污垢堆积特性及除污型污水蒸发器的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用污水源热泵系统(Wastewater Source Heat Pump, WWSHP)对污水废热进行回收具有重要的节能环保意义。由于污水水质较差,在废热回收过程中污水换热器表面会形成一层污垢,从而导致热泵系统运行性能下降,因此需要周期性除污来保证换热设备的正常运行。目前常见的方法有两种:一种是人工拆卸清洗,另一种是设计大尺寸或高流速的换热器来抵消污垢的影响。前者浪费人工既脏又累,后者则未能从根本上克服污垢,增加成本和运行费用。针对污水换热器结垢问题,本文对污垢堆积特性进行了机理研究来寻求有效的抑垢除垢方法;针对洗浴废水这类水质的污水搭建了废热回收实验台,来研究污垢对实际热回收系统的影响以及系统运行特性;提出了一种适用于污水源热泵系统的具有除污功能的壳管式污水蒸发器来保证污水废热回收系统的高效性和可靠性。本文的主要研究内容如下:
     本文首先从机理上分析了污垢堆积过程,搭建了污垢堆积特性测试实验台,研究了污水换热过程中各因素对污垢形成的影响。实验结果表明,污水中直径较小的粒子是形成污垢的主要成分。污水流速越大,渐近污垢热阻越小,沉积在换热器表面的粒子平均直径也越小。污水低流速运行时,在污垢形成初期,污垢反而增强换热,此时的污垢热阻定义为“负污垢热阻”。但污水在高流速运行时,这种现象并不出现。当污水换热器安装在污水泵吸入口时,形成的渐近污垢热阻以及沉积粒子的平均直径比安装在污水泵出口时要高。污垢成分分析测试结果表明,污垢中主要成分为无机物。
     为了研究实际工程中污垢对污水换热器的影响,在某洗浴中心搭建了利用浸泡式蒸发器(Immersed Evaporator, IE)进行洗浴废水废热回收的热泵系统。研究了洗浴废水这类水质的污水中形成的污垢对系统的影响,以寻求合适的污垢去除方法。本文对不同运行工况下的现场实测数据进行了分析。结果表明,应用水泵使浸泡式蒸发器内污水上下循环流动可减弱甚至消除温度在垂直方向的不均匀分布现象,并能改善污水源热泵的性能和压缩机的吸气压力。通过对污水源热泵系统一个月的性能监测发现,由于换热器表面污垢的生长,系统COP逐渐减小,因此对污水换热器进行定期清洗是十分必要的。同时,污垢生长导致污水管道的最大运输能力下降,且第一个月下降程度最大,在随后的四个月下降不明显。与几种传统热水加热系统的成本以及运行费用的对比结果表明,该废热回收热水系统具有明显的经济性。
     针对换热器污垢问题,提出了WWSHP系统的关键部件——具有除污功能的干式壳管式污水蒸发器(Dry-Expansion Shell-and-Tube Evaporator, DESTE)。在该洗浴中心搭建了利用DESTE换热器进行废热回收的WWSHP系统实验台,对DESTE的运行特性进行了实验研究。连续一个月的测试数据表明,一个月后系统蒸发温度、蒸发器换热能力、系统COP均因受到换热器表面污垢的影响而降低。一个月后利用DESTE换热器的除污装置对换热器进行了除污,并对除污前后的系统性能参数进行了测试和对比分析。对比结果表明,除污后制冷剂的平均蒸发温度、换热能力、COP在很大程度上有了提高,基本恢复到洁净时的运行状态。这些测试结果表明该换热器具有高效的除污功能。
     将传统的IE换热器和本文提出的DESTE换热器在WWSHP系统(IE-WWSHP和DESTE-WWSHP)中的运行和换热特性进行了对比分析,包括不同的热水设定温度、污水排放流量和形式,热水排放模式(连续/间断)等。并从初投资、运行费和环保方面对两种换热器进行分析。结果表明,DESTE换热器可以取代传统IE换热器。DESTE-WWSHP系统中的污水储水箱内污水温度分布比IE-WWSHP系统均匀;DESTE-WWSHP系统的热水加热能力比传统IE-WWSHP系统高;DESTE换热器污水侧换热系数、DESTE紧凑度均比IE换热器的高,因此体积比IE换热器小很多。分析表明,在除污方面,DESTE-WWSHP较IE-WWSHP系统节省劳动力和电能,同时避免难闻气体的泄漏造成的空气污染。
     为进一步了解DESTE换热过程,对其流动与换热机理进行了分析,根据质量守恒、动量守恒和能量守恒,建立了该干式壳管式污水蒸发器的换热模型。在验证了模型的有效性后,利用该模型对不同制冷剂和污水流速下的换热管内制冷剂的压力、空泡率、比焓以及温度分布进行了模拟。对比分析了除污前后两侧流体的温度分布以及制冷剂侧换热系数的变化。模拟研究了污垢的形成过程对污水换热器换热特性的影响。确定了最小污水流量、最优污水流量以及最佳除污污垢热阻。
     本课题研究是“十一五”国家科技支撑计划项目“水源地源热泵高效应用关键技术研究与示范”(2006BAJ01A06)的一部分。本文工作对深入认识污垢的堆积机理以及污水的流动换热特性具有重要意义,为寻找有效的抑垢除垢方法提供理论指导,本文提出的除污型污水换热器可有效解决污水废热回收过程中的污垢问题,为污水源热泵系统的推广提供有益参考和借鉴。
Using heat pump to recover heat from wastewater (called Wastewater Source HeatPump, WWSHP) is an environment-friendly and energy-saving technology, whichin turn is a promising research field. However, during the process of waste heatrecovery, foulant suspending in wastewater will deposit on the heat transfer surface,forming fouling layer which affects the heat transfer seriously. Therefore, aperiodical cleaning on the heat exchanger is required to ensure the WWSHP runs atan acceptable efficiency. Currently, two cleaing motheds are presented: one is toremove the fouling manually; the other is designing the heat exchanger with oversize or high wastewater flow rate to counteract the bad impact of fouling. The firstone is a troublesome and dirty job, requiring a high pay for cleaing workers; thesecond onecouldn’tsolve the fouling issue essentially, but increases the operationcost. To solve the fouling issue, the mechanism of fouling development wasresearched in this thesis, with purpose of seeking for an effective cleaning mothed.The quanlity of waste bath water is different from other wastewater, thus a heatpump system recovering heat from waste bath water was built to study the impact offouling on the system. Whilst, the performance of this heat recovery system wastested; A novel shell-and-tube heat exchanger with de-fouling function wasdeveloped, which can be used in WWSHP system. All research included in thisthesis are summarized as follows:
     The mechanism of fouling development was analyzed, referring sufficientliteratures. And then, an experimental apparatus to research process of particaldeposition on heat transfer surface was built. A series of test to investigate theeffects of operation parameters on the fouling deposition were carried out based onthis apparatus. Results suggested that the small particles in the wastewater were themain source for the fouling deposition on the heat transfer surface. With theincreasing of wastewater flow rate, the asymptotic fouling thermal resistancedropped, and the average particle diameter of foulant deposited on the surface of thetubes decreased as well.The phenomenon of “negative fouling thermal resistance”at the beginning of fouling development, which means fouling deposition couldenhance the heat transfer, appeared at the low flow rate of wastewater. But thisphenomenon disappeared at high flow rate. The asymptotic fouling thermalresistance and the average particle diameter of foulant were higher when the heatexchanger was installed at the suction-inlet of wastewater pump than that at the shoot-outlet. Ash fouling is the main ingredient of the overall foulant deposited onheat transfer surface.
