小麦应答禾谷丝核菌的3个激酶基因的分离及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦纹枯病是小麦的重要土传真菌病害,主要是由禾谷丝核菌引起的。小麦纹枯病抗性遗传基础研究薄弱,常规抗病育种进展缓慢,目前生产中的抗纹枯病小麦品种匮乏,迫切需要研究小麦抗纹枯病反应机制,挖掘抗纹枯病的相关基因。蛋白激酶是植物免疫反应中的一类磷酸基团转移酶类,在植物免疫反应中发挥重要的作用。目前还没有蛋白激酶参与小麦抗纹枯病反应的报道。本研究通过基因芯片、RNA-Seq技术与半定量RT-PCR相结合的方法筛选出3个与小麦纹枯病抗性程度相关联的蛋白激酶基因,分别为TaCRK1基因、TaWAK5基因及TaPK-R1基因。
     TaCRK1基因编码由680个氨基酸构成的富含半胱氨酸的受体蛋白激酶,受禾谷丝核菌和植物激素脱落酸诱导表达。TaWAK5基因编码由703个氨基酸构成的细胞壁关联的受体蛋白激酶,受禾谷丝核菌和植物激素水杨酸、脱落酸和茉莉酸甲酯诱导表达。TaCRK1蛋白与TaWAK5蛋白定位于细胞膜。利用病毒诱导的基因沉默(VIGS)技术分别沉默在抗纹枯病小麦CI12633中TaCRK1基因和TaWAK5基因,结果表明TaCRK1基因或TaWAK5基因表达量的下调并未减弱沉默植株对纹枯病的抗性,说明TaCRK1基因和TaWAK5基因并非小麦防御禾谷丝核菌反应所必需的。
     TaPK-R1基因由13个外显子和12个内含子组成,编码由557个氨基酸构成的小麦AGC蛋白激酶。TaPK-R1基因受禾谷丝核菌、植物激素乙烯及过氧化氢的诱导表达;该基因在禾谷丝核菌接种21天的抗纹枯病小麦和感纹枯病小麦中的表达模式与小麦的纹枯病抗性程度相关联。洋葱表皮细胞与小麦原生质体的亚细胞定位分析表明TaPK-R1蛋白定位于细胞质与细胞核;通过体外自磷酸化分析明确了TaPK-R1蛋白具有自磷酸化活性。TaPK-R1表达量下降的抗纹枯病小麦CI12633植株对纹枯病的抗性减弱;TaPK-R1过表达的转TaPK-R1基因的小麦植株对纹枯病抗性显著提高,说明TaPK-R1基因是小麦防御纹枯病反应中所必需的。本研究首次证明了AGC家族蛋白激酶参与小麦对腐生营养型真菌的抗性反应,并通过遗传转化获得抗纹枯病的小麦新种质,为小麦抗病育种提供了新型的抗性材料和潜在的基因资源。
Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the most devasting diseases ofwheat in the world. Because the genetics of wheat resistance to R. cerealis is not fully understood andthe applied wheat cultivars are susceptible to sharp eyespot, it is urgent to unravel the mechanism ofwheat defense response to R. cerealis and to identify the genes involved in wheat defense response to R.cerealis. Protein kinase played important roles in perceiving pathogen infection, subsequent signalingpathways and ultimately inducing plant defense response. However, no kinase gene involved in wheatresistance to R. cerealis had yet been identified. In this study, using microarray, RNA-Sequencing(RNA-Seq), and semi-RT-PCR analysis, three protein kinase genes, including TaCRK1, TaWAK5, andTaPK-R1, were identified to be associated with the resistance degrees of wheat lines to R. cerealisinfection.
     The TaCRK1gene encoded a cystein-rich receptor protein kinase with680amino acid residues.Transcription of TaCRK1was induced in CI12633after infection with R. cerealis and exogenousabscisic acid (ABA) treatment. The TaWAK5gene encoded a wall-associated kinase of703amino acidresidues. The expression of TaWAK5was induced by infection with R. cerealis and treatments withexogenous salicylic acid (SA), abscisic acid, and methyl jasmonate (MeJA). Subcellular localizationanalysis in onion epidermal cells or wheat protoplasts indicated that the TaCRK1protein and TaWAK5protein were localized to the plasma membranes. Characterization of TaCRK1silencing and TaWAK5induced by virus-mediated method in CI12633, respcetively showed that the down-regulation ofTaCRK1or TaWAK5transcript did not obviously impair resistance to R. cerealis, suggesting that thesetwo genes were not the major genes involved in the wheat defense response to R. cerealis.
