生物质热解还原制备一氧化锰的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质作为一种分布广泛、储量丰富、可再生和环境友好的资源而受到关注。生物质热解产物主要是由固态、液态和气态产物组成的强还原性物质,可用于金属和非金属氧化物的还原反应,特别是在矿物质的还原方面具有广泛的应用。因此,本文以生物质代替传统煤炭,对其热解还原制备一氧化锰进行系统的研究,提出一种高效、经济和环保的一氧化锰制备新工艺。本研究不但可拓宽生物质的应用范围,为一氧化锰提供高效的制备新技术,而且对于缓解日趋严重的能源危机、环境问题和人类健康等具有重要的理论及应用意义。
     首先,以稻秆、锯末、麦秆、玉米秆和竹粉作为生物质原料,利用热重分析方法研究其热解过程;根据Coats-Redfern的一级动力学方程,建立生物质热解动力学模型;利用气相色谱、电镜能谱和红外光谱等分析方法,对生物质热解的气、液、固产物进行分析,确定其基本组成。结果表明生物质热解过程可分为脱表面水、脱结合水、快速热解和缓慢热解四个阶段;生物质热解过程符合分段一级动力学模型;生物质热解的气态产物主要由CO2,CO,H2,CH4,C2H4和C2H6组成,固态产物主要由C和O元素组成,而液态产物是由各类有机物组成。
     第二,选取生物质和生物质的热解产物代表组分(H2、CO和生物质热解液态产物)作为还原剂,锰矿和锰矿的主要代表组分(MnO2、Fe2O3和SiO2)作为被还原物,模拟研究生物质热解还原制备一氧化锰的锰矿还原率、还原温度范围和还原产物的价态变化,以及锰矿其他组分对还原过程的影响。研究表明生物质热解还原制备一氧化锰的直接还原物质主要为生物质热解产生的有机挥发分,还原过程是由生物质热解产生有机挥发分和挥发分还原氧化锰矿两个部分组成;锰矿的组分Fe2O3和SiO2具有增强生物质还原效果的作用。
     第三,通过对生物质热解还原制备一氧化锰的影响因素(生物质与锰矿的配比、还原温度、还原时间、生物质种类、生物质粒度、锰矿粒度、惰性气体流量以及氧气量)的研究,确定最佳还原条件;采用X射线衍射、电镜能谱和气相色谱分析方法对还原产物和尾气成分进行分析,探讨生物质热解还原氧化锰矿的反应机制;热重分析表明生物质热解还原反应可分为四个阶段:物料脱表面水阶段、物料脱结晶水阶段、主反应阶段和缓慢还原阶段;等温和不等温动力学研究表明生物质热解释放的有机挥发分和氧化锰矿的还原反应是还原反应的限速步骤,并符合一级动力学反应模型。
     第四,为使本方法应用于工业生产,对中试规模的工艺流程和技术方案进行设计,对各工艺单元进行探讨;对本工艺的防氧化进行系统的研究,包括产品氧化影响因素分析(氧化温度,氧化时间、生物质颗粒大小和物料堆积厚度)、氧化机制分析和防氧化措施的提出;本工艺的能量平衡、物料平衡和经济效益的计算分析,表明生物质热解还原制备一氧化锰工艺是一种有效、经济和环保的制备一氧化锰可行途径。
     本文围绕生物质还原氧化锰矿国家示范项目,提出高效率、低耗能和环境友好的生物质热解还原制备一氧化锰的新方法,并对还原反应的反应历程、反应影响因素、还原机理和反应动力学进行了研究;对生物质热解还原制备一氧化锰的工艺进行研究,为低品位氧化锰矿资源综合利用的工程技术开发提供了理论基础。
Biomass as a widely distributed, abundant, renewable and environment-friendlyresource has been received considerable attention. The products of biomass pyrolysisare strong reductive substances as solid, liquid and gaseous. They are widely used asreductors in reduction of metal and nonmetal oxides, especially for minerals.Therefore, the biomass is used to prepare manganese monoxide by its pyrolysisprocess in stead of traditional coal. The results not only broaden the application ofbiomass, but also are a new technology for preparation of manganese monoxide withhigher efficiency and lower energy consumption. And it also can do better in improvethe mitigation of increasingly serious energy crisis, environmental and human health.
     Firstly, the pyrolysis process of five kinds of biomass, such as rice straw, sawdust,wheat stalk, corn stalk and bamboo powder, was investigated by thermogravimetricanalysis. The pyrolysis kinetics analysis was investigated based on thethermogravimetric data. The biomass pyrolysis components of gas, liquid, solid-statewere analyzed by gas chromatography, scanning electron microscopy and Fourierinfrared spectroscopy. The results showed that the pyrolysis process of biomass couldbe divided into four stages including evaporation of moisture, evaporation of boundmoisture, fast pyrolysis and slow pyrolysis; the biomass pyrolysis followedindependent parallel first-order reaction kinetic model; the gaseous products weremainly CO2, CO, H2, CH4, C2H4and C2H6, the solid products were mainly carbon andoxygen, while liquid products were various types of organic compounds.