     To research the fouling developed in the special wastewater of waste bath water andfind a suitable fouling cleaning method, an experimental WWSHP integrated with aconventional immersed evaporator (IE) was built in a sauna center which recoveredheat from waste bath water. Analysis about the operating performance of thisWWSHP system based on the collected field data in various operating conditions isreported. Test results suggested that circulating wastewater from the bottom to thetop of the wastewater storage tank (WST) could weaken even out the verticalwastewater temperature distribution inside the WST and improve the COP andcompressor suction pressure of the WWSHP accordingly. The daily averaged COPof the WWSHP was monitored for over an entire month. It was shown that themeasured COP gradually reduced, suggesting the need for regular cleaning of theheat exchangers used in a WWSHP system. In addition, the recorded maximumtransporting capacity of the wastewater pipe also reduced due to the bio-foulingbuild-up. Finally, an economic analysis is presented, comparing the WWSHPsystem with some conventional water heating systems.
     To solve the issue of fouling existed in wastewater heat exchangers, a novelDry-Expansion Shell-and-Tube Evaporator (DESTE) with de-fouling function wasdeveloped in this thesis which can be used in WWSHP system. An experimentalWWSHP integrated with DESTE was built in the sauna center to investigate itsoperation characteristics. One-month long test to examine the effect of bio-foulingon the operating performance of the WWSHP was conducted. The test datasuggested that with the growing of bio-fouling on the evaporator surface during thetesting period, the daily averaged refrigerant evaporating temperature, the dailyaveraged heat exchange capacity and the daily averaged COP of the WWSHPdecreased gradually due to the development of fouling. However, after cleaning bythe de-fouling device of DESTE at the end of the one-month long testing period, theaveraged refrigerant evaporating temperature, the averaged heat exchange capacityand the averaged COP were improved greatly and restored to the status in cleancondition basically. These comparison results clearly demonstrated that the novelevaporator with de-fouling function was effective in easily removing the bio-foulingbuild-up at a low cost.
     To compare the performance of the DESTE-WWSHP with the conventionalimmersed evaporator (IE) based wastewater source heat pump (IE-WWSHP), anexperimental platform was built by installing a DESTE and an IE unit in parallel ina same WWSHP system. Several operating parameters were investigated, including water heating capacity, coefficient of performance (COP), hot water temperaturesettings, wastewater discharge rate/pattern, and hot water discharge mode(continuous or intermittent). Further analysis on initial and operation cost andemvironment protection was given. Results showed that the DESTE-WWSHPdelivered comparable heat transfer performance to the IE-WWSHP, and thus, couldserve as a replacement for the latter apparatus. Specifically, the water temperature inthe water storage tank was more uniformly distributed in the DESTE-WWSHP thanthe IE-WWSHP; the DESTE-WWSHP exhibited higher water heating capacity thanthe IE-WWSHP at the continuous hot water discharge mode. The DESTE has ahigher heat transfer coefficient on the wastewater side than that of the IE unit. Atthe same heating capacity, the DESTE was far more compact and thus its volumewas smaller than the IE unit. Additional benefits offered by this DESTE-WWSHPincluded reducing labor and power costs for cleaning heat exchanger, anddecreasing odor nuisance also can be found.
     The mechanism of flow and heat transfer of the DESTE was analyzed, and then theheat transfer process was modeled based on conservation equations of mass,momentum and energy. Based on the model verified through comparingexperimental data with calculated data, the distributions of pressure, void fraction,specific enthalpy and temperature of refrigerant were simulated at different flowrates of refrigerant and wastewater respectively. The temperature variation ofrefrigerant and wastewater along the flow-line and the heat transfer coefficient ofrefrigerant were investigated before and after cleaning. At last, the effects of foulingdevelopment on performance of the DESTE were investigated. The minimumwastewater flow rate, the optimal wastewater flow rate and the optimal foulingthermal resistance of de-fouling were obtained from the results.
     This research is one sub-project of Study on the key technique and demonstration ofhigh-efficiency water/ground source heat pump system, supported by NationalEleventh Five-Year Technological Supporting Project from China Ministry ofScience and Technology (MOST) and coded as2006BAJ01A06. The research inthis thesis is also useful for understanding the mechanism of fouling developmentand the heat transfer inside the wastewater heat exchanger. It can provide atheoretical guide for making a strategy to restrict and remove fouling. The novelwastewater evaporator (DESTE) presented in this research can solve the foulingissue encountered by WWSHP users, which can be taken as a reference for extendthe application of WWSHP systems.
