纳米H_3PW_(12)O_(40)/TiO_2复合膜的制备、表征及光催化降解典型有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶胶-凝胶法结合程序升温水热技术和旋涂技术,制备纳米杂多酸/二氧化钛(H_3PW_(12)O_(40)/TiO_2)复合膜。通过调节饱和Keggin型磷钨酸H_3PW_(12)O_(40)、四异丙氧基钛(Titanium tetraisopropoxide,TTIP)、溶剂异丙醇及水之间的摩尔比,控制pH值、水热温度及旋涂速度,获得具有优异表面物理化学性质的新型复合材料,利用多种分析测试手段对其进行表征,揭示H_3PW_(12)O_(40)/TiO_2复合膜物化结构与光催化活性之间的关系。在模拟太阳光(波长范围为320nm-780nm)照射下,以典型有机污染物(染料罗丹明B、环境激素双酚A、抗生素磺胺甲噁唑等)作为目标化合物,对所制备的纳米H_3PW_(12)O_(40)/TiO_2复合膜光催化活性、影响因素、光催化氧化机理、回收利用性能及有机污染物光催化反应动力学、降解机理和矿化程度进行了研究。
     具体结果如下:
     1.通过电感耦合等离子体-原子发射光谱(ICP-AES)、能谱分析(EDS)、傅里叶红外光谱(FTIR)、拉曼光谱(Ramman)、X射线粉末衍射(XRD)、紫外-可见漫反射(UV-VisDRS)、氮气吸附-脱附(Nitrogen adsorption-desorption)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)多种分析测试手段,对纳米H_3PW_(12)O_(40)/TiO_2复合膜的组成、晶体结构、光吸收特性、孔结构特征、表面形貌等进行表征。结果表明,所制备的纳米H_3PW_(12)O_(40)/TiO_2复合膜具有如下特点:H_3PW_(12)O_(40)成功掺杂到TiO_2中,其Keggin结构保持完整,掺杂量在3.2-16.7%之间;复合膜中TiO_2均为锐钛矿晶型,晶粒尺寸的范围为8.48-12.32nm;复合膜中均匀分散着球形的纳米H_3PW_(12)O_(40)/TiO_2复合颗粒,无明显团聚现象;催化剂比表面积的范围为137.8-171.6m~2/g,具有三维交联海绵状结构;与纯TiO_2相比,复合膜催化剂吸收波长发生红移,对太阳光的利用率增强。
     2.通过纳米H_3PW_(12)O_(40)/TiO_2复合膜对罗丹明B(RhB)、双酚A(BPA)和磺胺甲噁唑(SMZ)光催化降解的研究,考察H_3PW_(12)O_(40)掺杂量、反应液初始浓度(C0)、溶液pH值等因素对光催化活性的影响,得出光催化降解的最佳条件。其中,RhB的最佳降解条件为:H_3PW_(12)O_(40)掺杂量为14.7%,C0为25mg/L,溶液pH为4.4;BPA的最佳降解条件为:H_3PW_(12)O_(40)掺杂量为6.3%,C0为5mg/L,溶液pH为8.2;SMZ的最佳降解条件为:H_3PW_(12)O_(40)掺杂量为7.7%,C0为50mg/L,溶液pH为5.5。其光催化反应均符合一级Langmuir-Hinshelwood动力学方程。上述条件下,RhB、BPA和SMZ的反应速率常数分别为0.018、0.023和0.008min-1,光照240min后,光催化降解效率分别为98.5%、100.0%和87.0%。
     3.以BPA作为目标污染物,通过自由基捕获实验研究了H_3PW_(12)O_(40)/TiO_2复合膜的光催化氧化机理。研究表明,H_3PW_(12)O_(40)和TiO_2之间能够产生协同作用,H_3PW_(12)O_(40)接受TiO_2表面的光生电子,使电子-空穴对得到有效分离,带有电子的H_3PW_(12)O_(40)负离子和空穴都可以进一步同水反应生成活性羟基(·OH)自由基,·OH自由基具有高度的氧化性,能够将有机污染物氧化降解。
     4.通过对BPA光催化降解中间产物的鉴定,推测其降解途径为:BPA分子中的苯环最先受到·OH自由基的进攻,两个苯环基团发生断裂,产生对羟基苯丙醇、苯酚和对羟基苯甲醛,在·OH作用下进一步转化为对苯二酚和对羟基苯甲酸,最终开环生成甲酸、乙酸、二氧化碳和水等小分子化合物。
     5.通过总有机碳(TOC)分析,分别考察了纳米H_3PW_(12)O_(40)/TiO_2复合膜对RhB、BPA和SMZ三种有机污染物的矿化作用。结果表明:在模拟太阳光条件下,光照12h后,其矿化程度分别为77.7%、76.7%和66.6%,均高于纯TiO_2膜(分别为63.3%、69.9%和53.2%)。
     6.通过纳米H_3PW_(12)O_(40)/TiO_2复合膜对RhB和BPA的多次光催化降解,分别考察了复合膜的循环利用性能。结果表明:14.7-H_3PW_(12)O_(40)/TiO_2复合膜对RhB三次循环使用后的光催化降解率仍然保持在95%以上;6.3-H_3PW_(12)O_(40)/TiO_2复合膜对BPA三次循环使用后的光催化降解效率为96.2%,十次循环后,BPA光催化降解效率仍可达到70%以上。
Nanometer H_3PW_(12)O_(40)/TiO_2composite films were prepared by the sol-gel combinedtemperature programmed hydrothemal method and spin coating technique. The novelcomposite films had abtained excellent physical and chemical properties through adjusting themolar ratio of saturation Keggin-type H_3PW_(12)O_(40), titanium tetraisopropoxide, isopropylalcohol and water. The surface morphology of the as-prepared composite films wascharacterized by various analysis tests to reveal the quantity-effect relation between materialstructure and photocatalytic activity. Under simulated sunlight (wavelength extent:320nm-780nm) irradiation, the photocatalytic activities of the composite films were studied viathe degradation of many typical organic compounds (dyes, endocrine disrupters and antibioticdrugs). The various influences on degradation were investigated systematically, includingH_3PW_(12)O_(40)loadings, initial concentration and solution pH and so on. Photocatalytic oxidationmechanism and recycling performance of composite film, corresponding dynamic models,degradation pathway and mineralization degree of organic pollutant were also discussed indepth.