     Secondely, the process of preparation of manganese monoxide by biomasspyrolysis was simulated by the reductors of biomass and the represents of biomasspyrolysis, such as H2, CO and biomass liquid products. The manganese oxide ore andthe main components of ore, such as MnO2、Fe2O3and SiO2, were reducted base onthe studies in the factors of reduction degree, reaction temperature and valence changeof manganese ore. The results illustrated that the biomass volatiles were the mainagents in reducing the manganese oxide ores. The reduction mechanism included twosteps that are biomass thermal degradations to releasing gaseous reductive volatilesand then reducions of the manganese oxide ore by volatiles reductors. The maincomponents of ore, such as Fe2O3and SiO2could improve the reduction efficiency ofmanganese ore by biomass pyrolysis.
     Thirdly, the optimum conditions of preparation of manganese monoxide bybiomass pyrolysis reduction were determined based on the investigation of influencefactors, such as biomass/manganese ore ratio, reaction temperature, reaction time, types of biomass, particle size of biomass, particle size of manganese ore, flow rate ofinert air and amount of oxygen. By the analysis of X-ray powder diffraction, scanningelectron microscopy and energy dispersive X-ray spectroscopy on the reduced sampleand GC analysis on gas composition of the outlet gas, the reduction mechanism wasspeculated. The reduction process of manganese oxide ore by biomass pyrolysis couldbe divided into four stages including evaporation of moisture, evaporation of boundmoisture, main reduction and slow reduction. Kinetic results showed that thereduction process followed the first order kinetic model and the reduction rate wascontrolled by the reaction between biomass volatiles and manganese oxide ore.
     Lastly, in order to promoting this method in industry, the flow process andtechnology programs were planed in mid-industrial scale. The methods ofanti-oxidation were worked out based on the investigation on the influencing factors(such as reaction temperature, reaction time, particle size of biomass and materialsthickness) and the mechanism of oxidation of manganese monoxide. The estimationof energy balance, material balance and economics were evalualed, which showedthat the preparation of manganese monoxide by biomass pyrolysis was effective,economically feasible and environment-friendly for industrially preparing manganesemonoxide.
     With regard to the national demonstration project on the reduction of manganeseoxide ore by the biomass pyrolysis, an efficient method of preparing manganese oxideis put forward with the advantages of lower energy consumption and the friendlyenvironment. The reduction process was studied on the reaction mechanism, influencefactors, reduction mechanism and reduction kinetics. The technology of preparingmanganese oxide of biomass pyrolysis was designed. It is a theoretical basis for thecomprehensive utilization of lower grade manganese ore resources.
引文
[1] HARDING N S,ADAMS B R. Biomass as a reburning fuel: a specialized cofiringapplication[J]. Biomass and Bioenergy,2000,19(6):429-445.
    [2]张无敌,宋洪川,韦小岿等.21世纪发展生物质能前景广阔[J].中国能源,2001,(5):35-38.
    [3]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002,58.
    [4]徐农显,刘晓,王伟.我国生物质废物污染现状与资源发展趋势[J].再生利用,2008,1(5):31-34.
    [5] ZHANG M, YUAN Y C, LIU Y Z. Research on biomass waste combustion technologies[J].Energy Research and Information,2005,21(1):15-16.
    [6] MUNIR S, DAOOD S S, NIMMO W, CUNLIFFE A M, GIBBS B M. Thermal analysis anddevolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogenand air atmospheres[J]. Bioreource. Technol.,2009,100(3):1413-1418.
    [7]阴秀丽,吴创之,徐冰燕等.生物质气化对减少CO2排放的作用[J].太阳能学报,2000,21(1):44-46.
    [8] BRIDGWATER A V, PEACOCKE G V C. Fast Pyrolysis Processes for Biomass[J].Renewable&Sustainable Energy Reviews.2000,4(1):1-73.
    [9] LEVINE J S, et al. Biomass burning: a driver for global change[J]. Env Sci&Tech,1995,29(3):120A-125A.
    [10] RAVEENDRAN K, ANURADDA G, KARTIC C K. Pyrolysis characteristics of biomassand biomass components[J]. Fuel,1996,75(8):987-998.
    [11] HSI C L, WANG T Y, TSAI C H, CHANG C Y, LIU C H, CHANG Y C, KUO J T.Characteristics of an air-blown fixed-bed downdraft biomass gasifier[J]. Energy&Fuels.2008,22(6):4196-4205.
    [12] ZHONG C L, WEI X M. A comparative experimental study on the liquefaction of wood[J].Energy,2004,29:1731-1741.
    [13]董治国,王述祥.生物质快速裂解液化技术的研究[J].林业劳动安全,2004,17(1):12-14.
    [14] SKREIBERG A, SKREIBERG O, SANDQUIST J, SORUM L. TGA and macro-TGAcharacterisation of biomass fuels and fuel mixtures[J]. Fuel,2011,90(6):2182-2197.
    [15] SKODRAS G, GRAMMELIS P, BASINAS P, KAKARAS E, SAKELLAROPOULOS G.Pyrolysis and combustion characteristics of biomass and waste-derived feedstock[J]. Ind.Eng. Chem. Res.,2006,45(11):3791-3799.