引文
[1]中华人民共和国国家统计局.中国统计年鉴—2011[M].北京:中国统计出版社,2011:9.
    [2]龙惟定.试论中国的能源结构与空调冷热源的选择取向[J].暖通空调,2000,30(5):27-32.
    [3] Hayakawa N, Wakazono Y, Kato T. Minimizing Energy Consumption inIndustries by Cascade Use of Waste Energy [J]. IEEE Transactions on EnergyConversion,1999,14(3):795-801.
    [4] Coskun S, Motorcu A, Yamankaradeniz N, Pulat E. Evaluation of ControlParameters’ Effectson System Performance with Taguchi Method in WasteHeat Recovery Application Using Mechanical Heat Pump [J]. InternationalJournal of Refrigeration,2012,35:795-809.
    [5] Meggers F, Leibundgut H. The Potential of Wastewater Heat and Exergy:Decentralized High-Temperature Recovery with a Heat Pump [J]. Energy andBuildings,2011,43:879-886.
    [6] Yoshii T. Technology for Utilizing Unused Low Temperature DifferenceEnergy [J]. Journal of Japan Institute of Energy,2001,(8):696-706.
    [7] Kim J, Kim J, Kim J, Yoo C, Moon I. A Simultaneous Optimization Approachfor the Design of Wastewater and Heat Exchange Networks Based on CostEstimation [J]. Journal of Cleaner Production,2009,17(2):162-171.
    [8] Polley G, Picón-Núňez M, López-Maciel J. Design of Water and HeatRecovery Networks for the Simultaneous Minimisation of Water and EnergyConsumption [J]. Applied Thermal Engineering,2010,30(16):2290-2299.
    [9] Meggers F, Leibundgut H. The Potential of Wastewater Heat and Exergy:Decentralized High-temperature Recovery with a Heat Pump [J]. Energy andBuildings,2011,43(4):879-886.
    [10] Berntsson T. Heat Sources-Technology, Economy and Environment [J].International Journal of Refrigeration,2002,(25):428-438.
    [11]林真国,张素云,付祥钊等.污水热泵在城市生活小区的应用[J].中国给水排水,2010,26(5):88-92.
    [12] Liu L, Fu L, Jiang Y. Application of an Exhaust Heat Recovery System forDomestic Hot Water [J]. Energy,2010,35:1476-1481.
    [13]邱振波,张精卫,徐志明.材料表面能影响污垢诱导期的实验研究与理论分析[J].东北电力大学学报,2008,28(1):45-48.
    [14] Baek N, Shin U, Yoon J. A Study on The Design And Analysis of a HeatPump Heating System Using Wastewater as a Heat Source [J]. Solar Energy,2005,78:427-440.
    [15] KEPRI. Technical Report TR.94YJ01.J1998.33, Program Development ofDesign and Energy Analysis for Thermal Cool Storage Systems [M]. KoreaElectric Power Research Institute.1998:235-39.
    [16] KIER. Feasibility Study on Heat Pump System Using Waste Thermal HotWater as A Heat Source. Deajeon: Korea Institute of Energy Research,2001
    [Internal report].
    [17] Müller-Steinhagen H, Zhao Q. Investigation of Low Fouling Surface AlloysMade By Ion Implantation Technology [J]. Chemical Engineering Science,1997,52:3321-3332.
    [18] Zhang A, Yang Y, He X and Xu Z. Effects of the Fouling on the ConvectiveHeat Transfer Field Synergy in Round Tube [J]. Energy Procedia,2012,17:1071-1078.
    [19] Vessakosol P, Charoensuk J. Numerical Analysis of Heat Transfer and Flowfield Around Cross-flow Heat Exchanger Tubewith Fouling [J]. AppliedThermal Engineering,2010,30:1170-1178.
    [20] Steinhagen R, Steinhagen H, Maani K. Problems and Costs due to HeatExchanger Fouling in New Zealand Industries [J]. Heat Transfer Engineering,1993,14(1):19-30.
    [21] Coletti F, Macchietto S, Polley G. Effects of Fouling on Performance ofRetrofitted Heat Exchanger Networks:A Thermo-Hydraulic Based Analysis[J]. Computers and Chemical Engineering,2011,35:907-917.
    [22] Van Nostrand W, Leach S(Jr), Haluska J. Economic Penalties Associated withthe Fouling of Refinery Heat Transfer Equipment, in “Fouling of HeatTransfer Equipment”, Eds., Somerscales and Knudsen,1981:619-643.
    [23] Garret-Price B, Smith S, Watts R, Knudsen J, Marner W, Suitor J. Fouling ofHeat Exchangers-Characteristics, Costs, Prevention, Control and Removal.Noyes Publications, Park Ridge, NJ,1985.
    [24] Thackery P. The Cost of Fouling in Heat Exchanger Plant [J]. Effluent andWater Treatment Journal,1980,20:112-115.
    [25] Aye L, Chareters W. Electrical and Engine Driven Heat Pumps for EffectiveUtilization of Renewable Energy Resources [J]. Applied ThermalEngineering,2003,(23):1295-1300.
    [26] Wang K, Zeeman G, Lettinga G. Alteration in Sewage Characteristics UponAging [J]. Water Science and Technology,1995,31(7):1991-2000.
    [27] Lindstrom H. Experiences with A3.3MW Heat Pump Using Sewage WaterAs Heat Source [J]. Heat Recovery Systems,1985,5(1):33-38.
    [28] Arashi N, Inaba A. Evaluation of Energy Use in District Heating and CoolingPlant Using Sewage and One Using Air as Heat Source [J]. Journal of JapanInstitute of Energy,2000,79(5):446-454.
    [29]徐邦裕,陆亚俊,马最良.热泵.北京:中国建筑工业出版社.1988.
    [30] Asano T, Maeda M. Wastewater Reclamation and Reuse in Japan: Overviewand Implementation Examples [J]. Water Science and Technology,1996,34(11):219-226.
