大体积混凝土裂缝控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大体积混凝土浇筑完成初期,由于水泥水化放热引起混凝土内部温度急剧攀升而导致其表里温差超限,加之表层混凝土水分散失而造成的干缩变形,从而可能产生危害性极大地贯穿性裂缝。由混凝土干缩与自收缩所引发的表层裂缝虽不影响结构的安全性能,但部分超出规范要求的表层裂缝会降低结构的耐久性、防水性和整体性以致引起钢筋锈蚀等不良后果。因此,无论是有碍观瞻的表层裂缝还是危及结构安全的有害裂缝都是工程施工中必须严格加以控制的。
     本文以某核电站核岛底板大体积混凝土工程实例为背景,主要针对以下几个方面进行了深入地探讨与研究:
     (1)阐述大体积混凝土裂缝的成因与发展机理;
     (2)在施工方案期间,基于热传导基本原理将有限差分法与MATLAB软件结合,对核岛底板大体积混凝土温度场展开预测性计算,准确地实现早期混凝土内部温度场的可视化,得到核岛底板温度及温升曲线走势图;
     (3)分析不同入模温度与计算模型差异分层厚度情况下的温度场发展规律,确定早期混凝土温度场发展的主要受制因素;
     (4)在得到核岛底板温度场基础之上,运用地基长墙模型测算出底板在外约束作用下的温度应力值,验算基于抗裂标准的温度应力极值,提前优选出最佳的混凝土入模温度,为科学地制定各项施工方案及养护布置提供理论依据与指导;
     (5)讨论混凝土入模温度选择值的经济合理性以及其他施工措施的辅助作用;
     (6)针对裂缝产生的原因及特点,制定有效的应对措施是成功控制裂缝形成与发展的关键所在。本文在实际的裂控方案中,从构造设计与现场施工两大方面入手,总结与分析出一系列行之有效的技术措施,与此同时,提出了多种应对温度应力与温度裂缝的新工艺与经改善的施工方法。具体的方法与思路包括优选原材料、科学制定配合比、提高混凝土的浇筑质量、严控混凝土温度及温升峰值、减缓混凝土温降梯度、抑制混凝土收缩变形、提高混凝土抗拉强度值、释放或解除混凝土所受约束以及加强温度与温度应力监测等;
     (7)将预测计算得出的结论与实测情况进行比对分析,检验预测计算的可靠性,总结出了大体积混凝土温度场与温度应力随龄期演变的基本脉络,并据此提出一些关于大体积混凝土裂缝控制的建议与意见。
At initial stage of pouring completion of mass concrete, due to the sudden temperature rise of concrete resulting from the cement hydration heat, the temperature difference inside and outside of concrete excesses its limit. In addition, moisture dissipation on surface layer of the concrete results in shrinkage deformation, and then generates hazardous penetrating crack. Surface cracks caused by drying shrinkage and autogenous shrinkage of concrete though dose not affect the safety performance of the structure, some of them exceed the requirements of Specifications will reduce the durability, waterproofing and integrity of the structure which bring about steel corrosion and other adverse consequences. Therefore, whether they are unsightly and unharmful surface cracks or the harmful cracks which endanger the structural safety must be strictly controlled in construction.
     Taking the nuclear island basemat of a nuclear power plant as an example, mainly carrying out the following aspects research and discussion:
     (1) Describing the causes and development mechanisms of mass concrete cracks;
     (2) Combining finite difference method with MATLAB software bases on the heat conduction principle, carrying out predictive calculation for the nuclear island basemat mass concrete temperature field, achieving the visualization of early concrete internal temperature filed accurately, receiving the temperature curve chart and temperature rise during the period of construction program;
     (3) Analyzing the temperature development law in the condition of different placement temperature and layer thickness, to determine the main restricted factors of temperature field development;
     (4) Using the model of a long wall on the foundation to calculate the temperature stress of basemat under the external constraints on the basis of temperature field, checking the temperature stress extremum according to crack resistance standard, obtaining the optimal placement temperature of concrete in advance. These prophase efforts provide a theoretical basis and guidance for formulating construction programs and curing arrangement scientifically;
     (5) Discussing the economic rationality of concrete placement temperature as well as the supplementary role of other construction measures;
     (6) For the reason and characteristics of cracks, drawing up effective response measures is the key to control the formation and development of cracks. This paper elaborates the actual crack control scheme, mainly involves structure design and site construction, summarizes and analyzes a series of effective technical measures, at the same time proposes a variety of new technology and improved construction methods to control temperature stress and temperature cracks. The specific methods and ideas include the selection of raw materials, formulating mixing proportion scientifically, improving the quality of concrete placement, and strictly controlling the temperature rise and the temperature peak, delaying the cooling rate, inhibiting concrete shrinkage, increasing concrete tensile strength value, releasing or discharging constraints suffered by nuclear island basemat concrete and strengthening the monitoring of temperature and temperature stress.etc;
     (7) The article compares the predicted results with measured situation, tests the reliability of the prediction calculation, summarizes the basic context with age evolution of mass concrete temperature field and temperature stress. And thus proposes some suggestions and advice about crack control of mass concrete.