     The TaPK-R1gene, including13exons and12introns, encoded a wheat protein A/proteinG/protein C with557amino acid residues. The expression of the TaPK-R1transcript was induced by R.cerealis and by exogenous ethylene and hydrogen peroxide. Moreover, transcript abundance ofTaPK-R1were higher in the R. cerealis-resistant lines (CI12633, Shanhongmai, Navit14, Shannong0431, and Xifeng) than that in the R. cerealis-susceptible lines (Yangmai158, Wenma6, and Zhoumai18). Transient expression of TaPK-R1in onion epidermal cells or wheat protoplast indicated that theTaPK-R1protein was localized to the cytoplasm and nucleus. The protein kinase domain ofrecombinant GST-TaPK-R1showed autophosphorylated activity. Characterization of TaPK-R1silencinginduced by virus-mediated method in CI12633showed that down-regulation of TaPK-R1gene inCI12633significantly compromise wheat resisitance to R. cerealis. Over-expression of TaPK-R1gene intransgenic wheat plants confers increased resistance to wheat sharp eyespot accompanied withdecreased R. cerealis abundance. These results indicated that the TaPK-R1gene played an importantrole in wheat defense response to R. cerealis. This study indicated that the AGC protein kinase wasinvolved in plant defense response to necrotrophic pathogen in wheat for the first time. The TaPK-R1transgenic plants improved wheat resistance to R. cerealis and lay a foundation for unraveling the mechanis mof wheat defense response to sharp eyespot.
引文
1.蔡士宾,任丽娟,颜伟,吴纪中,陈怀谷,吴小有,张仙义.小麦抗纹枯病种质创新及QTL定位的初步研究.中国农业科学2006,39:928-934.
    2.刘宝业,梁国鲁,张增艳.水稻几丁质酶的原核表达,复性及体外抑菌活性的研究.核农学报2009,23:369-374.
    3.刘朝晖,张旭.小麦品种纹枯病抗性遗传的初步研究.南京农业大学学报1999,22:5-8.
    4.吴纪中,颜伟,蔡士宾,任丽娟,汤頲.小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报2005,21:6-11.
    5.张小村,李斯深,赵新华,李瑞军.15个小麦重组自交系群体抗纹枯病性的遗传分析Ξ.麦类作物学报2004,24:13-16.
    6.周淼平,杨学明,姚金保,任丽娟,张增艳,马鸿翔.转Gastrodianin基因提高小麦赤霉病和纹枯病的抗性.作物学报2012,38:1617-1624.
    7. Abuqamar S., Chai M.F., Luo H., Song F., Mengiste T. Tomato protein kinase1b mediatessignaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell2008,20:1964-1983.
    8. AbuQamar S., Chen X., Dhawan R., Bluhm B., Salmeron J., Lam S., Dietrich R.A., Mengiste T.Expression profiling and mutant analysis reveals complex regulatory networks involved inArabidopsis response to Botrytis infection. Plant J2006,48:28-44.
    9. Abuqamar S., Luo H., Laluk K., Mickelbart M.V., Mengiste T. Crosstalk between biotic andabiotic stress responses in tomato is mediated by the AIM1transcription factor. Plant J2009,58:347-360.
    10. Acharya B.R., Raina S., Maqbool S.B., Jagadeeswaran G., Mosher S.L., Appel H.M., Schultz J.C.,Klessig D.F., Raina R. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-likekinase, results in enhanced resistance to Pseudomonas syringae. Plant J2007,50:488-499.
    11. Adie B.A., Pérez-Pérez J., Pérez-Pérez M.M., Godoy M., Sánchez-Serrano J.J., Schmelz E.A.,Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesisand the activation of defenses in Arabidopsis. Plant Cell2007,19:1665-1681.
    12. Aslam S.N., Erbs G., Morrissey K.L., Newman M.A., Chinchilla D., Boller T., Molinaro A.,Jackson R.W., Cooper R.M. Microbe-associated molecular pattern (MAMP) signatures, synergy,size and charge: influences on perception or mobility and host defence responses. Mol PlantPathol2009,10:375-387.
    13. Berriri S., Garcia A.V., Frei dit Frey N., Rozhon W., Pateyron S., Leonhardt N., Montillet J.L.,Leung J., Hirt H., Colcombet J. Constitutively active mitogen-activated protein kinase versionsreveal functions of Arabidopsis MPK4in pathogen defense signaling. Plant Cell2012,24:4281-4293.
    14. Berrocal-Lobo M., Molina A. Ethylene response factor1mediates Arabidopsis resistance to thesoilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact2004,17:763-770.