    [31] Funamizu N, Iida M, Sakakura Y, Takakuwa T. Reuse of Heat Energy inWastewater: Implementation Examples in Japan [J]. Water Science andTechnology,2001,43(10):277-285
    [32] Ogoshi M, Suzuki Y, Asano T. Water Reuse in Japan [J]. Water Science andTechnology,2001,43(10):17-23.
    [33] Tassou S. Heat Recoveryfrom Sewage Effluent Using Heat Pumps [J]. HeatRecovery Systems&CHP,1988,8(2):141-148.
    [34]谭乃秦.城市污水处理厂污水低温热能利用[J].节能技术,2002,(2):15-20.
    [35]吴荣华,孙德兴.城市原生污水冷热源反冲法工艺与应用[J].中国给水排水,2003,(12):92-93.
    [36]赵凯,刘颖超.污水源热泵技术的开发应用[J].住宅科技,2003,(5):35-36.
    [37]周文忠.污水源热泵空调系统在污水处理厂的应用[J].暖通空调,2005,35(1):83-86.
    [38]姚杨,马最良,赵丽莹.污水源热泵系统的设计计算[J].煤气与热力,2005,25(2):39-42.
    [39] Zhao X, Fu L, Zhang S, Jiang Y, Lai Z. Study of the Performance of an UrbanOriginal Source Heat Pump System [J]. Energy Conversation Management,2010,(51):765-770.
    [40] Zhuang Z, Zhang C, Mu K, Sun D. The Frequency Conversion Technologyon The Sewage Source Heat Pump System [C]. Fifth International Workshopon Energy and Environment of Residential Buildings and Third InternationalConference on Built Environment and Public Health, Guilin, China, Vol. Iand II,2009:1652-1659.
    [41] Zhuang Z, Zhang C, Wu D, Sun D. Optimization Design for The HeatExchange Conditions of The Sewage Source Heat Pump System. FifthInternational Workshop on Energy and Environment of Residential Buildingsand Third International Conference on Built Environment and Public Health,Guilin, China, Vol. I and II,2009:1626-1633.
    [42]姚杨,宋艳,那威.污垢对污水源热泵系统性能影响的研究[J].哈尔滨工业大学学报,2007,39(4):599-603.
    [43] Jiang J, Hu J, Cui M and Tian H. Integration of Hydrogen Production andWaste Heat Recovery in Electrochemical Wastewater Treatment [J].Renewable Energy,2012,43:179-182.
    [44] Buyukalaca O, Ekinci F, Yilmaz T. Experimental Investigation of SeyhanRiver and Dam Lake as Heat Source-Sink for A Heat Pump [J]. Energy,2003,28:157-169.
    [45] Chen X, Zhang G, Peng J. The performance of an Open-Loop Lake WaterHeat Pump System in South China [J]. Applied Thermal Engineering,2006,26:2255-2261.
    [46] Lam O, Chan W. Life Cycle Energy Cost Analysis of Heat Pump Applicationfor Hotel Swimming Pools [J]. Energy Conservation and Management,2001,(42):1299-1306.
    [47] Mcnabola A, Shields K.Efficient Drain Water Heat Recoveryin HorizontalDomestic Shower Drains [J]. Energy and Buildings,2013,59:44-49.
    [48] Pulat E, Etemoglu A, Can M. Waste-heat Recovery Potential in TurkishTextile Industry: Case Study for City of Bursa [J]. Renewable andSustainable Energy,2009,13:663-672.
    [49] Gu Z, Qiu J, Li Y, Cai G. Heat pump system utilizing produced water in oilfields [J]. Applied Thermal Engineering,2003,(23):1959-1970.
    [50]姚杨,赵丽莹,马最良.某药厂污水源热泵系统的模拟与分析[J].哈尔滨工业大学学报,2006,38(5):797-800.
    [51] Walker S. Energy from Waste in the Sewage Treatment Process [C]. IEEConference,1996,(3):73-75.
    [52] Narita, Katsuhiko. Energy Recycling System for Urban Waste Heat [J].Energy and Buildings.1991,(11):553-560.
    [53]安青松,史琳,汤润.基于污水源热泵的大型集中洗浴废水余热利用研究[J].华北电力大学学报,2010,37(1):57-61.
    [54] Paepe M, Theuns E, Lenaers S, Loon J. Heat Recovery System forDishwashers [J]. Applied Thermal Engineering,2003,23:743-756.
    [55] Lam J, Chan W. Energy Performance of Air-to-water and Water-to-waterHeat Pump in Hotel Applications [J]. Energy Conservation and Management,2003,44(1):525-531.
    [56] Leidenfrost J. De Aguae Communis Nonnullis Qualitatibus Tractatus,1756(see Int. J. Heat Mass Transfer, Vol.9, pp.1153-1166,1966).
    [57] Kern D, Seaton R. A Theoretical Analysis of Thermal Surface Fouling [J].Chemical Engineering Progress,1959,4:258-262.
    [58] Knudson J. Power Condenser Heat Transfer Technology [M], Edited byMarto P and Nunn R. Washington D. C.: Hemisphere Pub. Co..1981.
    [59] Hasson D. Rate of Decrease of Heat Transfer Due to Scale Deposition [J],Dechema-Monugraphien,1962,47:233-253.
    [60] Reid W. External Corrosion and Deposits: Boilers and Gas Turbine [M]. NewYork: American Elsevier.1971.
    [61] Somerscales E, Knudsen J (Eds.). Fouling of Heat Transfer Equipment [M].Washington: Hemisphere Publishing Corporation.1981.
    [62] Lansing N (Ed.). Workshop Proceeding: Application of Fireside Additive toUtility Boilers, EPRI Report WS-80-127, Electric Power Research Institute,1981.
    [63] Maner W, Webb R (Eds.). Workshop on an Assessment of Gasside Fouling inFossil Fuel Exhaust Environment, Publicaton82-67, Jet PropulsionLaboratory, California Institute of Technology,1982.
    [64] Fassbender L (Ed.). The Fouling and Corrosion Workshop. Pacific NorthwestLaboratory.1986.
