抗氧化乐果棉蚜谷胱甘肽S-转移酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以棉蚜(Aphis gossypii Glover)为实验材料,针对其广泛发生的抗药性问题,通过持续筛选建立棉蚜实验室种群,以昆虫体内重要的抗药性相关代谢酶系为切入点,从生理生化和分子生物学方面入手,明确了棉蚜体内与氧化乐果抗药性相关的酶系的变化以及抗性品系棉蚜体内谷胱甘肽S-转移酶(GSTs)的特征。
     通过单头汰选得到了棉蚜氧化乐果敏感品系,其对氧化乐果的敏感性达到LC50值为18.23mg/L。采用浸叶法持续筛选建立了棉蚜氧化乐果抗性品系,其LC50值高达5657.90mg/L,抗性倍数为310.76。
     通过对棉蚜体内重要的代谢酶系羧酸酯酶(CarE)、乙酰胆碱酯酶(AChE)的生化测定,没有发现CarE在棉蚜氧化乐果抗性形成中的显著变化。与敏感品系相比,抗性品系AChE对氧化乐果的敏感性出现了4.12倍的降低,其代谢碘化硫代乙酰胆碱的比活力由2.910.08mOD/mg pr. min下降到0.370.02mOD/mg pr. min,相应地,Vmax由11.030.21nmol/mg pr. min下降到了0.42
     0.00nmol/mg pr. min,Km则由1.970.11μM降低到了0.610.01μM。说明乙酰胆碱酯酶的敏感性降低是棉蚜氧化乐果抗性形成的重要机制之一。
     以1-氯2,4–二硝基苯为底物对GST_s进行生化测定,抗性品系GST_s比活力轻微下降,由176.54±7.21nmol/mg pr. min降至144.07±5.19nmol/mg pr. min,但Vm由250.00±9.90nmol/mg pr. min增至833.33±33.62nmol/mg pr. min,Km也由1.38±0.05mM升高到3.33±0.12mM。通过马来酸二乙酯(DEM)的体内抑制测定发现DEM对抗性品系棉蚜的增效比为0.11,与氧化乐果有拮抗作用,而体外抑制结果表明DEM对抗性品系GST_s的抑制能力有微弱降低,抑制中浓度(IC50)是敏感品系的1.17倍。对底物的代谢机制方面,敏感品系GST_s表现为底物浓度依赖的有序机制和乒乓机制相结合的复合机制,而抗性品系GST_s则表现为单一高效的有序机制。克隆得到了棉蚜Delta类GST_s的一个包含完整编码区的基因片段,推导其编码一个具有216个氨基酸残基的蛋白,其序列在敏感和抗性品系中没有差异。对该基因进行Real-time PCR验证,在抗性品系中,该基因的DNA拷贝数比敏感品系减少了1.52倍,而mRNA转录水平更是下调至敏感品系的0.33倍。以上结果表明在长期的氧化乐果选择压力下抗性品系GST_s在基因表达和代谢反应方面都发生了一定的适应性改变。
     以上研究结果表明:抗性棉蚜GST_s在氧化乐果选择压力下,总活力受基因水平的调控而下降,但是其代谢机制由灵活性更强的复合机制转变为了催化效率更高的单一机制,单位GST_s的代谢能力升高,保证了抗性品系棉蚜体内GST_s正常的生理功能。研究结果为棉蚜的氧化乐果抗性机制研究提供了有力的理论依据。
Cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), emergesresistance nearly to all of the commercialized insecticide classes globally. In order toelucidate the resistant mechanism to omethoate in cotton aphid, two aphid strainshave been built in laboratory. The researches focus on the important enzymes whichare highly related to insecticide resistance in cotton aphid. Biochemical andmolecular methods were conducted, and the results revealed the adaptation toomethoate stress of cotton aphid.
     The susceptible strain exhibited a low LC50of omethoate as18.23mg/L. Andthe resistant strain had developed a high level resistance to omethoate by frequentlyselection. The LC50of omethoate as high as5657.90mg/L, and the resistant foldwas310.76when compared to the susceptible strain.