    15. Berrocal-Lobo M., Molina A. Arabidopsis defense response against Fusarium oxysporum. TrendsPlant Sci2008,13:145-150.
    16. Bethke G., Unthan T., Uhrig J.F., Poschl Y., Gust A.A., Scheel D., Lee J. Flg22regulates therelease of an ethylene response factor substrate from MAP kinase6in Arabidopsis thaliana viaethylene signaling. Proc Natl Acad Sci USA2009,106:8067-8072.
    17. Bindschedler L.V., Dewdney J., Blee K.A., Stone J.M., Asai T., Plotnikov J., Denoux C., Hayes T.,Gerrish C., Davies D.R., Ausubel F.M., Bolwell G.P. Peroxidase-dependent apoplastic oxidativeburst in Arabidopsis required for pathogen resistance. Plant J2006,47:851-863.
    18. Bolton M.D., Kolmer J.A., Xu W.W., Garvin D.F. Lr34-mediated leaf rust resistance in wheat:transcript profiling reveals a high energetic demand supported by transient recruitment of multiplemetabolic pathways. Molecular plant-microbe interactions: MPMI2008,21:1515-1527.
    19. Boudjeko T., Andeme-Onzighi C., Vicre M., Balange A.P., Ndoumou D.O., Driouich A. Loss ofpectin is an early event during infection of cocoyam roots by Pythium myriotylum. Planta2006,223:271-282.
    20. Boudsocq M., Willmann M.R., McCormack M., Lee H., Shan L., He P., Bush J., Cheng S.H.,Sheen J. Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature2010,464:418-422.
    21. Brutus A., Sicilia F., Macone A., Cervone F., De Lorenzo G. A domain swap approach reveals arole of the plant wall-associated kinase1(WAK1) as a receptor of oligogalacturonides. Proc NatlAcad Sci USA2010,107:9452-9457.
    22. Cao A., Xing L., Wang X., Yang X., Wang W., Sun Y., Qian C., Ni J., Chen Y., Liu D., Chen P.Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21,confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA2011,108:7727-7732.
    23. Chen K., Du L., Chen Z. Sensitization of defense responses and activation of programmed celldeath by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol2003,53:61-74.
    24. Chen L., Zhang Z., Liang H., Liu H., Du L., Xu H., Xin Z. Overexpression of TiERF1enhancesresistance to sharp eyespot in transgenic wheat. J Exp Bot2008,59:4195-4204.
    25. Chen X., Shang J., Chen D., Lei C., Zou Y., Zhai W., Liu G., Xu J., Ling Z., Cao G., Ma B., WangY., Zhao X., Li S., Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J2006,46:794-804.
    26. Chen Z. A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol2001,126:473-476.
    27. Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nurnberger T., Jones J.D., Felix G., BollerT. A flagellin-induced complex of the receptor FLS2and BAK1initiates plant defence. Nature2007,448:497-500.
    28. Choquer M., Fournier E., Kunz C., Levis C., Pradier J.M., Simon A., Viaud M. Botrytis cinereavirulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMSmicrobiology letters2007,277:1-10.
    29. Coca M., San Segundo B. AtCPK1calcium-dependent protein kinase mediates pathogenresistance in Arabidopsis. Plant J2010.
    30. Coffeen W.C., Wolpert T.J. Purification and characterization of serine proteases that exhibitcaspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell2004,16:857-873.
    31. Collazo C., Chacón O., Borrás O. Programmed cell death in plants resembles apoptosis of animals.Biotecnol Apl2006,23:1-10.
    32. Curtis M.J., Wolpert T.J. The victorin-induced mitochondrial permeability transition precedes cellshrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membraneintegrity. Plant J2004,38:244-259.
    33. Daamen R.A., Stol W. Surveys of cereal diseases and pests in the Netherlands.2. Stem-basediseases of winter wheat. European Journal of Plant Pathology1990,96:251-260.
    34. Dardick C., Ronald P. Plant and animal pathogen recognition receptors signal through non-RDkinases. PLoS Pathog2006,2: e2.
    35. Delledonne M. NO news is good news for plants. Curr Opin Plant Biol2005,8:390-396.
    36. Desikan R., Hancock J.T., Bright J., Harrison J., Weir I., Hooley R., Neill S.J. A role for ETR1inhydrogen peroxide signaling in stomatal guard cells. Plant Physiol2005,137:831-834.
    37. Desikan R., S A.H.-M., Hancock J.T., Neill S.J. Regulation of the Arabidopsis transcriptome byoxidative stress. Plant Physiol2001,127:159-172.
    38. Devarenne T.P., Ekengren S.K., Pedley K.F., Martin G.B. Adi3is a Pdk1-interacting AGC kinasethat negatively regulates plant cell death. EMBO J2006,25:255-265.