     The main results was concluded as follows:
     1.Composition, crystal structure, optical absorption, pore structure characteristic, surfacemorphology of the as-prepared composite film was characterized by various analysis tests,including ICP-AES, EDS, FTIR, Ramman, XRD, UV-Vis DRS, Nitrogenadsorption-desorption, SEM and TEM. The results indicated that H_3PW_(12)O_(40)could dopedprimely in TiO_2lattice structure and the Keggin-type unit retained intact in H_3PW_(12)O_(40)/TiO_2composite films, the doping amount was from3.2%to16.7%; TiO_2showed pure anatasecrystal in all as-prepared composite films, grain diameter was8.48-12.32nm; The sphericalcatalysts particles well-dispersed in H_3PW_(12)O_(40)/TiO_2composite films could not be foundobvious agglomeration phenomenon, specific surface area of the catalyst was137.8-171.6m2/g, the interior possessed microporous structure and the catalyst particles stacked eachother to form mesoporous and spongeous structure; The absorption wavelength of compositefilm happened redshift and enhanced the utiization ratio of the sunlight after dopingH_3PW_(12)O_(40).
     2. Through the study and observation on photocatalytic activities of H_3PW_(12)O_(40)/TiO_2composite films and influencing factors for the degradation of RhB, BPA and SMZ, theoptimum reaction condition is comfirmed. The optimum condition of RhB: the H_3PW_(12)O_(40) loading is14.7%, initial concentration is25mg/L, solution pH is4.4; The optimum conditionof BPA: the H_3PW_(12)O_(40)loading is6.3%, initial concentration is5mg/L, solution pH is8.2;the optimum condition of SMZ: the H_3PW_(12)O_(40)loading is7.7%, initial concentration is50mg/L, solution pH is5.5. All photocatalytic reactions followed apparent first orderLangmuir-Hinshelwood kinetic model, the reaction rate constant of RhB, BPA and SMZrespectively is0.018,0.023and0.008min-1under the optimum condition; after240minirradiation, the efficiency of photocatalytic degradation is98.5%,100.0%and87.0%,respectively.
     3. BPA as target pollutant, photocatalytic oxidation mechanism of composite film wasstudied through free radicals capture experiment. The result indicated that synergistic actionbetween H_3PW_(12)O_(40)and TiO_2inhibited effectively the recombination of e--h+pairs,H_3PW_(12)O_(40)possessed strong electron-accept capacity, and prompted h+reacting with H2Oadequately to generate more active hydroxyl radicals. Hydroxy free radicals are highlyoxidizing and no selectivtiy group can have degradation organic pollutants effectively.
     4. The degradation pathway of BPA was presumed according to intermediate productsduring degradation process identified. It was that hydroxy radical attacked benzene rings ofBPA molecules at first, two groups of benzene happened breakage to produce p-hydroxybenzene propanol, phenol and p-hydroxybenzaldehyde, then further oxidized translated intohydroquinone and p-hydroxybenzoic acid, and finally opened aromatic ring to form formic,acetic acids, CO2and H2O.
     5. Mineralization ability to H_3PW_(12)O_(40)/TiO_2composite films for RhB, BPA and SMZwas observed through TOC analysis. After simulated sunlight irradiation for12h,mineralization degree respectively was77.7%,76.7%and66.6%, higher than TiO_2film(63.3%,69.9%and53.2%).
     6. Recycle and reuse of the H_3PW_(12)O_(40)/TiO_2composite films was studied throughdegradation RhB and BPA. The research found that above95.0%of RhB and BPA could stillbeen degraded after three times cycle by the composite film, and BPA photocatalyticdegradation efficiency still can achieve70%above after ten times cycle.
引文
[1]吴舜泽,夏青,刘鸿亮.中国流域水污染分析[J].环境科学与技术,2000,89(2):1-6.
    [2]孟伟.中国流域水环境污染综合防治战略[J].中国环境科学,2007,27(5):712-716.
    [3]王金应,刘国尧.水污染对人体健康危害的现状及对策研究[J].环境科学与技术,2006,29(3):80-81.
    [4]唐玉斌,陆柱,赵庆祥.绿色水处理技术的研究与应用进展[J].水处理技术,2002,28(1):1-5.
    [5] Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants [J]. Environ. Sci.Technol.,1991,25(5):1522–1529.
    [6] Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation for environmentalapplications-a review[J]. J. Chem. Technol. Biotechnol.,2001,77(1):102-116.
    [7] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238:37-38.
    [8] Carey J H, Tosine H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueoussuspension [J]. Bull. Environ. Contam. Toxicol.,1976,16(5):697-701.
    [9] Frank S N, Bad A J. Photoassisted oxidations [J]. J. Am. Chem. Soc.,1977,12(4):4467-4475.
    [10] Akyol A, Bayramoglu M. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst [J].J.Hazard. Mater.,2005,124(6):241-246.
    [11] Botta S G, Navio J A, Hidalgo M C, et al. Photocatalytic properties of ZrO2and Fe/ZrO2semiconductors prepared by a sol-gel technique [J]. J. Photochem. Photobiol., A,1999,129(5):89-99.
    [12] Reutergardh L B, Iangphasuk M. Photocatalytic decolourization of reactive azo dye: a comparisonbetween TiO2and CdS photocatalysis [J]. Chemosphere,1997,(3):585-596.
    [13] Maohai Y, Yougen T, Li Z, et al. Photocatalytic activity of CuO towards HER in catalyst from oxalicacid solution under simulated sunlight irradiation [J]. Trans. Nonferrous Met. Soc. China,2010,20(3):1944-1949.
    [14] Qamar M, Gondal M A, Yamani Z H. Synthesis of highly active nanocrystalline WO3and itsapplication in laser-induced photocatalytic removal of a dye from water [J]. Catal. Commun.,2009,10(2):1980-1984.
    [15] Wang X J, Wan F Q, Han K, et al. Large-scale synthesis well-dispersed ZnS microspheres and theirphotoluminescence and photocatalysis properties [J]. Mater. Charact.,2008,59(3):1765-1770.
    [16] Mohammad H H, Hakimeh V. Photocatalytic degradation of some organic sulfides as environmentalpollutants using titanium dioxide suspension [J]. J. Photochem and Photobiol., A,2005,174(1):45-52.
    [17] Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modifiedwith copper oxide [J]. Adv. Environ. Res.,2002,6(1):471-485.
    [18] Kuo H W, Yung H H, Ming Y C, et al. Photocatalytic degradation of2-chloro and2-nitrophenol bytitanium dioxide suspensions in aqueous solution [J]. Appl. Catal., B,1999,21(8):1-8.