     The biochemical results of carboxylesterase(CarE)indicated that it was notinvolved in the omethoate resistance of cotton aphid. Compared with the susceptiblestrain, the susceptibility to omethoate of acetylcholinesterase (AChE) downregulatedof4.12-fold in the resistant strain. The special activity to acetylthiocholine iodidereduced from2.91±0.08to0.370.02mOD/mg pr. min. Correlatively, the Vmaxreduced from11.030.21to0.420.00nmol/mg pr. min, and the Kmreduced from1.970.11to0.610.01μM. So the downregulation of AChE susceptibility wasone of the important resistant mechanisms to omethoate in cotton aphid.
     1-ch1oro-2,4-dinitrobenzene (CDNB) was applied to determine the activity ofglutathione S-transferases (GST_s). The special activity was144.07±5.19nmol/mgpr. min in the resistant strain that slightly lower when compared to the susceptiblestrain which possessed higher activity of176.54±7.21nmol/mg pr. min. But theVmaxelevated from250.00±9.90to833.33±33.62nmol/mg pr. min and Kmelevatedfrom1.38±0.05to3.33±0.12mM. Thediethyl malate (DEM) was an antagonism with omethoate as the synergism ratio was0.11. The IC50to the resistant strain(2.32×10-4±0.14μM) was slightly higher (1.17-fold) than the susceptible strain(1.98×10-4±0.13μM). GST_s from the two strains exhibited differential catalyticmodels. In the susceptible strain, a biphasic kinetic mechanism was observed with abreakpoint depend on the GSH concentration, in the higher GSH concentrationcondition, GST_scatalyzed GSH conjugated with CDNB by a sequential mechanismand a ping-pong pathway predominated the conjugation in the lower GSHconcentration range. However, in the resistant strain, the single efficiently sequentialmechanism constantly catalyzed GSH conjugated with CDNB. A Delta GST_sDNAfragment was successfully amplified from the susceptible and resistant strainrespectively, which encoded the identical full GST_sprotein sequence (216aminoacid residues). The GST_sDNA copies was1.52-fold lower in the resistant strainwhile the mRNA transcription level was much lower (0.33-fold). It was assumedthat the GST_smay become insensitivity and was been compensated by efficientsingle ordered sequential mechanism in the high level omethoate resistance of cottonaphid.
     The researches provided evidences for the effect of AChE in omethoateresistance of cotton aphid, and detected the modification of GST_s under theomthoate stress. Which were important to elucidate the mechanism of omethoateresistance in A. gossypii.
引文
[1]陈凤菊,高希武.昆虫谷胱甘肽S-转移酶的基因结构及其表达调控[J].昆虫学报,2005,48(4):600-608.
    [2]豆威,王进军.昆虫谷胱甘肽S-转移酶研究进展[C].农业生物灾害预防与控制研究会议论文集,2005,426-431.
    [3]高希武,周序国,王荣京,等.棉铃虫乙酰胆碱酯酶(AChE)的体躯分布及部分纯化[J].昆虫学报,1998,41(增):19-25.
    [4]龚坤元,张桂林,翟桂英.棉蚜对“1059”的抗性测定[J].昆虫学报,1964,13(1):1-8.
    [5]韩召军,张明,王荫长.五种蚜虫羧酸酯酶的活力和同工酶谱变异的初步研究[J].南京农业大学学报,1987,4(增刊):31-35.
    [6]何林,谭仕禄,曹小芳,等.朱砂叶螨的抗药性选育及其解毒酶活性研究[J].农药学学报,2003,5:23-29.
    [7]胡冠芳,陈明,张新瑞,等.甘肃敦煌棉蚜抗药性测定[J].西北农业学报,2000,9(2):45-48.
    [8]黄诚华,方琦,叶恭银,等.二化螟幼虫抗药性相关酶系的组织及亚细胞分布特征[J].广西农业科学,2009,40:153-158.