    39. Diener A.C., Ausubel F.M. RESISTANCE TO FUSARIUM OXYSPORUM1, a dominantArabidopsis disease-resistance gene, is not race specific. Genetics2005,171:305-321.
    40. Ding Z., Galvan-Ampudia C.S., Demarsy E., Langowski L., Kleine-Vehn J., Fan Y., Morita M.T.,Tasaka M., Fankhauser C., Offringa R., Friml J. Light-mediated polarization of the PIN3auxintransporter for the phototropic response in Arabidopsis. Nature cell biology2011,13:447-452.
    41. Du L., Chen Z. Identification of genes encoding receptor-like protein kinases as possible targets ofpathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J2000,24:837-847.
    42. Ederli L., Madeo L., Calderini O., Gehring C., Moretti C., Buonaurio R., Paolocci F., Pasqualini S.The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20modulates host responses toPseudomonas syringae pv. tomato DC3000infection. Journal of plant physiology2011,168:1784-1794.
    43. Enomoto A., Kido N., Ito M., Morita A., Matsumoto Y., Takamatsu N., Hosoi Y., Miyagawa K.Negative regulation of MEKK1/2signaling by serine-threonine kinase38(STK38). Oncogene2008,27:1930-1938.
    44. Flors V., Ton J., van Doorn R., Jakab G., Garcia-Agustin P., Mauch-Mani B. Interplay between JA,SA and ABA signalling during basal and induced resistance against Pseudomonas syringae andAlternaria brassicicola. Plant J2008,54:81-92.
    45. Gao M., Liu J., Bi D., Zhang Z., Cheng F., Chen S., Zhang Y. MEKK1, MKK1/MKK2and MPK4function together in a mitogen-activated protein kinase cascade to regulate innate immunity inplants. Cell Res2008,18:1190-1198.
    46. Gechev T.S., Gadjev I.Z., Hille J. An extensive microarray analysis of AAL-toxin-induced celldeath in Arabidopsis thaliana brings new insights into the complexity of programmed cell deathin plants. Cellular and molecular life sciences: CMLS2004,61:1185-1197.
    47. Govrin E.M., Levine A. The hypersensitive response facilitates plant infection by the necrotrophicpathogen Botrytis cinerea. Current biology: CB2000,10:751-757.
    48. Govrin E.M., Levine A. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea,elicits various defense responses but does not induce systemic acquired resistance (SAR). PlantMol Biol2002,48:267-276.
    49. Govrin E.M., Rachmilevitch S., Tiwari B.S., Solomon M., Levine A. An Elicitor from Botrytiscinerea Induces the Hypersensitive Response in Arabidopsis thaliana and Other Plants andPromotes the Gray Mold Disease. Phytopathology2006,96:299-307.
    50. Guo X., Stotz H.U. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent onjasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact2007,20:1384-1395.
    51. Han L., Li G.J., Yang K.Y., Mao G., Wang R., Liu Y., Zhang S. Mitogen-activated protein kinase3and6regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J2010,64:114-127.
    52. Harmon A.C., Gribskov M., Harper J.F. CDPKs-a kinase for every Ca2+signal? Trends Plant Sci2000,5:154-159.
    53. He Z.H., He D., Kohorn B.D. Requirement for the induced expression of a cell wall associatedreceptor kinase for survival during the pathogen response. Plant J1998,14:55-63.
    54. Herve C., Dabos P., Galaud J.P., Rouge P., Lescure B. Characterization of an Arabidopsis thalianagene that defines a new class of putative plant receptor kinases with an extracellular lectin-likedomain. J Mol Biol1996,258:778-788.
    55. Hua D., Wang C., He J., Liao H., Duan Y., Zhu Z., Guo Y., Chen Z., Gong Z. A plasma membranereceptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatalmovement in Arabidopsis. Plant Cell2012,24:2546-2561.
    56. Huffaker A., Pearce G., Ryan C.A. An endogenous peptide signal in Arabidopsis activatescomponents of the innate immune response. Proc Natl Acad Sci USA2006,103:10098-10103.
    57. Iakimova E.T., Woltering E.J., Yordanova Z.P. Toxin-and cadmium-induced cell death events intomato suspension cells resemble features of hypersensitive. Journal of Fruit and OrnamentalPlant Research2007,15:5-19.
    58. Jeworutzki E., Roelfsema M.R., Anschutz U., Krol E., Elzenga J.T., Felix G., Boller T., HedrichR., Becker D. Early signaling through the Arabidopsis pattern recognition receptors FLS2andEFR involves Ca-associated opening of plasma membrane anion channels. Plant J2010,62:367-378.
