基于性能的高层建筑结构抗震设计理论和应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了使建筑结构在地震灾害作用下能够维持所需要的性能水平,抗震规范已经提高了对结构弹塑性变形验算的要求。结构的弹塑性变形计算可采用静力弹塑性分析方法予以简化,其中应用较多的是Pushover分析方法和能力谱方法。但是由于结构弹塑性变形计算的复杂性,Pushover方法和能力谱方法目前均存在一些问题需要解决,因此本文对Pushover分析方法进行了改进,并对能力谱法方法中相应的问题提出了一些建议。
     本文首先论述了静力弹塑性方法在国内外的发展及其研究与应用现状,介绍了Pushover分析方法、能力谱方法、位移影响系数法和N2方法等几种有代表性的分析方法,着重讨论了Pushover分析方法和ATC-40能力谱方法的基本思想和基本原理,指出了在求结构能力谱过程中存在的三个问题,即:如何考虑高振型的影响、采用何种侧向力分布形式及怎样确定目标位移等问题。为了解决上述问题,本文提出了基于振型参与重量来确定起主要影响的振型数,以考虑高振型对结构性能的影响,并对目前常用的几种侧向力加载方式进行了分析,结果表明对于高层建筑结构,按模态加载所得结果要优于其他加载形式的结果。接着,讨论了模态Pushover法(MPA)的步骤及假定,指出其所作假定对结构屈服后的刚度变化考虑不足等问题,并通过对振型向量的选取进行了改进,提出了两阶段的侧向力加载模式,同时对确定结构目标位移的方法也作了改进。随后,论文应用文中提出的改进静力弹塑性分析方法,通过SAP2000有限元分析软件,对一15层钢筋混凝土框架结构计算模型进行了静力弹塑性分析,并与动力时程分析结果进行了比较,验证了本文所提方法的可靠性和适用性。结果表明,采用本文改进的静力弹塑性分析方法对结构进行推覆分析,能够比较准确地模拟结构的地震反应,具有易操作和计算精度高等优点。最后,本文还对应用静力弹塑性分析方法计算不规则结构和考虑二次效应等方面存在的问题进行了探讨。
In order to design such a structure that it is capable of sustaining the behavior required when subjected to various earthquake actions, the code for seismic design of buildings has improved the requirement for checking calculation of elastic-plastic deformation; the calculation of elastic-plastic deformation for structures can be simplified through the static elastic-plastic analysis, in which the more widely used are the Pushover analysis method and the capacity spectrum method. However, owing to the complexity of the calculation of elastic-plastic deformation for structures, some problems required to be pressingly solved exist at present in the Pushover analysis method and the capacity spectrum method, so with respect to the Pushover analysis method, this article made some modifications and put forward several suggestions for problems present in the capacity spectrum method.
    Firstly, in this paper the development of static elastic-plastic analysis method and the present situation of domestic-overseas researches of this method were discussed; several representative analysis methods were introduced, such as the Pushover analysis method, the capacity spectrum method, the influencing coefficient method of displacement, and N2 method, etc; the fundamental concepts and principles of the Pushover analysis and ATC-40 capacity spectrum method were emphatically dealt with; three existing problems were pointed out during solving process of the capacity spectrum for structures: how to consider the influence of high order modal, which pattern of lateral load should be selected, and how to determine target displacement, etc. For the sake of solution of problems described above, this paper addressed the numbers of modal which play an essential influence on the seismic response and then can be determined on the basis of modal participation weight, so as to consider the influence of high order modal on structural performance; Besides, this paper performed an analysis on several lateral load patterns which are commonly employed at present, and the results indicated that the results obtained by modal load are superior to those by other load patterns. Subsequently, the procedures and assumptions of modal Pushover analysis (MPA) were explored, and such problems were pointed out as the deficiency in considering rigidity variation of structures after yield due to those assumptions; the selection of modal vector was modified, and the lateral load pattern of two phases was advanced; meanwhile, the methods for determination of target displacement were also revised. Next, this paper utilized the modified elastic-plastic analysis method proposed here, through finite element software SAP2000, performed a static elastic-plastic analysis on the calculation model for a 15-story RC frame structure, and compared the analysis results with results obtained by dynamic time history analysis, which verified reliability and applicability of the method presented in this paper. The research results revealed that the adoption of static elastic-plastic analysis method in this paper to conduct a Pushover analysis on structures can comparatively simulate structural response to earthquake, and it possesses desirable advantages of easy operation and high-accuracy calculation, etc. Finally, the application of the static elastic-plastic analysis method in irregular structures and the second order effect on structures were investigated.