    [9]蒋国芳,郑哲明.蝗虫分子系统学研究进展[J].昆虫知识,2001,38:81-86.
    [10]冷欣夫,唐振华,王荫长.杀虫药剂分子毒理学及昆虫抗药性[M].北京:中国农业出版社,1996,1-27,118-129,139-140.
    [11]李飞,韩召军,吴智锋,等.我国棉蚜抗药性研究现状[J].棉花学报,2001,13(2):121-124.
    [12]李飞,韩召军,吴智峰.取食不同寄主棉蚜的羧酸酯酶和乙酰胆碱酯酶特性比较[J].南京农业大学学报,2002,25(2):57-60.
    [13]李腾武,高希武,郑炳宗,等.小菜蛾不同亚细胞层羧酸酯酶的性质研究[J].农药学学报,1999,1(2):47-53.
    [14]刘德明,杨秀芬,王树礼,等.辽宁棉区棉蚜抗药性监测与治理抗性研究[J].昆虫知识,1994,31(2):81-85.
    [15]马惠,顾春波,赵鸣,等.棉蚜抗药性研究进展[C].中国棉花学会2008年年会论文汇编,2008,66-70.
    [16]马志卿,江志利,陈安良,等.新疆北疆棉蚜抗药性测定及发展动态分析[J].西北农林科大学学报,2001,29(2):80-82.
    [17]潘怡欧.棉蚜对马拉硫磷的抗性机制研究[D].中国农业大学,2008.
    [18]石键,崔光先,郑港庆.河北棉区棉蚜对内吸磷抗药性的调查[J].昆虫知识,1965,2(6):329-330.
    [19]孙耘芹,冯国蕾,袁家珪,等.棉蚜对有机磷杀虫剂抗性的生化机理[J].昆虫学报,1987,30(1):13-19.
    [20]唐振华.我国农业害虫抗药性及其对策[J].植物保护,1983,1:22-24.
    [21]唐振华.昆虫抗药性及其治理[M].北京:农业出版社,1989,1-136,235-257.
    [22]唐振华,毕强.杀虫剂作用的分子行为[M].上海:上海远东出版社,2003.
    [23]王兴林,冯俊涛,杨崇珍,等.陕西棉蚜抗药性监测[J].西北农业学报,1997,6(3):57-60.
    [24]王荫长,韩召军.我国农业害虫抗药性发生概况[J].昆虫知识,1991,28(2):20-121.
    [25]威尔金逊CF.杀虫药剂的生物化学和生理学[M].北京:科学出版社,1980,104-105,107-114.
    [26]吴刚,尤民生,赵士熙.抗性和敏感小菜蛾谷胱甘肽-S-转移酶和谷胱甘肽的比较[J].福建农业大学学报,2000,29(4):178-181.
    [27]吴精晶,牛金志,豆威,等.昆虫羧酸酯酶研究进展[C].公共植保与绿色防控,2010:370-373.
    [28]夏敬源.我国棉蚜抗药性现状与治理对策[J].中国棉花,1992,(5):2-5.
    [29]许雄山,韩召军,王荫长.羧酸酯酶与棉铃虫对有机磷杀虫剂抗性的关系[J].南京农业大学学报,1999,22(4):41-44.
    [30]徐遥,杨秀荣,芮昌辉,等.新疆棉花主要害虫对几种杀虫剂的抗药性测定[J].西北农业学报,2004,13(2):74-78.
    [31]姚洪渭,蒋彩英.白背飞虱羧酸酯酶与乙酰胆碱酯酶的体躯与亚细胞分布特征[J].浙江大学学报,2001,27:5-10.
    [32]赵善欢.昆虫毒理学[M].北京:农业出版社,1991.
    [33]赵颖.棉蚜不同抗性品系羧酸酯酶比较[J].植物保护学报,1997,24(4):351-355.
    [34]郑炳宗,高希武,王政国,等.瓜-棉蚜对有机磷及氨基甲酸酯杀虫剂抗性机制研究[J].植物保护学报,1989,16(2):131-138.