    [19] Shinya H, Naoya K, Norio Y, et al. Selective photocatalytic oxidation of benzyl alcohol and itsderivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible lightirradiation [J]. Journal of Catalysis,2009,266(6):279-285.
    [20] Juliana C G, Keiko T. Photocatalytic degradation of imazaquin in an aqueous suspension of titaniumdioxide [J]. J. Photochem Photobiol., A,2003,155(7):215-222.
    [21] Rajeev J, Meenakshi S. Photocatalytic removal of hazardous dye cyanosine from industrial wasteusing titanium dioxide [J]. J. Hazard. Mater.,2008,152(3):216-220.
    [22] Sha J, Fumihide S. Photocatalytic activities enhanced for decompositions of organic compounds overmetal-photodepositing titanium dioxide [J]. Chem. Eng. J.,2004,97(1):203-211.
    [23]刘恩科,朱秉升,罗晋生.半导体物理学[M].国防工业出版社,1999.
    [24]杨霞.二元及三元纳米复合光催化材料的设计制备及其催化行为研究[D].博士学位论文,长春:东北师范大学,2009.
    [25]徐蕾.孔结构多酸-二氧化钛复合材料的制备及其光催化降解酞酸酯研究[D].博士学位论文,长春:东北师范大学,2010.
    [26] Ulrike D. The surface science of titanium dioxide [J]. Surf. Sci. Rep.,2003,48(12):53-229.
    [27]刘立强.掺杂改性型纳米二氧化钛的制备与性能表征[D].硕士学位论文,长沙:中南大学,2009.
    [28]张金龙,陈峰,何斌.光催化[M].华东理工大学出版社,2004.
    [29]邵琳琳.掺杂二氧化钛的制备及其光催化性能研究[D].硕士学位论文,长安:长安大学,2007.
    [30] Tanaka K, Capule M F V, Hisanage T, et al. Effect of crystallinity of TiO2on its photocatalytic action[J]. Chem. Phys. Lett.,2002,187(1-2):73-76.
    [31] Zhang H Z, Finnegan M, Banfield J F. Preparing single-phase nanocrystalline anatase from amorphoustitania with particle sizes [J]. Surf. Sci. Rep.,2004,9(7):20-21.
    [32] Janus M, Choina J. Morawski A W. Azo dyes decomposition on new nitrogen-modified anatase TiO2with high adsorptivity [J]. J. Hazard. Mater.,2009,166(1):1–5.
    [33] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of CH3CCH with H2O onsmall-particle TiO2: Size quantization effect and reaction intermediates [J]. J. Phys Chem.,1987,91(5):4305-4310.
    [34] Kangle L, Li X F, Deng K J, et al. Effect of phase structures on the photocatalytic activity of surfacefluorinated TiO2[J]. Appl. Catal., B,2010,95(5):383-392.
    [35] Ollis D F, Pelizzetti E, Serpone N, et al. Destruction of water contaminants [J]. Envirn Sci Technol,1991,25(7):134-145.
    [36] Leng W H, Liu H, Cheng S, et al. Kinetics of photocatalytic degradation of aniline in water over TiO2supported on porous nickel [J]. J. Photochem. Photobiol., A,2000,131(5):125-132.
    [37] Zhang Y R, Wan J, Ke Y Q. A novel approach of preparing TiO2films at low temperature and itsapplication in photocatalytic degradation of methyl orange [J]. J. Hazard. Mater.,2010,117(11):750-754.
    [38] Ruey A D, Sue M C, Yu C H, et al. Preparation of highly ordered titanium dioxide porous films:characterization and photocatalytic activity [J]. Sepa. Purif. Technol.,2007,58(5):192-199.
    [39] Wu C H, Yu C H. Effects of TiO2dosage, pH and temperature on decolorization of C.I.Reactive Red2in a UV/US/TiO2system [J]. J. Hazard. Mater.,2009,169(4):1179-1183.
    [40] Satoshi K, Hideyuki K, Tohru S, et al, Titanium dioxide mediated photocatalytic degradation ofdibutyl phthalate in aqueous solution-kinetics, mineralization and reaction mechanism [J]. Chem.Eng. J.,2006,125(8):59-66.
    [41] Torrell M, Cunha L, Cavaleiro A, et al. Functional and optical properties of Au: TiO2nanocompositefilms: The influence of thermal annealing [J]. Appl. Surf. Sci.,2010,256:6536-6542.
    [42] Turkevych I, Pihosh Y, Goto M, et al. Photocatalytic properties of titanium dioxide sputtered on ananostructured substrate [J]. Thin Solid Films,2008,516:2387-2391.
    [43] Akurati K K, Vital A, Klotz U E, et al. Synthesis of non-aggregated Titania nanoparticles inatmospheric pressure diffusion flames [J]. Powder Technol.,2006,165(2):73-82.
    [44] Park D G, Murlitch J M. Nanoparticles of anatase by electro-static spraying of an alkoxide solution [J].Chem. Mater.,1992,4(3):500-502.
    [45] Mechiakh R, Sedrine N B, Chtourou R, et al. Correlation between microstructure and opticalproperties of nano-crystalline TiO2thin films prepared by sol-gel dip coating [J]. Appl. Surf. Sci.,2010,257:670-676.
    [46] Zhu Y F, Zhang L, Gao C, et al. The synthesis of nanosized TiO2powder using a sol-gel method withTiCl4as a precursor [J]. J. Mater. Sci.,2000,35(16):4049-4054.
    [47] Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control of titanianano-particles [J]. J. Solid State Chem.,2004,177(45):1372-1381.
    [48] Mao L Q, Li Q L, Dang H X, et al. Synthesis of nano-crystalline TiO2with high photoactivity andlarge specific surface area by sol-gel method [J]. Mater. Res. Bull.,2005,40(2):201-208.
    [49] Mahshida S, Askaria M, Ghamsari M S, et al. Mixed-phase TiO2nanoparticles preparation usingsol-gel method [J]. J. Alloys Compd.,2009,478(1-2):586-589.
    [50] Fan C M, Xue P, Sun Y P. Preparation of Nano-TiO2doped with Cerium and its photocatalytic activity[J]. J. Rare Earth.,2006,24:309-313.
    [51]张辉,张国亮,杨志宏,等. TiO2光催化/膜分离耦合过程降解偶氮染料废水[J].催化学报,2009,30(7):679-684.
    [52] Li H S, Zhang Y P, Wang S Y, et al. Study on nanomagnets supported TiO2photocatalysts preparedby a sol-gel process in reverse microemulsion combining with solvent-thermal technique [J]. J. Hazard.Mater.,2009,169:1045-1053.