    59. Jones J.D., Dangl J.L. The plant immune system. Nature2006,444:323-329.
    60. Kaliff M., Staal J., Myrenas M., Dixelius C. ABA is required for Leptosphaeria maculansresistance via ABI1-and ABI4-dependent signaling. Mol Plant Microbe Interact2007,20:335-345.
    61. Kanneganti V., Gupta A.K. Wall associated kinases from plants-an overview. Physiol Mol BiolPlants2008,14:109-118.
    62. Kanzaki H., Saitoh H., Takahashi Y., Berberich T., Ito A., Kamoun S., Terauchi R. NbLRK1, alectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthorainfestans INF1elicitin and mediates INF1-induced cell death. Planta2008,228:977-987.
    63. Kim K.H., Kang Y.J., Kim D.H., Yoon M.Y., Moon J.K., Kim M.Y., Van K., Lee S.H. RNA-Seqanalysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptiblealleles. DNA research: an international journal for rapid publication of reports on genes andgenomes2011,18:483-497.
    64. Kohorn B.D., Johansen S., Shishido A., Todorova T., Martinez R., Defeo E., Obregon P. Pectinactivation of MAP kinase and gene expression is WAK2dependent. Plant J2009,60:974-982.
    65. Koornneef A., Leon-Reyes A., Ritsema T., Verhage A., Den Otter F.C., Van Loon L.C., PieterseC.M. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redoxmodulation. Plant Physiol2008,147:1358-1368.
    66. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. The N terminus of bacterialelongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell2004,16:3496-3507.
    67. Kuroyanagi M., Yamada K., Hatsugai N., Kondo M., Nishimura M., Hara-Nishimura I. Vacuolarprocessing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J BiolChem2005,280:32914-32920.
    68. Kurusu T., Hamada J., Nokajima H., Kitagawa Y., Kiyoduka M., Takahashi A., Hanamata S.,Ohno R., Hayashi T., Okada K., Koga J., Hirochika H., Yamane H., Kuchitsu K. Regulation ofmicrobe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production,and defense gene expression by calcineurin B-like protein-interacting protein kinases,OsCIPK14/15, in rice cultured cells. Plant Physiol2010,153:678-692.
    69. a niewska J., Macioszek V.K., Lawrence C.B., Kononowicz A.K. Fight to the death:Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta PhysiologiaePlantarum2010,32:1-10.
    70. Lee S.W., Han S.W., Sririyanum M., Park C.J., Seo Y.S., Ronald P.C. A type I-secreted, sulfatedpeptide triggers XA21-mediated innate immunity. Science2009,326:850-853.
    71. Li A., Zhang R., Pan L., Tang L., Zhao G., Zhu M., Chu J., Sun X., Wei B., Zhang X., Jia J., MaoL. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty aciddesaturase gene participating in powdery mildew resistance. PloS one2011a,6: e28810.
    72. Li G., Meng X., Wang R., Mao G., Han L., Liu Y., Zhang S. Dual-level regulation of ACCsynthase activity by MPK3/MPK6cascade and its downstream WRKY transcription factor duringethylene induction in Arabidopsis. PLoS Genet2012,8: e1002767.
    73. Li H., Zhou S.Y., Zhao W.S., Su S.C., Peng Y.L. A novel wall-associated receptor-like proteinkinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol2009,69:337-346.
    74. Li Z., Zhou M., Zhang Z., Ren L., Du L., Zhang B., Xu H., Xin Z. Expression of a radish defensinin transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctoniacerealis. Functional&integrative genomics2011b,11:63-70.
    75. Liu B., Lu Y., Xin Z., Zhang Z. Identification and antifungal assay of a wheat beta-1,3-glucanase.Biotechnol Lett2009,31:1005-1010.
    76. Liu T., Liu Z., Song C., Hu Y., Han Z., She J., Fan F., Wang J., Jin C., Chang J., Zhou J.M., Chai J.Chitin-induced dimerization activates a plant immune receptor. Science2012,336:1160-1164.
    77. Liu Y., Zhang S. Phosphorylation of1-aminocyclopropane-1-carboxylic acid synthase by MPK6,a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis.Plant Cell2004,16:3386-3399.
    78. Liu Z., Wu Y., Yang F., Zhang Y., Chen S., Xie Q., Tian X., Zhou J.M. BIK1interacts with PEPRsto mediate ethylene-induced immunity. Proc Natl Acad Sci USA2013,110:6205-6210.