    [35]左伟东,余泉友,李斌,等.家蚕谷胱甘肽转移酶基因的克隆、序列分析及其表达模式[J].农业生物技术学报,2007,15(4):595-601.
    [36]Ahmad M and Arif M I. Susceptibility of Pakistani populations of cotton aphidAphis gossypii (Homoptera:Aphididae) to endosulfan, organophosphorus andcarbamate insecticides [J]. Crop Protection,2008,27:523-531.
    [37]Aldridge W N. Serum esterases1. Two types of esterase (A and B) hydrolyzingp-nitrophenyl acetate, propionate and butyrate, and a method for theirdetermination [J]. Biochemical Journal,1953,53:110-117.
    [38]Arpagaus M and Toutant J P. Polymorphism of acetylcholinesterase in adult Pierisbrassicae heads. Evidence for detergent-insensitive and Triton X100-interactingforms [J]. Neurochem. Int.,1985,7(5):793-804.
    [39]Aspern KV.A study of housefly esterase bymeans of a sensitive colorimetricmethod [J]. J. Insect. Physiol.,1962,8:401-406.
    [40]Bradford MM. A rapid and sensitive method for the quantitation of microgramquantities of protein, utilizing the principle of protein-dye binding [J]. Anal.Biochem.,1976,72:248-254.
    [41]Chiang F and Sun C. Glutathione transferase isozymes of diamondback mothlarvae and their role in the degradation of some organophosphorous insecticides[J]. Pest. Biochem. Physiol.,1993,45:7-14.
    [42]Cho J R, Kim Y J, Hong K J, et al.. Resistance Monitoring and Enzyme Activityin Field-collected Populations of the Spiraea Aphid, Aphis citricola van der Goot[J]. J. of Asia-Pacific Entomol.,1999,2:113-119.
    [43]Chung SI and Folk J E. Transglutaminase from Hair Follicle of Guinea Pig [J]. J.Biol. Chem.,1972,247:2798-2807.
    [44]Ding Y C, Ortelli F, Roasiter L C,et al..The Anopheles gambiae glutathionetransferase supergene family:annotation,phylogeny and expression profiles [J].BMC Genomics.2003,4:1-16.
    [45]Feyereisen R. Molecular biology of insecticide resistance [J]. Toxicol. Lett,1995,(82/83):83-90.
    [46]Folk J E. Mechanism of Action of Guinea Pig Liver Transglutaminase [J]. J. Biol.Chem.,1969,244:3707-3713.
    [47]Gubran, E M E, Delorme R, et al.. Insecticide resistance in cotton aphid Aphisgossypii (Glov.) in the Sudan Gezira [J]. Pestic. Sci.,1992,35:101–107.
    [48]Hardstone MC, Leichter C, Harrington LC,et al.. Cytochrome P450monooxygenase-mediated permethrin resistance confers limited and larvalspecific cross-resistance in the southern house mosquito, Culex pipiensquinquefasciatus [J]. Pesticide Biochemistry and Physiology,2007,89:175-184.
    [49]Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The firstenzymatic step in mercapturic acid formation [J]. J. BioI. Chern.,1974,249:7130-7139.
    [50]Han Z J, Moores GD, Denholm I,et al.. Devonshire. Association betweenBiochemical Markers and Insecticide Resistance in the Cotton Aphid, Aphisgossypii Glover [J]. Pesticide Biochemistry and Physiology,1998,62:164–171.
    [51]He H G,Jiang H B,Zhao,Z M,et al.. Effects of a sublethal concentration ofavermectin on the development and reproduction of citrus red mite, Panonychuscitri (McGregor)(Acari:Tetranychidae)[J]. International Journal of Acarology,2011,37(1):1-9.
    [52]Hemingway J, Miyamoto J, Herath PRJ. A possible novel link betweenorganophosphorous and DDT insecticide resistance genes in Anopheles:supporting evidence from fenitrothion metabolism studies [J]. Pest. Biochem.Physiol.,1991,39:49-56.