    [53] Peng T Y, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatasewall and high photocatalytic activity [J]. J. Phys. Chem. B.,2005,109(11):4947-4952.
    [54] Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2nanoparticles and derivationof optically transparent photocatalytic films [J]. Chem. Mater.,2003,15(17):3326-3331.
    [55] Gajovic A, Furic K, Tomasic N, et al. Mechanochemical preparation of nanocrystalline TiO2powdersand their behavior at high temperatures [J]. J. Alloys Compd.,2005,398:188-199.
    [56] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in Nitrogen-doped titanium oxides[J]. Science,2001,293:269-271.
    [57] Cong Y, Xiao L, Zhang J, et al. Carbon and nitrogen doped TiO2with high visble light photocatalyticactivity [J]. Res. Chem. Intermed.,2006,32(8):717-724.
    [58] Yu J C, Ho W, Yu J, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-dopednanocrystalline titania [J]. Environ. Sci. Technol.,2005,39:1175-1179.
    [59] Umebayashi T, Yamaki T, Itoh H. Band gap narrowing of titanium dioxide by sulfur doping [J]. ApplPhys Lett.,2002,81(3):454-546.
    [60] Kisch H, Sakthivel S, Janczarek M, et al. A low-band gap, nitrogen-modified titania visible-lightphotocatalyst [J]. J. Phys.Chem.,2007,111:11445-11449.
    [61] Janus M, Choina J, Morawski A.W. Azo dyes decomposition on new nitrogen-modified anatase TiO2with high adsorptivity [J]. J. Hazard. Mater.,2009,166:1-5.
    [62] Wu Z, Dong F, Zhao W, et al. Visible light induced electron transfer process over nitrogen doped TiO2nanocrystals prepared by oxidation of titanium nitride [J]. J. Hazard. Mater.,2008,157:57-63.
    [63] Jriapat A, Puangrat K, Supapan S. Visible light absorption ability and photocatalytic oxidation activityof various interstitial N-doped TiO2prepared from different nitrogen dopants [J]. J. Hazard. Mater.,2009,168:253-261.
    [64] Kee R W, Chung H H. Characterization of N, C-codoped TiO2films prepared by reactive DCmagnetron sputtering [J]. Appl. Surf. Sci.,2009,256:1595-1603.
    [65] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2and Cd/TiO2heter-junctions as on availableconfiguration for photocatalytic degradation of organic pollutant [J]. J. Photochem. Photobiol., A,2004,163(3):569-580.
    [66] Yang H M, Shi R R, Zhang K, et al. Synthesis of WO3/TiO2nanocomposites via sol-gel method [J]. JAlloys Comp.,2005,398(122):200-203.
    [67] Fang J, Bi Z, Si J, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2mixed oxides [J].Appl. Surf. Sci.,2007,253:8952-8961.
    [68] Hu C, Wang Y Z, Tang H X. Preparation and characterization of surface Bond-conjugated TiO2/SiO2and photocatalysis for azo dyes [J]. Appl. Catal., B,2001,30:277-285.
    [69]秦墨林.二氧化钛光催化剂的溶胶-凝胶法制备与应用研究[D].硕士学位论文,长沙:国防科学技术大学,2007.
    [70] Lo S C, Lin C F, Wu C H. Hsieh Pin–Hung Capability of coup led CdSe/TiO2for photocatalyticdegra-dation of4-chlorophenol [J]. J. Hazard. Mater.,2004,114(1-3):183-190.
    [71] Kuo C Y, Lin H Y. Effect of coupled semiconductor system treating aqueous4-nitrophenol [J].Journal of Environ-mental Science and Health-Part A Toxic/Hazard. Subs. and Environ. Eng.,2004,39(8):2113-2127.
    [72]秦洪武.二氧化钛光催化剂改性[D].硕士学位论文,济南:山东师范大学,2009.
    [73] Peng W, Shaik M, Zakee R. Gelation of ionic liquid-based electrolytes with silica nanoparticles forquasi-solid-state dye-sensitized solar cells [J]. Am. Chem. Soc.,2003,125:1166-1167.
    [74] Alex G, Emilio P, Saif A. Transient absorption and photovoltage characterization of dye sensitizedsolar cells [J]. Proc. of SPIE,2004,5513:56-64.
    [75] Shogo N, Wataru K, Yasuteru S. Electron density and dye adsorption dependence of electron transportin dye-sensitized TiO2solar cell [J]. Proc. of SPIE,2004,5215:24-31.
    [76] Peng T, Daik Y. Photosensitization of different Ruthenium (Ⅱ) complex dyes on TiO2forphotocatalytic H2evolution under visible-light [J]. Chem. Phys. Lett.,2008,460(3):216-219.
    [77] Moona J, Yuna C Y, Chung K W, et al. Photocatalytic activation of TiO2under visible light usingAcid Red44[J]. Catal. Today,2003,87(4):77-86.
    [78] Song L, Qiu R L, Mo Y Q, et al. Photodegradation of phenol in a polymer-modified TiO2semiconductor particulate system under the irradiation of visible light [J]. Catal. Commun.,2007,8:429-433.
    [79] Xu J J, Ao Y H, Fu D G, et al. Study on photocatalytic performance and degradation kinetics of X-3Bwith lanthanide-modified titanium dioxide under solar and UV illumination [J]. J. Hazard. Mater.,2009,164:762-768.
    [80] Colmenares J C, Aramendia M A, Marinas A, et al. Synthesis, characterization and photocatalyticactivity of different metal-doped titania systems [J]. Appl. Catal., A,2006,306(7):120-127.
    [81] Lee K, Lee N H, Sh I S, et al. Hydrothermal synthesis and photocatalytic characterizations oftransition metals doped nano TiO2sols [J]. Mater. Sci. Eng., B,2006,129(1/3):109-115.
    [82] Kimah, Choidk, Kinsj, et al. The effect of phase type on photocatalytic activity in transition metaldoped TiO2nanoparticles [J]. Catal. Commun.,2008,9(5):654-657.
    [83] Yan H P, Gui F H, Wei Q H. Visible-light absorption and photocatalytic activity of Cr-droped TiO2nanocrystal films [J]. Adv. powder Technol.,2012,23:8-12.
    [84] Li X, Xiong R C, Wei G. Preparation and photocatalytic activity of nanoglued Sn-doped TiO2[J]. J.Hazard. Mater.,2009,164:587-591.