引文
[1] M. Saiidi, M. A. Sozen. Simple nonlinear seismic analysis of R/C structures[J]. Journal of Structural Division(ASCE), 1981, 107(8): 937-952
    [2] Peter Fajfar, Peter Gaspersic. The N2 method for the seimic damage analysis of RC buildings[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(1): 31-46
    [3] R. S. Lawson, V. Vance, H. Krawinkler. Nonlinear static Pushover analysis---why, when and how?[C] Proc. Sth U. S. Conference on Earthquake Engineering, Chicago, 1994, 283-292
    [4] Helmut Krawinkler, C. D. P. K. Senerviratna. Pros and cons of a Pushover analysis of seismic performance evaluation[J]. Engineering Structures, 1998, 20(4): 452-464
    [5] ATC. Seismic Evaluation and Petrofit of Concrete Buildings[R]. Applied Technology Council, Redwood City, California, 1996
    [6] Building Seismic Safety Council(BSSC). NEHRP Guidelines for the Seismic Rehabilitation of Buildings. FEMA273/274.developed for the Federal Emergency Management Agency, Washington DC, 1997
    [7] 杨溥,李英民,王亚勇,赖明.结构静力弹塑性分析(Pushover)方法的改进[J].建筑结构学报,2000,21(1):44-50
    [8] 叶燎原,潘文.Pushover分析原理和实例[J].建筑结构学报,2000,21(1):37-43
    [9] 叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟[J].土木工程学报,1998,31(4):48-52
    [10] 建筑抗震设计规范(GB50011-2001).中华人民共和国建设部、国家质量监督检验检疫总局联合发布
    [11] 钱稼茹,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具[J].建筑结构,2000,30(6):23-26
    [12] 钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构,2001,(4):9-14
    [13] 田颖,钱稼茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估[J].建筑结构,2001,(7):21-27
    [14] 小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,(6):41-47
    [15] 建筑抗震设计规范(GB50011-2001)统一培训教材[M].国家标准抗震规范管理组,2002
    [16] 朱杰江,吕西林,容柏生.复杂体型高层结构的推覆分析方法和应用[J].地震工程与工程振动,2003,23(2):26-36
    [17] 李森楠.ETABS入门与工程应用[M].联邦工程顾问股份有限公司,2003
    [18] 熊向阳.建筑结构静力弹塑性分析Pushover方法[D].同济大学硕士学位论文,2000
    [19] 魏巍,冯启民.儿种Pushover分析方法对比研究[J].地震工程震动,2002,22(4):67-73
    [20] 方鄂华,何国松,容柏生,张文华.广州天王中心大厦弹塑性地震反应分析[J].建筑结构学报.2000,21(6):10-15
    [21] 吴素静.Pushover 分析及时程分析在实际结构工程中的应用与研究[D].西安建筑科技大学硕士学位论文,2003
    [22] 李康宁,洪亮.结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J].建筑结构,2001,(3):21-27
    [23] Chopra A. K., Goel R. K. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems Report No.PEER-1999/02[R]. Pacific Earthquake Engineering Research Center, University of California Berkeley, 1999
    [24] Peter Fajfar. Capacity Spectrum Method Based on Inelastic Demand Spectra[J]. Earthquake Engineering and Structural Dynamics, 1999, 28(9): 979-993
    [25] 王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4
    [26] 熊向阳,戚震华.用静力弹塑性分析Pushover方法评估建筑结构的抗震性能[J].工程力学.2001增刊
    [27] 尹华伟,王梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003,20(4):45-49