    [53]Hemingway J. The molecular basis of two contrasting metabolic mechanisms ofinsecticide resistance [J]. Insect Biochemistry and Molecular Biology,2000,31:1009-1015.
    [54]Hemingway, J, Hawkes, NJ, et al.. The molecular basis ofinsecticide resistance inmosquitoes [J]. Insect Biochem. Mol. Biol.,2004,34:653-665.
    [55]Herron GA, Powis K, Rophail J. Insecticide resistance in Aphis gossypii Glover(Hemiptera:Aphididae), a serious threat to Australian cotton [J].AustralianJournal of Entomology,2001,40:85-91.
    [56]Hollingsworth RG, Tabashnik BE, Ullman DE, et al.. Resistance of Aphis gossypii(Homoptera:Aphididae) to insecticides in Hawaii: spatial patterns and relation toinsecticide use. J. Econ. Entomol,1994,87:293-300.
    [57]Huang HS, Hu NT, Yao YE, et al.. Molecular cloning and heterologousexpression of a glutathione S-transferase involved in insecticide resistance fromthe diamondback moth, Plutella xylostella [J]. Insect Biochem. Mol. Biol.,1998,28:651-658.
    [58]Khodzhaev ST, Roslavtseva SA, Abdulaev E, et al..Resistance of the cotton aphidto insecticides [J]. Zashchita Rastenii,1985,12,30.
    [59]Kim GH, Shin WK, Ahn JW, et al.. Susceptibility of several insecticides on threeaphids [J]. Kor. J. Plant Prot,1987,26:83-88.
    [60]Lee DW, Choi JM, Kim WT, et al..Mutations of acetylcholinesterase1contributeto prothiofos-resistance in Plutella xylostella (L.)[J]. Biochem. Biophys. ResCommun.,2007,(353):591-597.
    [61]Li F and Han ZJ. Two different genes encoding acetylcholinesterase existingincotton aphid, Aphis gossypii Glover [J]. Genome,2002,45:1134-1141.
    [62]Li F and Han ZJ. Mutations in acetylcholinesterase associated with insecticideresistance in the cotton aphid, Aphis gossypii Glover. Insect. Biochem. Mol Biol,2004,(34):397-405.
    [63]Moores GD, Gao XW, Denholm I, et al..Characterisation of insensitiveacetylcholinesterase in insecticide resistant cotton aphids, Aphis gossypii Glover(Homoptera: Aphididae)[J]. Pestic.Biochem. Physiol,1996,56:102-110.
    [64]Motogoyama LR, Kao P, Lin T,et al.. Dual role of esterases in insecticideresistance in the green rice leafhopper [J]. Pestic. Biochem. Physiol.,1984,32:139-147.
    [65]Mouches C,Pasteur N, Berge JB. Amplification of an esterase gene is responsiblefor insecticide resistance in a California culex mosquito [J]. Science,1986,233:778-780.
    [66]Mutero A, Pralavorio M, Bride JM, et al.. Resistance-associated point mutation ininsecticide-insensitive acetylcholinesterase [J]. Proc. Natl. Acad. Sci., USA,1994,91:5922-5926.
    [67]Obrien, PJ and Graves, JB. Insecticide resistance and reproductive-biology ofAphis gossypii Glover (Homoptera: Aphididae)[J]. Southwestern Entomologist,1992,17:115-122.
    [68]Oppenoorth FJ, Van der Pas LJT, Houx NWH. Glutathione S-transferases andhydrolytic activity in a tetrachlorovinphos-resistant strain of housefly and theirinfluence on resistance [J]. Pestic. Biochem. Physiol.,1979,11:176-188.
    [69]Owusu EO, Komi K, Horike M, et al.. Some properties of carboxylesterase fromAphis gossypii Glover(Homoptera:Aphididae)[J]. Appl. Entomol. Zool.,1994,29:47-53.
    [70]Pan YO, Guo HL, Gao XW. Comparative study on carboxylesterase activity,cDNA sequence, and gene expression between malathion susceptible and resistantstrains of the cotton aphid, Aphis gossypii [J]. Comp. Biochem. Physiol. B,2009,152:266-270.