    [85] Ghasemi S, Rahimnejad S, Setayesh S R, et al. Transition metal ions effect on the properties andphotocatalytic activity of nanocrystalline TiO2prepared in an ionic liquid [J]. J. Hazard. Mater.,2009,172:1573-1578.
    [86]席占勇.氮、硫改性纳米二氧化钛光催化降解有机废水的研究[D].硕士学位论文,哈尔滨:黑龙江大学,2008.
    [87] Quinones C, Ayala J, Vallejo W. Methylene blue photoelectrodegradation under UV irradiation onAu/Pd-modified TiO2films [J]. Appl. Surf. Sci.,2010,257:367-371.
    [88] Zuo J. Deposition of Ag nanostructures on TiO2thin films by RF magnetron sputtering [J]. Appl. Surf.Sci.,2010,256:7096-7101.
    [89] Ren L L, Zeng Y P, Jiang D L. Preparation, characterization and photocatalytic activities ofAg-deposited porous TiO2sheets [J]. Catal. Commun.,2009,10:645-649.
    [90] An H Q, Zhou J, Li J X, et al. Deposition of Pt on the stable nanotubular TiO2and its photocatalyticperformance [J]. Catal. Commun.,2009,11:175-179.
    [91] Chanhoi K, Moonjung C, Jyongsik J. Nitrogen-doped SiO2/TiO2core/shell nanoparticles as highlyefficient visible light photocatalyst [J]. J. Hazard. Mater.,2010,11:378-382.
    [92] Beata T. Immobilization of TiO2and Fe-C-TiO2photocatalysts on the cotton material for applicationin a flow photocatalytic reactor for decomposition of phenol in water [J]. J. Hazard. Mater.,2008,151:623-627.
    [93] Tian B Z, Li C Z, Gu F, et al. Synergetic effects of nitrogen doping and Au loading on enhancing thevisible-light photocatalytic activity of nano-TiO2[J]. Catal. Commun.,2009,10:925-929.
    [94] Wu Z B, Dong F, Liu Y, et al. Enhancement of the visible light photocatalytic performance ofC-doped TiO2by loading with V2O5[J]. Catal. Commun.,2009,11:82-86.
    [95] Kin T K, Lee M N, Lee S H, et al. Development of surface coating technology of TiO2powder andimprovement of photocatalytic activity by surface modification [J]. Thin Solid Films,2005,475:171-177.
    [96] Takeda S, Suzuki S, Odaka H, et al. Photocatalytic TiO2thin film deposited onto glass by DCmagnetron sputtering [J]. Thin Solid Films,2001,392:338-344.
    [97] Zeman P, Takabayashi S. Effect of total and oxygen partial pressures on structure of photocatalyticTiO2films sputtered on unheated substrate [J]. Surf. Coat. Technol.,2002,153:93-99.
    [98] Wang X J, Liu Y F, Hu Z H, et al. Degradation of methyl orange by composite photocatalystsnano-TiO2immobilized on activated carbons of different porosities [J]. J. Hazard. Mater.,2009,169:1061-1067.
    [99] Xu Y H, Lei B, Guo L Q, et al. Preparation, characterization and photocatalytic activity of manganesedoped TiO2immobilized on silica gel [J]. J. Hazard. Mater.,2008,160:78-82.
    [100] Sudhir K S, Vishwas M, Rao K N, et al. Structural and optical investigations of TiO2films depositedon transparent substrates by sol-gel technique [J]. J. Alloys Compd.,2009,471:244-247.
    [101]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998(第一版).
    [102]孔爱国.多金属含氧簇合物的热解性质及其在介孔二氧化钛表面固化研究[D].硕士学位论文,上海:华东师范大学理工学院,2005.
    [103] Misono M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solidstate [J]. Chem Comm.,2001,13:1141-1152.
    [104] Yamase T, Takabayashi N, Kaji M. Solution photochemistry of tetrakis (tetrabutylammonium)decatungstate (Ⅵ) and catalytic hydrogen evolution from alcohols [J]. J Chem Soc-Dalto Trans.,1984,5:793-799.
    [105] Yamase T. Sasaki R. Ikawa T. Photochemical studies of the alkylammonium molybdates photolysisin weak acid solutions [J]. J Chem. Soc. Dalton Trans.,1981,2:628-634.
    [106] Papaconstantinou E. Photochemistry of polyoxometalates of molybdenum and tungsten and/orvanadium [J]. Chem Soc Rev.,1989,18(1):1-31.
    [107] Jen S F, Anderson A B, Hill C L. Alkane reactions with photoactivated decatungstate in neutral andacid solution: molecular orbital theory [J]. J Phys Chem.,1992,96(13):5658-5662.
    [108] Friesen D A, Morello L, Headley J V, et al. Factors influencing relative efficiency in photo-oxidationsof organic molecules by Cs3PW12O40and TiO2colloidal photocatalysts [J]. J. Photochem Photobiol.,A,2000,133(3):213-220.
    [109] Antonaraki S, Androulaki E, Dimotikali D, et al. Photolytic degradation of all chlorophenols withpolyoxometallates and H2O2[J].J Photochem Photobiol., A,2002,148(1-3):191-197.
    [110] Idil A A, John L F. Near-UV-VIS light induced acid orange7bleaching in the presence of SiW12O4-40catalyst [J]. J. Photochem. Photobiol., A,2002,152:175-181.
    [111] Zhang G C, Xu Y M. Polyoxometalate-mediated reduction of dichromate under UV irradiation [J].Inorg. Chem. Commun.,2005,8:520-523.
    [112] Li T H, Gao S Y, Li F, et al. Photocatalytic property of a keggin-type polyoxometalates-containingbilayer system for degradation organic dye model [J]. J. Colloid Interface Sci.,2009,338:500-505.
    [113] Guo Y H, Hu C W. Heterogeneous photocatalysis by solid polyoxometalates [J]. J. Mol. Catal., A,2007,262:136-148.
    [114] Gkika E, Troupis A, Hiskia A, et al. Photocatalytic reduction of chromium and oxidation of organicsby polyoxometalates [J]. Appl. Catal., B,2006,62:28-34.
    [115] Ruya R O, John L F. Photocatalytic oxidation of aqueous1,2-dichlorobenzene by polyoxometalatessupported on the NaY zeolite [J]. J. Phys. Chem. B.,2002,106:4336-4342.
    [116] Jiang C J, Guo Y H, Hu C W, et al. Photocatalytic degradation of dye naphthol blue black in thepresence of zirconia-supported Ti-substituted Keggin-type polyoxometalates [J]. Mater. Res. Bull.,2004,39:251-261.