引文
[1]肖南,彭明祥,刘小刚.CCTV底板超厚大体积混凝土施工技术[J].施工技术,2006,35(8):5-7
    [2]富文权,韩素芳.混凝土工程裂缝分析与控制[M].北京:中国铁道出版社,2003
    [3]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997
    [4]Francis A.Oluokun, Edwin G. Burdette, J. Harold Deatherag. Elastic Modulus, Ratio of Poisson, and Compressive Strength Relationships at Early-age. ACI Structural Journal,1991,103(1):4-11
    [5]J.J.Brooks, A.F.AI-kaisi. Early Strength Development of Porland and Slag Cement Concretes Cured at Elevated Temperature. ACI Material Journal,1990,89(10):502-508
    [6]Sidney Mindess, J.Francis Young, David Darwin. Concrete吴科如,张雄,姚武,张东译.化学工业出版社,2005:367-369
    [7]Gerd Thielen, Horst Grude:Mabnahmen zur Vermeidung von Rissen im Beton, Beton_und sthlbetonbau[J].FEB,1990
    [8]Rupert Springgenchmid, Rolf Breitenbucher:Beurteilung der Relpneigung anhand derribtemperatur von jungem Beton bei Zwang, beton_und Sthlbetonbau[J] JUNE,1990
    [9]Sting Bemander:Assessment of Thermal Cracking in Hardening Concrete, Journal of Structural Engineering[J].OCT,1994:243-247
    [10]Enrique Miraambell, Antonoi:Temperature and Stress Distributions in Concrete Box Girder Bridges, Journal of Structural Engineering[J].SEPT,1990
    [11]龚召熊,张锡详,肖汉江等.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999:3-4
    [12]吕睿,刘依群.薄板混凝土温度应力及温度裂缝问题的探讨[J].海河水利,2000(4)
    [13]Control of Cracking in Concrete Structures reported by ACI committee 224,1980,12
    [14]Pearson's. Initiation of fatigue cracks in commercial aluminum alloys and the subsequent Propagation of verge short cracks[R]. Engineering Fracture Mechanics.1975,7,235-247
    [15]金庭节,陆忠明.电测法检测混凝土裂缝的亚临界扩展量[J].水电科研与实践,1997,31(1):31-36
    [16]高虎,刘光廷,陈凤岐.混凝土双轴压缩徐变实验初步研究[J].清华大学学报,2001,41(11):110-113
    [17]朱伯芳,宋敬廷.混凝土温度场及温度徐变应力的有限单元分析[M].北京:水利电力出版社,1977.
    [18]李继业.新型混凝土技术与施工工艺[M].北京:中国建材工业出版社,2002:55-75
    [19]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005:336-338
    [20]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社,2004
    [21]李志清等.大体积混凝土底板施工裂缝的控制[J].沈阳建筑工程学院学报,2000,16(1):14-16
    [22]袁杨,徐明,陈忠范.大体积混凝土水化热温度场的MATLAB算法[J].特种结构,2010,27(2):28-31
    [23]王振波等.混凝土基础底板温度场及温度应力分析[J].南京建筑工程学院学报,1999,34(6):34-39
    [24]李东,潘育耕.混凝土水化热瞬时温度场数值计算过程中的水化热规律及水化速率问题[J].西安建筑科技大学学报,1999,3](3):277-279
    [25]李东等.大型混凝土基础工程裂缝控制施工中的温度控制指标[J].西北建筑工程学院学报,1999年6月第2期:6-10
    [26]王铁梦.工程结构裂缝控制一“抗与放”的设计原则及其在“跳仓法”施工中的应用[M].北京:中国建筑工业出版社,2007:18
    [27]朱伯芳.考虑温度影响的混凝土绝热温升表达式[J].水利水电学报,2003(2)
    [28]Effect of restrain, Volume Changes, and Reinforcement on Cracking of Mass Concrete. ACI materials journal commfl-1 report No.87-M31 ACI.2R. reported by ACIcommittee 207
    [29]朱伯芳,王同生,丁宝瑛,郭之章.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社,1976.
    [30]P.K.Mehta-Advancements in Concrete Techoology.Concrete international.Junel999.