    [71]Pan Y O, Shang Q L, Fang K, et al.. Down-regulated transcriptional level of Ace1combined with mutations in Ace1and Ace2of Aphis gossypii are related withomethoate resistance [J]. Chemico-Biological Interactions,2010,188:553-557.
    [72]Pfaffl M W. A new mathematical model for relative quantification in real-timeRT-PCR[J]. Nucleic Acids Res.,2001,29(9): e45.
    [73]Ranson H and Hemingway J. Glutathione Transferases [M].2005,383-398.
    [74]Raueh N andNanon R. Characterization and molecular cloning of a glutathioneS-transferase from the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae)[J].Insect Biochemistry and Molecular Biology,2004,34:321-329.
    [75]Saito T and Hama H. Carboxylestemse isozymes responsible for organophosphateresistance in the cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae)[J].Appl. Entomol. Zool.,2000,35(1):171-175.
    [76]Smissaert HR.Cholinesterase inhibition in spide mites susceptible and resistant toorganophosphate [J]. Science,1964,143:129-131.
    [77]Suzuki K, Hama H, Konnoy. Carboxylesterase of the cotton aphid, Aphis gossypiiGlover (Homoptera:Aphididae), responsible for fenitrothion resistaneassequestering protein [J]. Appl. Entomol. Zool.,1993,28(4):439-450.
    [78]SonodaS. and Tsumuki H.. Studies on glutathione S-Transferase gene involved inchlorfluazuron resistance of the diamondback moth, Plutella xylostella L.(Lepidoptera: Yponomeutidae)[J]. Pesticide Biochemistry and Physiology,2005,82:94-101.
    [79]Vontas J G,Small G J,Hemingway J. Glutathione S-transferases as antioxidantdefence agents confer pyrethroid resistance in Nilaparvata lugens [J].Biochemical Jottmal.,2001,357:65—72.
    [80]Vontas J G, Small GJ, Nikou DC, et al.. Purification, molecular cloning andheterologous expression of a glutathione S-transferase involved in insecticideresistance from the rice brown planthopper, Nilaparvata lugens [J]. Biochem.J.,2002,362:329-337.
    [81]Vontas JG, Hejazi MJ, Hawkes NJ, et al.. Resistance-associated point mutationsof organophosphate insensitive acetylcholinesterase in the olive fruity Bractoceraoleae [J]. Insect Mol. Biol.,2002,11:329-336.
    [82]Wei S H, Clark A G, Syvanen M. Identification and cloning of a keyinsecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyperinsecticideresistant strain of the housefy Musca domestica [J]. InsectBiochemistry and Molecular Biology,2001,31:1145-1153.
    [83]John W and Hugh T. Distinction among mechenisms that yield doublereciprocalplots concavefrom below [J]. Journal of of biological chemistry,1974,249:7140-7150.
    [84]Whyard S, Russell RJ, Walker VK. Insecticide resistance and malathioncarboxylesterase in the sheep blowfly Lucilia cuprina [J]. Biochem. Genet.,1994,32:1-2,9-24.
    [85]Xu G and Bull D L. Acetylcholinesterase from the horn fly (Diptera: Muscidae) II:Biochemical and molecular properties [J]. Archives of Insect Biochemistry andPhysiology,1994,27(2):109-121.
    [86]Yang M L, Zhang J Z, Zhu K Y, et al..Mechanisms of oganophosphate resistancein a field population of orientalmigratory locust, Locusta migratoria manilensis(MEYEN)[J]. Archives of Insect biochemistry and phisyology,2009,71:3-15.
    [87]Zhu Y C, Snodgrass G L., Chen M S. Comparative study on glutathioneS-transferase activity, cDNA, and gene expression between malathion susceptibleand resistant strains of the tarnished plant bug, Lygus lineolaris [J]. PesticideBiochemistry and Physiology,2007,87:62-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700