    [117] Farhadi S, Afshari M, Maleki M, et al. Photocatalytic oxidation of primary and secondary benzylicalcohols to carbonyl compounds catalyzed by H3PW12O40/SiO2under an O2atmosphere [J].Tetrahedron Lett.,2005,46:8483-8486.
    [118] Jiang S J, Guo Y H, Wang C H, et al. One-step sol-gol preparation and enhanced photocatalyticactivity of porous polyoxometalate-tantalum pentoxide nanocomposites [J]. J. Colloid Interface Sci.,2007,308:208-215.
    [119] Li L, Liu C M, Geng A F, et al. Preparation, characterization and photocatalytic applications ofamine-functionalized mesoporous silica impregnated with transition-metal-monosubstitutedpolyoxometalates [J]. Mater. Res. Bull.,2006,41:319-332.
    [120] Farhadi S, Zaidi M. Polyoxometalate-zirconia (POM/ZrO2) nanocomposite prepared by sol-gelprocess: A green and recyclable photocatalyst for efficient and selective aerobic oxidation of alcoholsinto aldehydes and ketones [J]. Appl. Catal., A,2009,354:119-126.
    [121] Guo Y H, Wang Y H, Hu C W, et al. Microporous polyoxometalates POMs/SiO2: Synthesis andphotocatalytic degradation of aqueous organocholorine pesticides [J]. Chem. Mater.,2000,12:3501-3508.
    [122] Xu L L, Wang Y H, Yang X, et al. Preparation of mesoporous polyoxometalate-tantalum pentoxidecomposite catalyst and its application for biodiesel production by esterification and transesterification[J]. Green Chem.,2008,10:746-755.
    [123] Guo Y H, Yang Y, Hu C W, et al. Preparation, Characterization and photochemical properties ofordered macroporous hybrid silica materials based on monovacant Keggin-type polyoxometalates [J].J. Mater. Chem.,2002,12:3046-3052.
    [124] Li D F, Guo Y H, Hu C W, et al. Photocatalytic degradation of aqueous formic acid over the silicacomposite films based on lacunary Keggin-type polyoxometalates [J]. Appl. Catal., A,2002,235:11-20.
    [125] Daniel C, Maurizio A, Giuseppe M, et al. Tungstophosphoric acid supported on polycrystalline TiO2for the photodegradation of4-nitrophenol in aqueous solution and propan-2-ol in vapour phase [J].Appl. Catal., A,2009,356:172-179.
    [126] Xu L, Yang X, Guo Y H, et al. Simulated sunlight photodegradation of aqueous phthalate esterscatalyzed by the polyoxotungstate/titania nanocomposite [J]. J. Hazard. Mater.,2010,178:1070-1077.
    [127] Gu C K, Shannon C. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems forthe oxidation of methanol [J]. J. Mol. Catal., A,2007,262:185-189.
    [128] Li L, Li Y J, Ma Y, et al. Preparation and photocatalytic behaviors of nanoporouspolyoxotungstate-anatase TiO2composites [J]. J. Rare Earth.,2007,25:68-73.
    [129] Yu X D, Guo Y N, Xu L L, et al. A novel preparation of mesoporous CsxH3-xPW12O40/TiO2nanocomposites with enhanced photocatalytic activity [J]. Colloids Surf., A,2008,316:110-118.
    [130] Yang Y, Guo Y H, Hu C W, et al. Synergistic effect of Keggin-type [Xn+W11O39](12-n)-and TiO2inmacroporous hybrid materials [Xn+W11O39](12-n)-TiO2for the photocatalytic degradation of textiledyes [J]. J. Mater. Chem.,2003,13:1686-1694.
    [131] Yang Y, Wu Q Y, Guo Y H, et al. Efficient degradation of dye pollutants on nanoporouspolyoxotungstate-anatase composite under visible-light irradiation [J]. J. Mol. Catal., A,2005,225:203-212.
    [132] Jin H X, Wu Q Y, Pang W Q. Photocatalytic degradation of textile dye X-3B usingpolyoxometalate-TiO2hybrid materials [J]. J. Hazard. Mater.,2007,141:123-127.
    [133] Li L, Wu Q Y, Guo Y H, et al. Nanosize and bimodal porous polyoxotungstate-anatase TiO2composites: Preparation and photocatalytic degradation of organophosphorus pesticide usingvisible-light excitation [J]. Microporous Mesoporous Mater.,2005,87:1-9.
    [134] Yang Y,Guo Y H, Hu C W, et al. Preparation of surface modifications of mesoporous titania withmonosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyesunder UV irradiation [J]. Appl. Catal., A,2004,273:201-210.
    [135] Li J H, Kang W L, Yang X, et al. Mesoporous titania-based H3PW12O40composite by a blockcopolymer surfactant-assisted templating route: Preparation, characterization, and heterogeneousphotocatalytic properties [J]. Desalination,2010,255:107-116.
    [136] Li K X, Yang X, Guo Y H, et al. Design of mesostructured H3PW12O40-titania materials withcontrollable structural orderings and pore geometries and their simulated sunlight photocatalyticactivity towards diethyl phthalate degradation [J]. Appl. Catal., B,2010,99:364-375.
    [137] Li D F, Gu C Z, Guo Y H, et al. The effects of ambient gases on the surface resistance ofpolyoxometalate/TiO2film [J]. Chem. Phys. Lett.,2004,385:55-59.
    [138] Yang Y, Guo Y H, Hu C W, et al. Lacunary Keggin-type polyoxometalates-based macroporouscomposite films: Preparation and photocatalytic activity [J]. Appl. Catal., A,2003,252:305-314.
    [139] Li D F, Guo Y H, Hu C W, et al. Preparation, Characterization and photocatalytic property of thePW11O397-/TiO2composite film towards azo-dye degradation [J]. J. Mol. Catal., A,2004,207:183-193.
    [140] Diamandescu L, Vasiliu F, Mihaila D T, et al. Structural and photocatalytic properties of iron-andeuropium-doped TiO2nanoparticles obtained under hydrothermal conditions [J]. Mater. Chem. Phys.,2008,112:146-153.
    [141] Chung C Y, Da Y W, Ming H S, et al. A combined experimental and theoretical analysis ofFe-implanted TiO2modified by metal plasma ion implantation [J]. Appl. Surf. Sci.,2010,256:6865-6870.
