malignant pleural effusions. Eur Respir J,2005,25:605-611.
    40. Crikshank ww, Long A,Tarpy RE, et-al. Early identification of interleukin-16 (lymphocyte chemoattractant factor)and macrophage inflammatory protein 1 alpha(MIPl alpha) in bronchial-veolar lavage fluid of antigen-challenged asthmatics. Am J Respir cell Mol Biol,1995,13(6):738-747.
    41. Lee S, Kaneko H, Sekigawa I, et al. Circulating interleukin-16 in systemic lupus erythematosus. Br J Rheumatol,1998,37(12):1334-1337.
    42. Laberge S, Ghaffar O, Boguniewicz M, et al. Association of increased CD4+ T-cell infiltration with increased IL-16 gene expression in atopic dermatitis. J Allergy Clin Immunol,1998,102(4 Pt 1):645-650.
    43. Laberge S, Durham SR, Ghaffar O, et al. Expression of IL-16 in allergen-induced late-phase nasal responses and relation to topical glucocorti-costeroid treatment. J Allergy Clin Immunol,1997,100(4):569-574.
    44. Harvey EJ, Ramji DP. Interferon-gamma and atherosclerosis:pro- or antiathero- genic? Cardiovasc Res,2005,67(1):11-20.
    45. Li H, Cybulsky MI, Gimbrone MA Jr, et al. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb,1993,13(2):197-204.
    46. Jonasson L, Holm J, Skalli O, et al. Expression of class Ⅱ transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest,1985,76(1): 125-131.
    47. Gupta S, Pablo AM, Jiang X, et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest,1997,99(11):2752-2761.
    48. Munro JM, Cotran RS. The pathogenesis of atherosclerosis:atherosclerosis and inflammation. Lab Invest,1988,58:249-261.
    49. Radhakrishnan G, Suzuki R, Maeda H, et al. Inhibition of neointimal hyperplasia development by MCI-186 is correlated with downregulation of nuclear factorkappaB pathway. Circ J,2008,72(5):800-806.
    50. Vadas MA, Gamble JR, Rye K, et al. Regulation of leucocyte endothelial interactions of special relevance to atherogenesis. Clin Exp Pharmacol Physiol,1997, 24(5):A33-A35.
    51. Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1 induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest,1996,97(3):769-776.
    52. Ozeren A, Aydin M, Tokac M, et al. Levels of serum IL-1β, IL-2, IL-8 and tumor necrosis factor-a in patients with unstable angina pectoris. Mediators Inflamm, 2003,12(6):361-365.
    53. Balbay Y, Tikiz H, Baptiste RJ, et al. Circulating interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology,2001,52(2):109-114.
    54. Shibata M, Ueshima K, Harada M, et al. Effect of magnesium sulfate pretreatment and dignificance of matrix metalloproteinase-1 and interleukin-6 levels in coronary reperfusion therapy for patients with acute myocardial infarction. Angiology,1999,50(7):573-582.
    55. Yamashita H, Shimada K, Seki E, et al. Concentrations of interleukins, interferon, and C-reactive protein in stable and unstable angina pectoris. Am J Cardiol,2003, 91(2):133-136.
    56. Pasini AF, Anselmi M, Garbin U, et al. Enhanced levels of oxidized low-density lipoprotein prime monocytes to cytokine overproduction via upregulation of CD14 and toll-Like receptor 4 in unstable angina. Arterioscler Thromb Vasc Biol,2007, 27(9):1991-1997.
    57. Tracey KJ, Cerami A. Tumor Necrosis Factor:A pleitropic cytokine and therapeutic target. Ann Rev Med,1994,45:491-503.
    58. Dejana E, Brevario F, Erroi A, et al. Modulation of endothelial cell functions by different molecular species of interleukin 1. Blood,1987,69(2):695-699.
    59. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol, 1992,10:411-452.
    60. Ohta H, Wada H, Niwa T, et al. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Athero-sclerosis,2005,180(1):11-17.
    61. Mizia-Stec K, Gasior Z, Zahorska-Markiewicz B, et al. Serum tumour necrosis factor-alpha, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes. Coron Artery Dis,2003,14(6):431-438.
    62. Avice MN, Demeure CE, Delespesse G, et al. IL-15 promotes IL-12 production by human monocytes via T celldependent contact and may contribute to IL-12-mediated IFN-gamma secretion by CD41 T cells in the absence of TCR ligation. J Immunol,1998,161(7):3408-3415.
    63. Badolato R, Ponzi AN, Millesimo M, et al. Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood,1997, 90(7):2804-2809.
    64. Alleva DG, Kaser SB, Monroy MA, et al. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production:evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol,1997,159(6):2941-2951.
    65. Wilkinson PC, Liew FY. Chemoattraction of human blood T lymphocytes by interleukin-15. J Exp Med,1995,181(3):1255-1259
    66. Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15. Blood,1996,88(1):230-235.