    79. Llorente F., Alonso-Blanco C., Sanchez-Rodriguez C., Jorda L., Molina A. ERECTA receptor-likekinase and heterotrimeric G protein from Arabidopsis are required for resistance to thenecrotrophic fungus Plectosphaerella cucumerina. Plant J2005,43:165-180.
    80. Love A.J., Yun B.W., Laval V., Loake G.J., Milner J.J. Cauliflower mosaic virus, a compatiblepathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapidsystemic generation of reactive oxygen species. Plant Physiol2005,139:935-948.
    81. Luo B., Nakata P.A. A set of GFP organelle marker lines for intracellular localization studies inMedicago truncatula. Plant science: an international journal of experimental plant biology2012,188-189:19-24.
    82. Ma W., Smigel A., Walker R.K., Moeder W., Yoshioka K., Berkowitz G.A. Leaf senescencesignaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2acts through nitricoxide to repress senescence programming. Plant Physiol2010,154:733-743.
    83. Mackey D., Belkhadir Y., Alonso J.M., Ecker J.R., Dangl J.L. Arabidopsis RIN4is a target of thetype III virulence effector AvrRpt2and modulates RPS2-mediated resistance. Cell2003,112:379-389.
    84. Mackey D., Holt B.F.,3rd, Wiig A., Dangl J.L. RIN4interacts with Pseudomonas syringae typeIII effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell2002,108:743-754.
    85. Mao G., Meng X., Liu Y., Zheng Z., Chen Z., Zhang S. Phosphorylation of a WRKY transcriptionfactor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. PlantCell2011,23:1639-1653.
    86. Matsui H., Yamazaki M., Kishi-Kaboshi M., Takahashi A., Hirochika H. AGC kinase OsOxi1positively regulates basal resistance through suppression of OsPti1a-mediated negative regulation.Plant&cell physiology2010,51:1731-1744.
    87. McBeath J.H., McBeath J.(2010). Plant Diseases, Pests and Food Security EnvironmentalChange and Food Security in China. In (Springer Netherlands), pp.117-156.
    88. Mengiste T., Chen X., Salmeron J., Dietrich R. The BOTRYTIS SUSCEPTIBLE1gene encodesan R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses inArabidopsis. Plant Cell2003,15:2551-2565.
    89. Mur L.A., Kenton P., Atzorn R., Miersch O., Wasternack C. The outcomes ofconcentration-specific interactions between salicylate and jasmonate signaling include synergy,antagonism, and oxidative stress leading to cell death. Plant Physiol2006,140:249-262.
    90. Narusaka Y., Narusaka M., Seki M., Ishida J., Shinozaki K., Nan Y., Park P., Shiraishi T.,Kobayashi M. Cytological and molecular analyses of non-host resistance of Arabidopsis thalianato Alternaria alternata. Mol Plant Pathol2005,6:615-627.
    91. Nelson B.K., Cai X., Nebenfuhr A. A multicolored set of in vivo organelle markers forco-localization studies in Arabidopsis and other plants. Plant J2007,51:1126-1136.
    92. Ohtake Y., Takahashi T., Komeda Y. Salicylic acid induces the expression of a number ofreceptor-like kinase genes in Arabidopsis thaliana. Plant&cell physiology2000,41:1038-1044.
    93. Park P., Ikeda K.-i. Ultrastructural analysis of responses of host and fungal cells during plantinfection. Journal of General Plant Pathology2008,74:2-14.
    94. Pearce L.R., Komander D., Alessi D.R. The nuts and bolts of AGC protein kinases. Naturereviews Molecular cell biology2010,11:9-22.
    95. Petersen L.N., Ingle R.A., Knight M.R., Denby K.J. OXI1protein kinase is required for plantimmunity against Pseudomonas syringae in Arabidopsis. J Exp Bot2009,60:3727-3735.
    96. Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H.B.,Lacy M., Austin M.J., Parker J.E., Sharma S.B., Klessig D.F., Martienssen R., Mattsson O.,Jensen A.B., Mundy J. Arabidopsis map kinase4negatively regulates systemic acquiredresistance. Cell2000,103:1111-1120.
    97. Petutschnig E.K., Jones A.M., Serazetdinova L., Lipka U., Lipka V. The lysin motif receptor-likekinase (LysM-RLK) CERK1is a major chitin-binding protein in Arabidopsis thaliana and subjectto chitin-induced phosphorylation. J Biol Chem2010,285:28902-28911.
    98. Pitzschke A., Djamei A., Teige M., Hirt H. VIP1response elements mediate mitogen-activatedprotein kinase3-induced stress gene expression. Proc Natl Acad Sci USA2009a,106:18414-18419.