    [142] Akhavan O. Thickness dependent activity of nanostructured TiO2/α-Fe2O3photocatalyst thin film [J].Appl. Surf. Sci.,2010,257:1724-1728.
    [143] Wang L, Wang W Z, Shang M, et al. Visible light responsive bismuth niobate photocatalyst:enhanced contaminant degradation and hydrogen generation [J]. J. Mater. Chem.,2010,20:8405-8410.
    [144] Dong W Y, Chul W L, Lu X C, et al. Synchronous role of coupled adsorption and photocatalyticoxidation on ordered mesoporous anatase TiO2-SiO2nanocomposites generating excellentdegradation activity of RhB dye [J]. Appl. Catal., B,2010,95:197-207.
    [145]朱世云,李道棠.有机染料废水处理研究进展[J].上海环境科学,2000,8:396-398.
    [146]何珍宝.印染废水特点及处理技术[J].印染,2007,17:41-44.
    [147]周琪,赵由才.染料对人体健康和生态环境的危害[J].环境与健康杂志,2005,22:229-231.
    [148] U. S. EPA. Solid Waste and emergency response environmental fact sheet-hazardous waste listingdetermination for two dye and pigment wastes. EPA530-F-99-037,1999.
    [149]周琪,赵由才.染料对人体健康和生态环境的危害[J].环境与健康杂志,2005,22(3):229-231
    [150] Zhou Q X. Chemical pollution and transport of organic dyes in water-soil-crop systems of Chinesecoast [J]. Bull. Eniviron. Contam. Toxicol.,2001,6:784-793.
    [151]张林生,蒋岚岚.染料废水的脱色方法[J].化工环保,2000,20(1):14-18.
    [152]范洪波,孙晓娟,吴卫忠,等.难降解染料废水处理方法的研究进展[J].江苏石油化工学院学报,2002,14(1):61-64.
    [153]程云,周启星,马奇英,等.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,2003,4(6):56-60.
    [154] Li J Y, Ma W H, Lei P X, et al. Detection of intermediates in the TiO2-assisted photodegradation ofRhodamin B under visible light irradiation [J]. J. Environ. Sci.,2007,19:892-896.
    [155] You Y L J, Gao S Y, Yang Z, et al. Facile synthesis of polyoxometalate-thionine composite via directprecipitation method and its photocatalytic activity for degradation of rhodamine B under visiblelight [J]. J. Colloid Interface Sci.,2012,365:198-203.
    [156] Noureddine B, Samir Q, Ali A, et al. Factors influencing the photocatalytic degradation of RhodaminB by TiO2-coated non-woven paper [J]. J. Photochem. Photobiol., A,2008,195:346-351.
    [157] Li Y J, Sun S G, Ma Mi Y, et al. Kinetic study and model of the photocatalytic degradation ofrhodamin B (RhB) by a TiO2-coated activated carbon catalyst:Effects of initial RhB content,lightintensity and TiO2content in the catalyst [J]. Chem. Eng. J.,2008,142:147-155.
    [158] Thillai S N, Molly T, Kalithasan N, et al. Study on UV-LED/TiO2process for degradation ofRhodamine B dye [J]. Chem. Eng. J.,2011,169:126-134.
    [159] Shang J, Zhang Y C, Zhu T, et al. The promoted photoelectrocatalytic degradation of rhodamin Bover TiO2thin film under the half-wave pulsed direct current [J]. Appl. Catal., B,2011,102:464-469.
    [160] Zhang L, He Y M, Wu Y, et al. Photocatalytic degradation of RhB over MgFe2O4/TiO2compositematerials [J]. Mater. Sci. Eng., B,2011,176:1497-1504.
    [161] Li J Y, Ma W H, Chen C C, et al. Photodegradation of dye pollutants on one-dimensional TiO2nanoparticles under UV and visible irradiation [J]. J. Mol. Catal., A,2007,261:131-138.
    [162] Huang H Y, Gu X T, Zhou J H, et al. Photocatalytic degradation of Rhodamine B on TiO2nanoparticles modified with porphyrin and iron-porphyrin [J]. Catal. Commun.,2009,11:58-61.
    [163]任羽西,陈日耀,郑曦等.蒽醌/TiO2复合膜光催化降解孔雀石绿的研究[J].化工时刊,2005,2:14-16.
    [164]武正簧,周丽. TiO2薄膜光催化降解甲基橙和亚甲基蓝[J].化学工程师,2002,1:1-3.
    [165]熊叶丹,万树青.水体中环境激素的种类与危害[J].广州化工,2010,38:167-168.
    [166]滕玉洁,王幸丹,崔崇威.环境激素的种类及危害分析[J].环境科学与管理,2008,33:20-23.
    [167]王奕娟,王朝晖.环境激素类物质对人类健康的影响[J].生态科学,2007,26:564-569.
    [168]杨飞,喻泽斌,黄俊.水体中典型环境激素处理技术比较[J].水处理技术,2011,37:33-37.
    [169]周少奇,林云琴.环境激素污染研究进展[J].环境激素污染研究进展,2004,26(1):25-27.
    [170]马焕春.环境激素对人的危害与治理[J].科技信息,2009,23:245-246.
    [171] Huang Y Q, Wong C K C, Zheng J S, et al. Bisphenol A (BPA) in China: A review of sources,environmental levels, and potential human health impacts [J]. Environ. Inter.,2012,42:91-99.
    [172] Jane M. Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevantsource?[J]. Sci. Total Environ.,2009,407:4549-4559.
    [173] Junko S, Jun Y. Leaching of bisphenol A (BPA) from polycarbonate plastic to water containingamino acids and its degradation by radical oxygen species [J]. Chemosphere,2004,55:861-867.
    [174] Beverly S, Rubin. Bisphenol A: An endocrine disruptor with widespread exposure and multipleeffects [J]. J. Steroid Biochem. Mol. Biol.,2011,127:27-34.
    [175] Laura N V, Russ H, Michele M, et al. Human exposure to bisphenol A (BPA)[J]. Reprod. Toxicol.,2007,24:139-177.
    [176] Dong Y, Wu D Y, Chen X C, et al. Adsorption of bisphenol A from water by surfactant-modifiedzeolite [J]. J. Colloid Interface Sci.,2010,348:585-590.
    [177] Hideyuki K, Shinsuke K, Satoshi K, et al. Degradation of bisphenol A in water by the photo-Fentonreaction [J]. J. Photochem. Photobiol., A,2004,162:297-305.