    67. Mottonen M, Isomaki P, Luukkainen R, et al. Interleukin-15 up-regulates the expression of CD154 on synovial fluid T cells. Immunology,2000,100(2):238-244.
    68. Wuttge DM, Eriksson P, Sirsjo A, et al. Expression of interleukin-15 in mouse and human atherosclerotic lesions. Am J Pathol,2001,159(2):417-423.
    69. Aukrust P, Muller F, Ueland T, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Circulation,1999,100 (6): 614-620.
    70. Lee Y, Lee WH, Lee SC, et al. CD40L activation in circulating platelets in patients with acute coronary syndrome. Cardiology,1999,92(1):11-16.
    71. Garlichs CD, Eskafi S, Raaz D, et al. Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart,2001,86(6):649-655.
    72. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature,1998,391(6667):591-594.
    73. Lievens D, Zernecke A, Seijkens T, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood,2010,116(20):4317-4327.
    74. Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med,2003,348(12):1104-1111.
    75. Mach F, Schonbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998,394(6689):200-203.
    76. Kimura N, Itoh S, Nakae S, et al. Interleukin-16 deficiency suppresses the development of chronic rejection in murine cardiac transplantation model. J Heart Lung Transplant,2011,30(12):1409-1417.
    77. Zou GM, Tam YK. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur Cytokine Netw,2002,13(2):186-199.
    78. Mazzone A, De Servi S, Vezzoli M,et al. Plasma levels of interleukin 2,6,10 and phenotypic characterization of circulating T lymphocytes in ischemic heart disease. Atherosclerosis,1999,145(2):369-374.
    79. Stemme S, Holm J, Hansson, GK. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler Thromb,1992,12(2):206-211.
    80. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of mouse helper T cell clone. I. Definition according to profile of lymphokine activities and secreted proteins. J Immunol,1986,136(7):2348-2357.
    81. Cherwinski HM, Schumacher JH, Brown KD, et al. Two types of mouse helper T cell clone. Ⅲ. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med,1987,166(5):1229-1244.
    82. Wierenga EA, Snoek M, de Groot C, et al. Evidence for compartmentalization of functional subsets of CD4+T lymphocytes in atopic patients. J Immunol,1990, 144(12):4651-4656.
    83. Haanen JB, de Waal Malefijt R, Res PC, et al. Selection of a human T helper type 1-like T cell subset by mycobacteria. J Exp Med,1991,174(3):583-592.
    84. Yssel H, Shanafelt MC, Soderberg C, et al. B. burgdog7 activates T cells to produce a selective pattern oflymphokines in Lyme arthritis. J Exp Med,1991,174: 593-601.
    85. Del Prete GF, De Carli M, Mastromauro C, et al. Purified protein derivative of mycobacte-rium tuberculosis and excretory-secretory antigen (s) of toxocara canis expand in vitro human T cells with stable and opposite (type 1 helper or type 2 helper) profile of cytokine production. J Clin Invest,1991,88(1):346-350.
    86. Hansson, GK, et al. T lymphocytes inhibit the vascular response to injury. Proc Natl Acad Sci USA,1991,88(23):10530-10534.
    87. Fernandes JL, Mamoni RL, Orford JL, et al. Increased Thl activity in patients with coronary artery disease. Cytokine,2004,26(3):131-137.
    88. Lee ME, Bucur SZ, Gillespie TW, et al. Recombinant human CD40 ligand inhibits simian immunodeficiency virus replication:A role for interleukin-16. J Med Primatol,1999,28(4-5):190-194.
    89. Arima M, Plitt J, Stellato C, et al. Expression of interleukin-16 by human epithelial cells:inhibition by dexamethasone. Am J Respir Cell Mol Biol,1999,21(6): 684-692.
    90. El Bassam S, Pinsonneault S, Kornfeld H, et al. Interleukin-16 inhibits interleukin-13 production by allergen-stimulated blood mononuclear cells. Immunology,2006,117(1):89-96.
    91. Zhen G, Park SW, Nguyenvu LT, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol,2007,36(2):244-253.
    92. Della Bella S, Nicola S, Timofeeva I, et al. Are interleukin-16 and thrombopoietin new tools for the in vitro generation of dendritic cells? Blood,2004, 104(13):4020-4028.
    93. Tsuji S, Uehori J, Matsumoto M, et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem,2001,276(26):23456-23463.
    94. Che J, Li G, Wang W, et al. Serum autoantibodies against human oxidized low-density lipoproteins are inversely associated with severity of coronary stenotic lesions calculated by Gensini score. Cardiol J,2011,18(4):364-370.
    95. Senturk T, Sarandol E, Gullulu S, et al. Association between paraoxonase 1 activity and severity of coronary artery disease in patients with acute coronary syndromes. Acta Cardiol,2008,63(3):361-367.
    96. Krecki R, Krzeminska-Pakula M, Drozdz J, et al. Relationship of serum angiogenin, adiponectin and resistin levels with biochemical risk factors and the angiographic severity of three-vessel coronary disease. Cardiology Journal,2010, 17(6):599-606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700