    99. Pitzschke A., Schikora A., Hirt H. MAPK cascade signalling networks in plant defence. Curr OpinPlant Biol2009b,12:421-426.
    100. Preuss C.P., Huang C.Y., Gilliham M., Tyerman S.D. Channel-like characteristics of thelow-affinity barley phosphate transporter PHT1;6when expressed in Xenopus oocytes. PlantPhysiol2010,152:1431-1441.
    101. Qi Y., Tsuda K., Glazebrook J., Katagiri F. Physical association of pattern-triggered immunity(PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis. Mol Plant Pathol2011,12:702-708.
    102. Qi Z., Verma R., Gehring C., Yamaguchi Y., Zhao Y., Ryan C.A., Berkowitz G.A. Ca2+signalingby plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclaseactivity, and cGMP-activated Ca2+channels. Proc Natl Acad Sci USA2010,107:21193-21198.
    103. Qiu J.L., Fiil B.K., Petersen K., Nielsen H.B., Botanga C.J., Thorgrimsen S., Palma K.,Suarez-Rodriguez M.C., Sandbech-Clausen S., Lichota J., Brodersen P., Grasser K.D., MattssonO., Glazebrook J., Mundy J., Petersen M. Arabidopsis MAP kinase4regulates gene expressionthrough transcription factor release in the nucleus. EMBO J2008,27:2214-2221.
    104. Ren D., Liu Y., Yang K.Y., Han L., Mao G., Glazebrook J., Zhang S. A fungal-responsive MAPKcascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA2008,105:5638-5643.
    105. Repka V. Early defence responses induced by two distinct elicitors derived from a Botrytis cinereain grapevine leaves and cell suspensions. Biologia Plantarum2006,50:94-106.
    106. Roux M., Schwessinger B., Albrecht C., Chinchilla D., Jones A., Holton N., Malinovsky F.G., TorM., de Vries S., Zipfel C. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3and BKK1/SERK4are required for innate immunity to hemibiotrophic and biotrophic pathogens.Plant Cell2011,23:2440-2455.
    107. Rudd J.J., Keon J., Hammond-Kosack K.E. The wheat mitogen-activated protein kinasesTaMPK3and TaMPK6are differentially regulated at multiple levels during compatible diseaseinteractions with Mycosphaerella graminicola. Plant Physiol2008,147:802-815.
    108. Sawano Y., Miyakawa T., Yamazaki H., Tanokura M., Hatano K. Purification, characterization,and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds. Biologicalchemistry2007,388:273-280.
    109. Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C., Manners J.M.Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc NatlAcad Sci USA2000,97:11655-11660.
    110. Scofield S.R., Huang L., Brandt A.S., Gill B.S. Development of a virus-induced gene-silencingsystem for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rustresistance pathway. Plant Physiol2005,138:2165-2173.
    111. Sharma N., Rahman M.H., Strelkov S., Thiagarajah M., Bansal V.K., Kav N.N. Proteome-levelchanges in two Brassica napus lines exhibiting differential responses to the fungal pathogenAlternaria brassicae. Plant science2007,172:95-110.
    112. Shimizu T., Nakano T., Takamizawa D., Desaki Y., Ishii-Minami N., Nishizawa Y., Minami E.,Okada K., Yamane H., Kaku H., Shibuya N. Two LysM receptor molecules, CEBiP andOsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J2010,64:204-214.
    113. Shiu S.H., Karlowski W.M., Pan R., Tzeng Y.H., Mayer K.F., Li W.H. Comparative analysis of thereceptor-like kinase family in Arabidopsis and rice. Plant Cell2004,16:1220-1234.
    114. Singh P., Kuo Y.C., Mishra S., Tsai C.H., Chien C.C., Chen C.W., Desclos-Theveniau M., ChuP.W., Schulze B., Chinchilla D., Boller T., Zimmerli L. The lectin receptor kinase-VI.2is requiredfor priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell2012,24:1256-1270.
    115. Singh P., Zimmerli L. Lectin receptor kinases in plant innate immunity. Front Plant Sci2013,4:124.
    116. Tena G., Boudsocq M., Sheen J. Protein kinase signaling networks in plant innate immunity. CurrOpin Plant Biol2011,14:519-529.
    117. Thomma B.P., Eggermont K., Penninckx I.A., Mauch-Mani B., Vogelsang R., Cammue B.P.,Broekaert W.F. Separate jasmonate-dependent and salicylate-dependent defense-responsepathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc NatlAcad Sci USA1998,95:15107-15111.
    118. Tor M., Lotze M.T., Holton N. Receptor-mediated signalling in plants: molecular patterns andprogrammes. J Exp Bot2009,60:3645-3654.