    [28] 王梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[J].土木工程学报,2003,36(11):9-15
    [29] 王跃方,谷滨,李海江.框架结构地震反应Pushover研究[J].大连理工大学学报,2002,42(6):55-60
    [30] 李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程震动,2001,21(4):18-22
    [31] 李向真,程国亮,于德介,周福霖.钢管混凝土结构的弹塑性时程分析[J].世界地震工程,2002,18(1):73-76
    [32] 曲卓杰,吴胜兴.关于结构弹塑性分析(Pushover)的探讨[J].现代地震工程进展,2002.10(3):289-293,
    [33] 欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用[J].建筑结构学报,2001,(6):60-66
    [34] Chopra AK, Dynamic of structures: theory and applications to earthquake engingeering [J]. Englewood Cliffs, NJ: Prentice-Hall, 1995, 3(1): 55-64
    [35] Tysh Shang Jan, Ming Wei Liu, Ying Chieh Kao. An upper-bound Pushover analysis procedure for estimating the seismic demands of high-rise buildings[J]. Engingeering Structures, 2003, 26(5): 614-622
    [36] 史铁花,韦承积.振型分解法中合理振型数的确定[J].建筑科学,2002,18(2):30-31
    [37] 朱杰江,吕西林,容柏生.复杂体系高层结构的推覆分析方法和应用[J].地震工程与工程震动,2003,27(4):54-60
    [38] 刘南科.钢筋混凝土框架考虑变刚度的弹塑性计算[J].重庆建筑工程学院学报,1982,(1):5-13
    [39] 熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结构的影响[J].建筑科学,2001,17(5):8-13
    [40] 种迅,叶献国,吴本华.Pushover 分析中侧向力分布形式的影响[J].《工程力学》增刊2001:65-71
    [41] Simon Kim, Enzo D'Amore. Pushover Analysis Procedure[J]. in Earthquake Engineering. Earthquake Spectrum, 1999, 15(3): 417-434,
    [42] Peter Fajfar. A Nonlinear Analysis Procedurein Earthquake Engineering[J]. Earthquake Spectrum, 1999, 15(3): 411-424
    [43] A. S. Maoghadam, W. K. Tso. Damage assessment of eccentric multistory buildings using 3-D Pushover analysie, [C]. 11th World Conference on Earthquake Engineering, Mexico, 1996, 555-579
    [44] Terrence F. Paret, Kent K. Sasaki, Daniel H. Eilbeck, Signund A. Freeman. Approximate Inelastic Procedures to Identify Failure Mechanisms from Higher Mode Effects[C]. 11th World Conference on Earthquake Engineering, Mexico, 1996, 241-266
    [45] 何浩祥,李宏男.基于规范弹性反应谱建立需求谱的方法[J].世界地震工程,2002,18(3):67-71
    [46] 李应斌.钢筋混凝土结构基于性能的抗震设计理论与应用研究[D].西安建筑科技大学博士学位论文,2003
    [47] 种迅.基于性能抗震设计中建筑结构弹塑性反应简化分析方法研究[D].合肥工业大学硕士学位论文 2001
    [48] 李少泉.结构二阶效应的简化计算[J].建筑结构,1998,(9):34-36
    [49] 童申家,童岳生.水平地震作用下框架结构二阶效应影响分析[J].工业建筑,2003,30(8):17-40
    [50] 白绍良.钢筋混凝土框架柱的二阶效应计算体系[J].重庆建筑工程学院学报,2000,11 增刊:1-14
    [51] 刘毅,魏巍,白绍良.考虑非弹性特征的钢筋混凝土框架杆件刚度折减系数[J].重庆建筑工程学院学报,2000,22(1):9-16
    [52] 李新荣,秦文钺,白绍良.两端不等偏心距钢筋混凝土柱二阶效应实验研究[J].重庆建筑大学学报,1999,22增刊:41-46
    [53] 高层建筑混凝士结构技术规范(JGJ 3-2002).中华人民共和国建设部,2002
    [54] 白绍良.对美国AC318规范1995年新版本中有关细长钢筋混凝土柱二阶效应应用条文的 介绍和讨论[M].1997
    [55] 侯爱波,王梦甫.循环往复加载的Pushover方法及应用[J].湖南大学学报(自然科学版),2003,30(3):145-152
    [56] 叶献国,种迅,李康宁,周锡元.Pushover方法与循环往复加载分析的研究[J].合肥工业大学学报(自然科学版),2001,24(6):1019-1024

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700