    [178] Sibel I, Oktay E, Aydin A. Degradation of17-estradiol and bisphenol A in aqueous medium by usingozone and ozone/UV techniques [J]. J. Hazard. Mater.,2005,126:54-62.
    [179] Xie Y T, Li H B, Wang L, et al. Molecularly imprinted polymer microspheres enhancedbiodegradation of bisphenol A by acclimated activated sludge [J]. Water Res.,2011,45:1189-1198.
    [180] Wang R C, Ren D J, Xia S Q, et al. Photocatalytic degradation of Bisphenol A (BPA) usingimmobilized TiO2and UV illumination in a horizontal circulating bed photocatalytic reactor [J]. J.Hazard. Mater.,2009,169:926-932.
    [181] Kuo C Y, Wu C H, Lin H Y. Photocatalytic degradation of bisphenol A in a visible light/TiO2system[J]. Desalination,2010,256:37-42.
    [182] Venkatachalam N, Palanichamy M, Murugesan V. Sol-gel preparation and characterization ofnanosize TiO2: its photocatalytic performance [J]. Mater. Chem. Phys.,2007,104:454-459.
    [183] Wang C Y, Zhu L Y, Song C, et al. Characterization of photocatalyst Bi3.84W0.16O6.24and itsphotodegradation on bisphenol A under simulated solar light irradiation [J]. Appl. Catal., B,2011,105:229-236.
    [184] Gao B F, Lim T M, Dewi Puspitaningrum S, et al. Zr-doped TiO2for enhanced photocatalyticdegradation of bisphenol A [J]. Appl. Catal., A,2010,375:107-115.
    [185] Kormali P, Troupis A, Triantis T, et al. Photocatalysis by polyoxometallates and TiO2: a comparativestudy [J]. Catal. Today,2007,124:149-155.
    [186] Pan C S, Zhu Y F. New type of BiPO4oxy-acid salt photocatalyst with high photocatalytic activityon degradation of dye [J]. Environ. Sci. Technol.,2010,44:5570-5574.
    [187] Dewi P S, Madhavi S, Melvin L, et al. Photocatalytic degradation of bisphenol A by nitrogen-dopedTiO2hollow sphere in a vis-LED photoreactor [J]. Appl. Catal., B,2010,95:414-422.
    [188] Natsuko W, Satoshi H, Hiroshi K, et al. Photodegradation mechanism for bisphenol A at theTiO2/H2O interfaces [J]. Chemosphere,2003,52:851-859.
    [189] Satoshi K, Mohammad A R, Tohru S, et al. Optimization of solar photocatalytic degradationconditions of bisphenol A in water using titanium dioxide [J]. J. Photochem. Photobiol., A,2004,163:419-424.
    [190]王英霞.浅谈抗生素的应用现状与合理使用[J].泰山卫生,2008,32:14-15.
    [191]赵民生,王会贞,曹秀虹.滥用抗生素的危害与根源[J].食品与药品,2006,8:63-66.
    [192]姜蕾,谢丽,周琪等.水处理中微量抗生素去除的研究及进展[J].中国给水排水,2010,9:18-22.
    [193]石晶,王红武,马鲁铭.国内磺胺类废水处理的研究现状[J].辽宁工学院学报,2006,26:326-331.
    [194]刘佳,隋铭皓,朱春艳.水环境中抗生素的污染现状及其去除方法研究进展[J].四川环境,2011,30(2):111-114.
    [195]姜蕾,谢丽,周琪,等.水处理中微量抗生素去除的研究及进展[J].中国给水排水,2010,26(18):18-22.
    [196] Drillia P, Dokianakis S N, Fountoulakis M S, et al. On the occasional biodegradation ofpharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole [J]. J.Hazard. Mater.,2005,122:259-265.
    [197] Ahmad D, Ignasi S, Nihal O, et al. Electrochemical abatement of the antibiotic sulfamethoxazolefrom water [J]. Chemosphere,2010,81:594-602.
    [198] Xu B J, Mao D Q, Luo Y, et al. Sulfamethoxazole biodegradation and biotransformation in thewater-sediment system of a natural river [J]. Bioresource Technol.,2011,102:7069-7076.
    [199] Karsten N, Tobias L, Manuela B, et al. Evidence for the microbially mediated abiotic formation ofreversible and non-reversible sulfamethoxazole transformation products during denitrification [J].Water Res.,2012,(5):1-9.
    [200] Benno B, Jeannette J, Thorsten R, et al. Long term laboratory column experiments to simulate bankfiltration: factors controlling removal of sulfamethoxazole [J]. Water Res.,2011,45:211-220.
    [201] Abellan M N, Gimenez J, Esplugas S. Photocatalytic degradation of antibiotics: the case ofsulfamethoxazole and trimethoprim [J]. Catal. Today,2009,144:131-136.
    [202] Alam G T, Raquel F P B, Ana A, et al. Photodegradation of sulfamethoxazole in various aqueousmedia: Persistence toxicity and photoproducts assessment [J]. Chemosphere,2009,77:1292-1298.
    [203] Christopher C, Ryan, David T T, et al. Direct and indirect photolysis of sulfamethoxazole andtrimethoprim in wastewater treatment plant effluent [J]. Water Res.,2011,45:1280-1286.
    [204] Faisal I H, Li X Q, William E, et al. Removal of carbamazepine and sulfamethoxazole by MBR underanoxic and aerobic conditions [J]. Bioresource Technol.,2011,102:10386-10390.
    [205] Alam G, Trovo, Raquel F P, et al. Degradation of sulfamethoxazole in water by solar photo-Fentonchemical and toxicological evaluation [J]. Water Res.,2009,43:3922-3931.
    [206] Lanhua H, Phillip M, Flanders, et al. Oxidation of sulfamethoxazole and related antimicrobial agentsby TiO2photocatalysis [J]. Water Res.,2007,41:2612-2626.
    [207] Abellan M N, Bayarri B, Gimenez J, et al. Photocatalytic degradation of sulfamethoxazole in aqueoussuspension of TiO2[J]. Appl. Catel., B,2007,74:233-241.
    [208] Nikolaos P, Xekoukoulotakis, Catherine D, et al. Kinetics of UV-A/TiO2photocatalytic degradationand mineralization of the antibiotic sulfamethoxazole in aqueous matrices [J]. Catal. Today,2011,161:163-168.
    [209] Wang A, Li Y Y, Estrada A L. Mineralization of antibiotic sulfamethoxazole by photoelectron-Fentontreatment using activated carbon fiber cathode and under UVA irradiation [J]. Appl. Catal., B,2011,102:378-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700