    [65] Genic S, Jacimovic B, Mandic D and Petrovic D. ExperimentalDetermination of Fouling Factor on Plate Heat Exchangers in DistrictHeating System [J]. Energy and Buildings,2012,50:204-211.
    [66] Epstein N. Thinking about Heat Transfer Fouling: A5×5Matrix. HeatTransfer Engineering,1993,4(1):43-56.
    [67] Pinheiro J.Fouling of Heat Transfer Surface, in “Heat Exchangers:Thermal-Hydraulic Fundamentals and Design”,1013-1035, Edited by KakacS et al., New York: Hemisphere.1981.
    [68] Zubair S. A Probabilistic Approach to the Maintenance of Heat-TransferEquipment Subject to Fouling [J]. Energy,1992,17(8):769-776.
    [69] Blochl R, Muller-Steinhagen H. Influnece of Particle Size and Particle/FluidCombination on Particulate Fouling in Heat Exchangers [J]. The CanadianJournal of Chemical Engineering,1990,68:585-591.
    [70]杨传芳.碳酸钙于换热表面上结疤的研究[D].大连理工大学博士学位论文.1992.
    [71] Yang S. Thermal Resistance Prediction of Precipitation Fouling Coexistingwith Particulate Fouling [C]. The1st International Conference on EnergyConversion and Energy Sources Engineering,1990:276-281.
    [72] Watkinson A. Fouling of Augmented Heat Transfer Tubes [J], Heat TransferEngineering,1990,11(2):57-65.
    [73] Zhang G, Bott T, Bemrose C. Reducing Particle Deposition in Air-CooledHeat Exchangers [J]. Heat Transfer Engineering,1990,13(2):57-65.
    [74] Crittenden B, Alderman N. Mechanisms by Which Fouling Can IncreaseOverall Heat Transfer Coefficients [J]. Heat Transfer Engineering,1992,13(4):32-41.
    [75] Oliveira D, Melo L, Pinhero J. Fouling by Aqueous Suspensions of KaolinMagnetite [C]. UK National Conference on Heat Transfer,1988,1:161-172.
    [76] Love N, Szybist J, Sluder C. Effect of Heat Exchanger Material and Foulingon Thermoelectric Exhaust Heat Recovery [J].2012,89:322-328.
    [77] Toyoda I, Schreier P, Fryer P. A Computational Model for Reaction FoulingFrom Whey Protein Solutions [C]. Proceedings of Fouling Cleaning in FoodProcessing, Cambridge, England,1994:222-229.
    [78] Lund D, Bixby B. Fouling of Heat Exchanger Surfaces by Milk [J]. ProcessBiochemistry,1975,10:52-55.
    [79] Lalande M., Tissier J, Corrieu G. Fouling of Heat Transfer Surfaces Relatedto Β-Lactoglobulin Denaturation During Heat Processing of Milk [J].Biotechnology Progress,1985,1(2):131-139.
    [80] Treybal R. Mass Transfer Operations [M]. McGraw-Hill Book Company.3rdedition.1981.
    [81] Chen J. Computer Simulation of Whey Protein based Milk Fouling [D].Auckland: Master of Engineering Thesis, the University of Auckland, NewZealand,2000.
    [82] Changani S, Belmar-Beiny M, Fryer P. Engineering and Chemical FactorsAssociated With Fouling and Cleaning In Milk Processing [J]. ExperimentalThermal and Fluid Science,1997,14:392-406.
    [83] Delplace F, Leuliet J, Levieux D. A Reaction Engineering Approach to theAnalysis of Fouling by Whey Proteins of a Six-Channel-Per-Pass Plate HeatExchanger [J]. Journal of Food Engineering,1997,34:91-108.
    [84] Lalande M, René F. Fouling by milk and dairy product and cleaning of heatexchanger surfaces. Fouling Science and Technology,(Eds., Melo L, Bott T,Bernardo C), Kluwer, Amsterdam, Netherlands,1988:557-573.
    [85] Wallh u er E, Hussein M, Becker T. Detection Method of Fouling in HeatExchangers in the Food Industry [J]. Food Control,2012,27:1-10.
    [86] Webb, R, Kim, N. Particulate Fouling in Enhanced Tubes, Heat Transferequipment Fundamentals, Design, Applications and Operating Problems.ASME,1989,108:315-324.
    [87] Webb R, Chamra L. On-line Cleaning of Particulate Fouling in EnhancedTubes [J]. Fouling and Enhancement Interactions, ASME,1991,164:47-54.
    [88]张仲彬,徐志明,邵天成.波纹管传热与污垢特性的实验研究[J].华北电力大学学报,2007,9:34(5):68-71.
    [89] Webb, R, Li W. Fouling in Enhanced Tubes Using Cooling Tower Water: PartI: Long-Term Fouling Data [J]. International Journal of Heat Mass Transfer,2000,43:3567-3578.
    [90] Kim N, Webb R. Experimental Study of Particulate Fouling in EnhancedWater Chiller Condenser Tubes [J]. ASHRAE Transactions,1989,95, Part.2.
    [91] Kim N, Webb R. Particulate Fouling of Water in Tubes Having ATwo-Dimensional Roughness Geometry [J]. International Journal of Heat andMass Transfer,1991,34(11):2727-2738.
    [92] Somerscales E, Ponteduro A, Bergles A. Particulate Fouling of Heat TransferTubes Enhanced on Their Inner Surface [J]. Fouling and EnhancementInteractions, ASME,1991,164:17-26.
    [93] Chamra L, Webb R. Effect of Particle Size and Size Distribution onParticulate Fouling in Enhanced Tubes [J]. Enhanced Heat Transfer,1993,1(1):65-75.
    [94] Webb R. Single-phase Heat Transfer, Friction and Fouling Characteristics ofThree-Dimensional Cone Roughness in Tube Flow [J]. International Journalof Heat and Mass Transfer,2009,52:2624-2631.
    [95] Chamra L, Webb R. Modeling Liquid-Side Particulate Fouling in EnhancedTubes [J]. International Journal of Heat and Mass Transfer,1994,37(4):571-579.