    [31]Du Chongjiang. Mass concrete structures using novel shringkage-compensating concrete.Indian Concrete Journal.v77.n5.May.2003:1055-1059
    [32]Ono Sadamn.Thermal cracking control in Mass Concrete. Proceedings of the Fourth International Conference on Materials Engineering for Resources. v1.2001:71-76
    [33]龚召熊等.水工混凝土的温控与防裂[M].北京.中国水利电力出版社,1999:68-72
    [34]朱平华,陈华建.大体积混凝土优化设计的四功能准则[J].混凝土,2004,25(1):17-23.
    [35]R.Springenschmid.Avoidance of Thermal Cracking in Conerete at Early Ages,1998.
    [36]黄国兴、惠荣炎,混凝土的收缩[M].北京:中国铁道出版社,1990
    [37]A.B阿力克山大.徐变计算混凝土及钢筋混凝土结构的温度及湿度的应力[M].北京:中国建筑工业出版社,1989:26-42.
    [38]安明哲,覃维祖.高性能混凝土自收缩的抑制措施[J].混凝土,2001,22(5):37-41
    [39]Bazant, Z.R., etal, Crack Band Theory for Fracture of Conerete, Material and Constructions, vol.16, No.93,1983:155-177
    [40]汪正荣.建筑施工工程师手册(第二版).北京:中国建筑工业出版社,2002
    [41]李志清,张文伟,张健.大体积混凝土底板施工裂缝的控制[J].沈阳建筑工程学院学报,2000,16(1):14-16
    [42]中国工程院土木水利与建筑学部CCES01-2004混凝土结构耐久性设计与施工指南[S].北京:中国建筑工业出版社,2005
    [43]M.H.Zhang, C.T.Tam, M.P.Leow. Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete[J]. Cement and Concrete Research,2003
    [44]覃维祖.粉煤灰在混凝土中的应用[J].粉煤灰综合利用,2000(3)
    [45]祝永年等译.混凝土的结构、性能与材料[M].上海:同济大学出版社,1995:110-125
    [46]杨绍林.混凝土配合比使用手册.北京:中国建筑工业出版社,2002:100-126
    [47]文梓云,钱春香,杨长辉.混凝土工程与技术[M].武汉:武汉理工大学出版社,2004:157-164
    [48]王铁梦.王铁梦教授谈控制混凝土收缩裂缝的18个主要因素[J].混疑土,2003,(11)
    [49]徐铮澄.商品混凝土裂缝的成因与防治[J].混凝土,2002(5):64
    [50]Effect of Restraint, Volume Change, and Reinforcement on Cracking of Massive Concrete, ACI207.2R-73 (80)
    [51]朱伯芳,大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999
    [52]高虎,刘光廷.考虑温度对于弹模影响效应的大体积混凝十施工期应力计算[J].工程力学,2001,15(6):61-67
    [53]刘海卿,周秀珍等.大体积混凝土温度裂缝控制机理分析[J].辽宁工程技术大学学报,1998,28(2):47-51.
    [54]Nobuhiro Machida, Kazuo Uehara.Nonlinear stress analysis of a massive concrete structure[J]. Com-puters and Structuers,1987,26(2):287-296
    [55]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.大体积混凝土施工规范(2009年版)[S].北京:中国计划出版社,2009
    [56]钟佳墙,李琛,孙永军等.某大学1号高层住宅楼筏板大体积混凝土温度裂缝控制技术[J].混凝土,2005(5):52
    [57]江昔平,王社良,孙烨等.基于有限差分法的某筏板基础温度场的计算与温控措施[J].工工业建筑,2008,38(4):63-67
    [58]夏雨,王大伟,周月娥等.大体积混凝土施工期最高温度计算方法研究[J].人民黄河,2009,31(1):92-93
    [59]王沫然MATLAB与科学计算(第2版)[M].北京:电子工业出版社,2003.