    119. Tufan H.A., McGrann G.R., Magusin A., Morel J.B., Miche L., Boyd L.A. Wheat blast:histopathology and transcriptome reprogramming in response to adapted and nonadaptedMagnaporthe isolates. The New phytologist2009,184:473-484.
    120. Van Baarlen P., Woltering E.J., Staats M., Van Kan J.A. Histochemical and genetic analysis ofhost and non‐host interactions of Arabidopsis with three Botrytis species: an important role forcell death control. Molecular plant pathology2007,8:41-54.
    121. Van Hemelrijck W., Wouters P.F., Brouwer M., Windelinckx A., Goderis I.J., De Bolle M.F.,Thomma B.P., Cammue B., DelauréS.L. The Arabidopsis defense response mutant esa1as amodel to discover novel resistance traits against Fusarium diseases. Plant science2006,171:585-595.
    122. Van Kan J.A. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci2006,11:247-253.
    123. Van Wees S.C., Chang H.S., Zhu T., Glazebrook J. Characterization of the early response ofArabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol2003,132:606-617.
    124. Veronese P., Nakagami H., Bluhm B., Abuqamar S., Chen X., Salmeron J., Dietrich R.A., Hirt H.,Mengiste T. The membrane-anchored BOTRYTIS-INDUCED KINASE1plays distinct roles inArabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell2006,18:257-273.
    125. Wagner T.A., Kohorn B.D. Wall-associated kinases are expressed throughout plant developmentand are required for cell expansion. Plant Cell2001,13:303-318.
    126. Walker J.C. Structure and function of the receptor-like protein kinases of higher plants. Plant MolBiol1994,26:1599-1609.
    127. Wan J., Zhang X.C., Neece D., Ramonell K.M., Clough S., Kim S.Y., Stacey M.G., Stacey G. ALysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance inArabidopsis. Plant Cell2008,20:471-481.
    128. Wang G.F., Wei X., Fan R., Zhou H., Wang X., Yu C., Dong L., Dong Z., Wang X., Kang Z.Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein90(Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growthand disease resistance. New Phytologist2011,191:418-431.
    129. Witte C.P., Keinath N., Dubiella U., Demouliere R., Seal A., Romeis T. Tobaccocalcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinasecascade that regulates stress response. J Biol Chem2010,285:9740-9748.
    130. Xie C., Zhou X., Deng X., Guo Y. PKS5, a SNF1-related kinase, interacts with andphosphorylates NPR1, and modulates expression of WRKY38and WRKY62. J Genet Genomics2010,37:359-369.
    131. Yasuda M., Ishikawa A., Jikumaru Y., Seki M., Umezawa T., Asami T., Maruyama-Nakashita A.,Kudo T., Shinozaki K., Yoshida S., Nakashita H. Antagonistic interaction between systemicacquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. PlantCell2008,20:1678-1692.
    132. Zhang J., Li W., Xiang T., Liu Z., Laluk K., Ding X., Zou Y., Gao M., Zhang X., Chen S.,Mengiste T., Zhang Y., Zhou J.M. Receptor-like cytoplasmic kinases integrate signaling frommultiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell HostMicrobe2010,7:290-301.
    133. Zhang L., Tian L.H., Zhao J.F., Song Y., Zhang C.J., Guo Y. Identification of an apoplastic proteininvolved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis.Plant Physiol2009,149:916-928.
    134. Zhou A., Wang H., Walker J.C., Li J. BRL1, a leucine-rich repeat receptor-like protein kinase, isfunctionally redundant with BRI1in regulating Arabidopsis brassinosteroid signaling. Plant J2004,40:399-409.
    135. Zhou H., Li S., Deng Z., Wang X., Chen T., Zhang J., Chen S., Ling H., Zhang A., Wang D.,Zhang X. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat andevidence for their participation in the wheat hypersensitive response to stripe rust fungus infection.Plant J2007,52:420-434.
    136. Zhu X., Qi L., Liu X., Cai S., Xu H., Huang R., Li J., Wei X., Zhang Z. The Wheat EthyleneResponse Factor Transcription Factor PATHOGEN-INDUCED ERF1Mediates Host Responsesto Both the Necrotrophic Pathogen Rhizoctonia cerealis and Freezing Stresses. Plant Physiol2014,164:1499-1514.
    137. Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J.D., Boller T., Felix G. Perception of thebacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell2006,125:749-760.
    138. Zipfel C., Robatzek S., Navarro L., Oakeley E.J., Jones J.D., Felix G., Boller T. Bacterial diseaseresistance in Arabidopsis through flagellin perception. Nature2004,428:764-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700