    [96] Webb R, Narayanamurthy R, Thors P. Heat Transfer and FrictionCharacteristics of Internal Helical-Rib Roughness [J]. Transaction of theASME,2000,122:134-142.
    [97] Webb R, Kim N. Particulate Fouling in Enhanced Tubes, Heat transferFundamentals, Design, Applications, and Operation Problems, ed., R. K.Shah, ASME HTD,1989,108: pp.315-324.
    [98] Freeman W, Middis J, Muller-Steinhagen H. Influence of AugmentedSurfaces and of Surface Finish on Particulate Fouling in Double Pipe HeatExchangers [J]. Chemical Engineering Processing,1990,27:1-11.
    [99] Li W, Webb R. Fouling in Enhanced Tubes Using Cooling Tower Water PartII: Combined Particulate and Precipitation Fouling [J]. International Journalof Heat and Mass Transfer,2000,43(19):3579-3588.
    [100] Zhang G, Li G, Li W, Zhang Z, Leng X and Tian M. Particulate Fouling andComposite Fouling Assessment in Corrugated Plate Heat Exchangers [J].International Journal of Heat and Mass Transfer,2013,60:263-273.
    [101] Li W, Webb R. Fouling Characteristics of Internal Helical-Rib RoughnessTubes Using Low-Velocity Cooling Tower Water [J]. International Journal ofHeat and Mass Transfer,2002,45(8):1685-1691.
    [102] Li W. Modeling Liquid-Side Particulate Fouling in Internal Helical-RibTubes [J]. Chemical Engineering Science,2007,62:4204-4213.
    [103] Li W, Li G. Modeling Cooling Tower Fouling in Helical-Rib Based onVon-Karman Analogy [J]. International Journal of Heat and Mass Transfer,2010,53:2715-2721.
    [104] Li W. The Internal Surface Area Basis, A Key Issue of Modeling Fouling inEnhanced Heat Transfer Tubes [J]. International Journal of Heat and MassTransfer,2003,46(22):4345-4349.
    [105] Nebot J, Casanueva T, Sales C. Model For Fouling Deposition on PowerPlant Steam Condensers Cooled With Seawater: Effect of Water Flow Rateand Tube Material [J]. International Journal of Heat and Mass Transfer,2007,50:3351-3358.
    [106] Watkinson A, Louis L, Brent R. Scaling of Enhanced Heat Exchanger Tubes[J]. The Canadian Journal of Chemical Engineering,1974,52:558-562.
    [107] Knudsen J, Story M. The Effect of Heat Transfer Surface Temperature on theScaling Behavior of Simulated Cooling Tower Water [J]. American Instituteof Chemical Engineers Symposium Series,1978,74(174):25-30.
    [108] Lee S, Knudsen J. Scaling Characteristics of Cooling Tower Water [J].ASHRAE Transactions,1979,85(1):281-289.
    [109] Coates K, Knudsen J. Calcium Carbonate Scaling Characteristics of CoolingTower Water [J]. ASHRAE Transactions,1980,86(2):68-91.
    [110] Knudsen J, Santoso E, Breske T, Donohue J, Chenoweth J. FoulingCharacteristics of Cooling Tower Water Containing Phosphate CorrosionInhibitors [C]. Proceedings of the1987ASME-JSME Thermal EngineeringJoint Conference,1987,3:10.
    [111] Watkinson A. Water Quality Effects on Fouling from Hard Water, HeatTransfer Sourcebook [M],(J.W. Palen, Ed.). Hemisphere Publishing,Washington.1986.
    [112] Lei C, Peng Z, Day T, Yan X, Bai X and Yuan C. Experimental Observationof Surface Morphology Effect on Crystallization Fouling in Plate HeatExchangers [J]. International Communications in Heat and Mass Transfer,2011,38:25-30.
    [113] Zuair S, Sheikh A, Budair M, Haq M, Quddus A, Ashiru O. StatisticalAspects of CaCO3Fouling in AISI316Stainless-Steel Tubes [J]. Journal ofHeat Transfer,1997,119:581-588.
    [114] Sultan K, Zubair S, Budair M, Sheikh A, Quddus A. Fouling resistance modelfor prediction of CaCO3scaling in AISI316tubes [J]. Heat and MassTransfer,1996,32:73-79.
    [115] Peyghambarzadeh S, Vatani A and Jamialahmadi M.Influences of BubbleFormation on Different Types of Heat Exchanger Fouling [J]. AppliedThermal Engineering,2013,50:848-856.
    [116] Mayer M, Bucko J, Benzinger W, Dittmeyer R, et al. The Impact ofCrystallization Fouling on a Microscale Heat Exchanger [J]. ExperimentalThermal and Fluid Science,2012,40:126-131.
    [117] Turner C, Smith D. Calcium Carbonate Scaling Kinetics Determined fromRadiotracer Experiments with Calcium-47[J]. Industrial&EngineeringChemistry Research,1998,37:439-448.
    [118] Somerscales E. Fouling of Heat Transfer Surfaces: An Historical Review [J].Heat Transfer Engineering,1990,11(1):19-36.
    [119] Taborek J, Aoki T, Ritter R, Palen J, Knudsen J. Fouling-The MajorUnresolved Problem in Heat Transfer, Part I [J]. Chemical EngineeringProgress,1972,88(2):59-67.
    [120] Taborek J, Aoki T, Ritter R, Palen J, Knudsen J. Fouling-The MajorUnresolved Problem in Heat Transfer, Part II [J]. Chemical EngineeringProgress,1972,88(7):69-78.
    [121] Arsenyeva O, Crittenden B, Yang M, Kapustenko P. Accounting for TheThermal Resistance of Cooling Water Fouling in Plate Heat Exchangers [J].Applied Thermal Engineering,2013,http://dx.doi.org/10.1016/j.applthermaleng.2013.02.045
    [122] Tarrytown N. Standards of Tubular Exchanger Manufactures Association [M].6th Ed.(1978) and7th Ed (1988). The Tubular Exchanger ManufacturesAssociation. Inc.
    [123] Nelson W. Fouling Factors-Crude Oil and Water [J]. Oil and Gas Journal, No.94in Series.