    [60]栾尧等.大体积混凝土水化热温度场的数值计算[J].工业建筑,2008,38(2):81-85
    [61]袁杨,徐明,陈忠范.大体积混凝土水化热温度场的MATLAB算法[J].特种结构,2010,27(2):28-31
    [62]王继宗,梁晓颖,梁宾桥等.基于MATLAB语言的高性能混凝土配合比优化设计[J].工工业建筑,2005,35(1):1-5
    [63]迟培云,钱强,高昆.大体积混凝土开裂的起因及防裂措施[J].混凝土,2001,22(12):29-33
    [64]Report on Thermal and Volume Change Effectson Cracking of Mass Concrete, Reported by ACI Committee 207, First Printing September 2007:92-94
    [65]龚振斌,蔺宏.岭澳核电站核岛底板混凝土的裂缝控制及处理[J].建筑技术,2002,33(4):278-280
    [66]F M Lea著.水泥与混凝土化学.第三版.唐明述等译.北京:中国建筑工业出版社,]990
    [67]水利水电科学研究院.大体积混凝土.北京:水利水电出版社,1990
    [68]杨博科.混凝土实用新技术手册(精编).长春:吉林科学技术出版社,1998
    [69]要秉文,郭志华,乔素娟等.粉煤灰在大体积砼温度控制中的应用[J].粉煤灰综合利用,2004(6):25-27
    [70]吴科如,张雄,姚武等.混凝土[M].北京:化学工业出版社,2005
    [71]ACI Committee 304, "Guide for Measuring, Mixing, Transporting, and Placing Concrete (ACI304R-00)," ACI Manual of Concrete Practice, part 2, American Concrete Institute. Farmington hills, MI (2001)
    [72]Bofang Zhu, Ping Xu.Thermal Stress and Temperature Control of Roller-Compacted Concrete Gravity Dams [J]. Dam Engineering,1995(3):199-220
    [73]YBJ 224—-91块体基础大体积混凝土施工技术规程[S].北京:治金工业出版社,1991
    [74]ACI Committee 304, "Placing Concrete by Pumping Methods (ACI304.2R-96)," ACI Manual of Concrete Practice, part 2, American Concrete Institute. Farmington hills, MI (2001)
    [75]Orchard, D.F., Concrete Technology, Vol.2, Practice,3d ed., John Wiley & Sons, Inc., New York,1973
    [76]Meeks, K.W., and Carino, N.J., "Curing of HPC:Report of the State-of-the Art," NIST Report, National Institute of Standards and Technology,1999
    [77]徐荣年.工程结构裂缝控制[M].北京:中国建筑工业出版社,2005
    [78]黎平.大体积混凝土基础结构裂缝控制技术的应用研究[D].重庆:重庆大学,2006
    [79]朱柳沅.高层大体积混凝土工程施工技术研究[J].工业技术,2008(12)
    [80]安明,刘英利,娄林格.混凝土膨胀剂的研究与应用[J].建筑技术开发,2001(6)
    [81]田雨泽等.大体积混凝土施工的裂缝预控[J].低温建筑技术,2002(3)
    [82]P.K.Mehat.AdvaneementsinConereteTechnology[J].Conerete Intemational.June,1999.
    [83]麦润强.大体积混凝土施工技术[J].广东建材,2007(4)
    [84]张铁军,严跃兰.温度应力监测技术在岭澳核电二期核岛底板混凝土工程中的应用[J].建筑科学,2008,24(11):94-98
    [85]梁铭健.大体积混凝土施工方案[1].广东建材,2008(5)
    [86]侯景鹏,熊杰,袁勇.大体积混凝土温度控制与现场监测[J].混凝土,2004(5):56-58
    [87]祝昌墩,洪纪平,周志斌.厚大体积混凝土裂缝控制技术[J].施工技术,第35卷增刊,2006(7)
    [88]谈澄涛.高层建筑超长大体积混凝土底板裂缝控制研究[D].南京:南京工业大学,2006.
    [89]杨芸,辛立民.超厚大体积混凝土温度控制与现场监测[J].西部探矿工程,2008(12):208-211
    [90]吴荣昌.大体积混凝土施工中温度裂缝控制技术[J].重庆建筑,2006(6)
    [91]王士川等.施工技术[M].北京:冶金工业出版社,2001
    [92]Gajda J.Controlling Temperature in Mass Concrete[J].Concrete International,2002 (1):59-62.
    [93]张少锋.大体积混凝土裂缝控制[J].土工基础,2002,16(2)
    [94]蒋沧如.高层建筑基础大体积混凝土的温度与温度裂缝研究[D].武汉:武汉理工学,2004
    [95]Fameley.Competitve Bidding:A Review of Theory and Empirical Work.Journal of Economic Dynamic and Control,1992(16)
    [96]Thomas Froese, Core Process Models And Application Areas in Construction, August 1995
    [97]R.W.Cannon.Effect of Restraint Volume and Reinforcement on Cracking of Massive Concrete reported by ACI Committee 207
    [98]Chan, A.P.C.et.al.Study of Project Partnering in Hong Kong,2001
    [99]Daniel Cussion, Wellington L.Repette.Early-age Cracking in Recon Structured Concrete Bridge Walls[J]. ACI Material Journal. July-August 1999,509-518
    [100]D.K.H.Chua,D.Li, Key Factor In Bid Reasoning Model, Journal of Construction Engineer And Management, october 2000
    [101]Mats Emborg,Stig Bernander.Assessment of Risk of Thermal Cracking in Hardening Concrete Journal of Structural Engineering,1994(10):2893-2910
    [102]G. De Schutter. Fundamental study of early age concrete behaviour as a basis for durable concrete structures[J].Materials and Structures, vol.35, January-February2002:15-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700