    [124] Bergeles G, Bouris D, Yianneskis M, Balabani S, Kravaritis A, Itskos S.Effects of Fouling on The Efficiency of Heat Exchangers in Lignite UtilityBoilers [J]. Applied Thermal Engineering,1997,17(8-10):739-749.
    [125] F rster M, Augustin W, Bohnet M. Influence of the Adhesion Force Crystal/Heat Exchanger Surface on Fouling Mitigation [J]. Chemical Engineeringand Processing,1999,38:449-461.
    [126] Mavridou S, Bouris D. Numerical Evaluation of a Heat Exchanger withInline Tubes of Different Size for Reduced Fouling Rates [J]. InternationalJournal of Heat and Mass Transfer,2012,55(19-20):5185-5195.
    [127] Melo L, Pinheiro J. Particle Transport in Fouling Caused by Kaolin-WaterSuspensions on Copper Tubes [J]. The Canadian Journal of ChemicalEngineering,1988,66:36-41.
    [128] Cunault C, Coquinot Y, Burton C, Picard S and Pourcher A. Characteristicsand Composition of Fouling Caused by Pig Slurry in a Tubular HeatExchanger-Recommended Cleaning Systems [J]. Journal of EnvironmentalManagement,2013,117:17-31.
    [129] Cunault C, Burton C and Pourcher A.The Impact of Fouling on the ProcessPerformance of The Thermal Treatment of Pig Slurry Using Tubular HeatExchangers [J]. Journal of Environmental Management,2013,117:253-262.
    [130] Belmar-Beiny M, Gotham S, Paterson W, Fryer P, Pritchard A. The Effect ofReynolds Number and Fuid Temperature in Whey Protein Fouling [J].Journal of Food Engineering,1993,19:119-139.
    [131] Flemming H, Tamachkiarowa A, Klahre J, Schmidt J. Monitoring of Foulingand Biofouling in Technical Systems [J]. Water Science Technology,1998,88:134-136.
    [132]张杰,吴莘馨,史琳.城市二级出水换热污垢实验台搭建及初步实验[J].原子能科学技术,2009,43:417-420.
    [133]昝成,史琳,程邺.再生水二级出水水温特点与热利用[J].华北电力大学学报,2007,34(2):31-34.
    [134]马秀娟,昝成,安青松.城镇二级出水污垢起始期生长情况的实验研究[J].清华大学学报,2010,50(2):274-277.
    [135]昝成,史琳,欧鸿飞.温度及流速对板式换热器内城镇二级出水结垢特性的影响[J].清华大学学报,2009,49(2):240-243.
    [136]张吉礼,曹达君,马志先.热阻法管内污垢生长特性实验研究[J].暖通空调,2009,39(10):37-40.
    [137]徐志明,黄兴,郭进生等.冷却水水质参数对板式换热器污垢特性的实验研究[J].工程热物理学报,2011,32(4):645-647.
    [138]徐志明,杜祥云,董兵.板式换热器以松花江水为冷却水条件下的污垢特性[J].化工进展,2012,31(12):2801-2805.
    [139]吴学慧,孙德兴.污水换热器污垢生长特性实验研究[J].节能技术,2008,26(150):299-304.
    [140]李鑫,孙德兴,张承虎.污水换热器内污垢生长特性实验研究[J].暖通空调,2008,38(2):5-8.
    [141]徐莹,李鑫,孙德兴.污水源热泵系统中换热器污垢热阻的实验研究[J].暖通空调,2009,39(5):67-70.
    [142]姚杨,宋艳,那威.污水源热泵处理低温污水的模拟分析[J].中国给水排水,2006,22(13):70-73.
    [143]崔福义,李晓明,周红.污水换热器污垢热阻特性研究[J].煤气与热力,2005,25(6):9-12.
    [144] Wang R, Feng S. Discussion on Heat Recovery of Waste Water in CollegeBathroom and the Meaning of Energy Saving and Emission Reduction [J].Construction Conserves Energy,2008,5:72-74.
    [145] Ali K, Alaeddin C. Investigation of the Performance of a Heat Pump UsingWaste Water as a Heat Source [J]. Energies,2009,2:697-713.
    [146] Lines J. Heat Exchangers in Municipal Wastewater Treatment Plants [J].Water Engineering and Management,1991,(9):28-29.
    [147]吴荣华,孙德兴.城市原生污水冷热源应用的关键因素研究[J].哈尔滨商业大学学报,2004,20(6):86-88.
    [148]徐莹.城市污水流变与换热特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2009.
    [149]吴荣华,张成虎,孙德兴.城市原生污水冷热源污水黏度特性实验测试[J].哈尔滨工业大学学报,2006,38(9):1492-1495.
    [150]吴荣华,孙德兴,张成.热泵冷热源城市原生污水的流动阻塞与换热特性[J].暖通空调,2005,35(2):86-88.
    [151]钱剑峰,吴学慧,孙德兴.管壳式污水换热器结垢厚度对流动换热的影响[J].流体机械,2007,35(1):74-78.
    [152]吴荣华,张承虎,孙德兴.城市原生污水冷热源换热管软垢特性研究[J].流体机械,2006,34(1):59-62.
    [153]昝成,欧鸿飞,史琳.板式换热器再生水污垢影响换热实验台的搭建和初步实验研究[J].热科学与技术,2008,7(2):180-183.
    [154] Funamizu N, Iida M, Sakakura Y. Reuse of Heat Energy In Waste Water:Implementation Examples in Japan [J]. Water Science and Technology,2001,43(10):277-286.
    [155] First DHC System in Japan Using Untreated Sewage as a Heat Source [OL].http://gasunie.eldoc.ub.rug.nl/root/1997/2039648/.
    [156]孙德兴,吴荣华.设置有滚筒格栅的城市污水水力自清方法及其装置:中国,200410043654.9[P].
    [157] Pedersen S, Sterne J.18MW Heat Pump System in Norway UtilizesUntreated Sewage as Heat Source [J]. IEA Heat Pump Centre Newsletter,2006,24(4):37-38.
    [158]陈燕民,韩彩云,王吉标等.地表水源热泵机组清洗方法的实验分析[C].天津:地源热泵技术论坛,2009,12.
    [159]张吉礼,马良栋.污水源热泵空调系统污水侧取水、除污和换热技术研究进展[J].暖通空调,2009,39(7):41-47.
    [160]孙德兴,肖红霞,张承虎.管壳换热器换热管束高压头强力轮替冲洗除污方法与装置:中国, ZL200710020578.0[P].
    [161]肖红侠,孙德兴,赵明明.非清洁水源热泵系统换热器除污方法研究[J].节能技术,2007,25(146):525-528.
    [162]李建兴,赵力,池勇志.不同换热形式的污水热泵工程运行能效分析[J].中国给水排水,2009,25(2):98-101.
    [163]张吉礼,马良栋.污水源热泵空调技术国内外研究应用进展[C].全国暖通空调制冷2008年学术年会论文集,2008:215.
    [164]于永辉,郑官振.贵阳市污水源热泵集中供热可行性分析[C].2005年全国空调与热泵节能技术交流会论文集,辽宁省大连市,2005:317-324.
    [165]吴荣华.原生污水源热泵系统研究与工程应用[D].哈尔滨:哈尔滨工业大学博士学位论文.2006.
    [166] Bott T. Techniques for Reducing the Amount of Biocide Necessary toCounteract The Effect Of Biofilm Growthin Cooling Water Systems [J].Applied Thermal Engineering,1998,18:1059-1066.
    [167] Young I, Byung-Gap C. Electronic Anti-Fouling Technology to MitigatePrecipitation Fouling in Plate-and-Frame Heat Exchangers [J]. InternationalJournal of Heat and Mass Transfer,1998,41(17):2565-2571.
    [168] Legay M, Allibert Y, Gondrexon N, Boldo P and Person S. ExperimentalInvestigations of Fouling Reduction in an Ultrasonically-Assisted HeatExchanger [J]. Experimental Thermal and Fluid Science,2013,46:111-119.
    [169] Pronk P, Ferreira C, Witkamp G. Prevention of Fouling and Scaling inStationary and Circulating Liquid-Solid fluidized Bed Heat Exchangers:Particle Impact Measurements and Analysis [J]. International Journal of Heatand Mass Transfer,2009,52:3857-3868.
    [170] Pronk P, Ferreira C, Witkamp G. Mitigation of Ice Crystallization Fouling inStationary and Circulating Liquid-Solid Fluidized Bed Heat Exchangers [J].International Journal of Heat and Mass Transfer,2010,53:403-411.
    [171] Kazi S, Duffy G and Chen X. Fouling Mitigation of Heat Exchangers WithNatural Fibres [J]. Applied Thermal Engineering,2013,50:1142-1148.
    [172] Genic S, Jacimovic B, Jaric M, Budimir N. Analysis of Fouling Factor inDistrict Heating Heat Exchangers with Parallel Helical Tube Coils [J].International Journal of Heat and Mass Transfer,2013,57:9-15.
    [173] Perez L, Ladevie B, Tochon P, Batsale J. A New Transient Thermal FoulingProbe for Cross flow Tubular Heat Exchangers[J]. International Journal ofHeat and Mass Transfer,2009,52:407-414.
    [174] Markowski M, Trafczynski M, Urbaniec K.Identification of The InfluenceofFouling on The Heat Recovery in a Network of Shell and Tube HeatExchangers [J]. Applied Energy,2013,102:755-764.
    [175] Gnielinski V. New Equations for Heat and Mass Transfer in Turbulent Pipeand Channel Flow [J]. International Chemical Engineering,1976,16:359.
    [176] Cunault C, Pourcher A, Burton C. Using Temperature-Time Criteria toControl the Effectiveness of Continuous Thermal Sanitation of PiggeryEffluent in Terms of Set Microbial Indicators [J]. Journal of AppliedMicrobiology,2011,111:1492-1504.
    [177] Crittenden B and Khather M. Fouling From Vaporizing Kerosene, in“Foulingin Heat Exchange Equipment”[J]. ASME-HTD,1984,35:57-64.
    [178]杨善让,徐志明,孙灵芳.换热设备的污垢与对策[M].北京:科学出版社.2004:126.
    [179] Cleaver J, Yates B. Mechanism of Detachment of Colloid Particles from aFlat Substrate in Turbulent Flow [J]. Journal of Colloid and Interface Science,1973,44(3):464-473.
    [180] Bryers J, Characklis W. Early Fouling Biofilm Formation in a Turbulent FlowSystem: Overall Kinetics [J]. Water Research,1981,15:483-491.
    [181] Chua K, Chou S, Yang W. Advances in Heat Pump Systems: A Review [J].Applied Energy,2010;87(12):3611-3624.
    [182]孙丽颖,姜益强,姚杨,等.我国污水资源热能利用潜力分析[J].给水排水,2010,36:210-213.
    [183] Shen C, Jiang Y, Yao Y, Deng S. Experimental Performance Evaluation of aNovel Dry-Expansion Evaporator With Defouling Function in a WastewaterSource Heat Pump [J]. Applied Energy,2012,95:202-209.
    [184]周强泰.两相流动和热交换[M].北京:水利电力出版社.1990:20-23.
    [185]杨世铭,陶文铨.传热学[M].西安:西安交通大学出版社.2001:22-24.
    [186] Turaga M, Guy R. Refrigerant Side Heat Transfer and Pressure DropEstimates for Direct Expansion Coils [J]. International Journal ofRefrigeration,1985,8(3):134-142.
    [187]姚杨.空气源热泵冷热水机组冬季结霜工况的模拟与分析[D].哈尔滨:哈尔滨工业大学博士学位论文.2002:36-38.
    [188]葛云亭.房间空调器系统仿真模拟研究[D].北京:清华大学博士学位论文.1997:14-16.
    [189]丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社.2001:31-35.
    [190]宋艳.处理后污水-原生污水热泵的淋激式换热器研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700