    [16] DARVELL L I, JONES J M, GUDKA B, BAXTER X C, SADDAWI A, WILLIAMS A,MALMGREN A. Combustion properties of some power station biomass fuels[J]. Fuel,2010,89(10):2881–2890.
    [17] MULLER-HAGEDORN M, BOCKHORN H, KREBS L, MULLER U. A comparativekinetic study on the pyrolysis of three different wood species[J]. J. Anal. Appl. Pyrolysis,2003,68-69:231-249.
    [18] VAMVUKA D, KAKARAS E, KASTANAKI E, GRAMMELIS P. Pyrolysis characteristicsand kinetics of biomass residuals mixtures with lignite[J]. Fuel,2003,82(15-17):1949-1960.
    [19] DEMIRBAS A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. EnergyConversion and Management,2000,41(6):633-646.
    [20]余春江,张文楠,骆仲泱,等.流化床中单颗粒纤维素热解模型研究[J].太阳能学报,2002,23(1):87-95.
    [21]陈拂,罗永浩,陆方,等.生物质热解机理研究进展[J].工业加热,2006,35(5):4-8.
    [22]杜瑛,齐卫艳,苗霞,等.毛竹的主要化学成分分析及热解[J].化工学报,2004,55(12):2099-2102.
    [23] WU Y, FANG M, LAN L D, ZHANG, RAO K V, BAO Z Y. Rapid and direct magnetizationof goethite ore roasted by biomass fuel[J]. Separation and Purification Technology,2012,94:34-38.
    [24]徐頔,朱国才,池汝安,赵玉娜,袁硕.高磷赤铁矿生物质磁化脱磷焙烧-磁选试验研究[J].金属矿山,2010,(5):68-76.
    [25]汪永斌,朱国才,池汝安,赵玉娜,程卓.生物质还原磁化褐铁矿的实验研究[J].过程工程学报,2009,9(3):508-513.
    [26] LUO S Y, YI C J, ZHOU Y M. Direct reduction of mixed biomass-Fe2O3briquettes usingbiomass-generated syngas[J]. Renewable Energy,2011,36:3332-3336.
    [27] FU J X, ZHANG C, HWANG W S, LIAU Y T, LIN Y T. Exploration of biomass char forCO2reduction in RHF process for steel production[J]. International Journal of GreenhouseGas Control,2012,8:143-149.
    [28] GAN M, FAN X H, CHEN X L, JI Z Y, LV W, WANG Y, YU Z Y, JIANG T. Reduction ofpollutant emission in iron ore sintering process by applying biomass fuels[J]. ISIJInternational,2012,52(9):1574-1578.
    [29] STREZOV V. Iron ore reduction using sawdust: Experimental analysis and kineticmodeling[J]. Renewable Energy,2006,31:1892-1905.
    [30] SONG J J, ZHU G C, ZHANG P, ZHAO Y N. Reduction of low-grade manganese oxide oreby biomass roasting[J]. Acta. Metall. Sin.(Engl. Lett.),2010,23(3):223-229.
    [31] CHENG Z, ZHU G C, ZHAO Y N. Study in reduction-roast leaching manganese fromlow-grade manganese dioxide ores using cornstalk as reductant[J]. Hydrometallurgy,2009,96(1-2):176-179.
    [32] ZHAO Y N, ZHU G C, CHENG Z. Thermal analysis and kinetic modeling of manganeseoxide ore reduction using biomass straw as reductant[J]. Hydrometallurgy,2010,105(1-2):96-102.96-102.
    [33]邓益强,乐志文.软锰矿无煤还原制备硫酸锰新工艺研究[J].化工与材料,2007,(10):38-39.
    [34]宁平,寸文娟,马林转,杨月红,何屏.一种用生物质热解气还原二氧化硫的方法,申请号:200710065637.6.
    [35] PISA I. Combined primary methods for NOxreduction to the pulverized coal-sawdustco-combustion[J]. Fuel Processing Technology,2013,106:429-438.
    [36] DUAN J, LUO Y H, YAN N Q. Effect of Biomass Gasification Tar on NO Reduction byBiogas Reburning[J]. Energy&Fuels,2007,21:1511-1516.
    [37]徐莹,孙锐,栾积毅,吴少华.生物质热解气及其成分气再燃还原NO的数值模拟与机制分析[J].中国电机工程学报,2009,29(35):7-14.
    [38]于海洋,杨石,张海,吕俊复.生物质再燃还原NOx的机理分析[J].电站系统工程,2008,24(1):1-4.
    [39]洪世琨.我国锰矿资源开采现状与可持续发展的研究[J].中国锰业,2011,29(3):13-16.
    [40]王运敏.中国的锰矿资源和电解金属锰的发展[J].中国锰业,2004,22(3):26-30.
    [41]吴荣庆.国外锰矿资源及主要资源国投资环境[J].中国金属通报,2010,(2):36-39
    [42]高海亮.国内外锰矿生产及消费现状[J].中国金属通报,2006,(7):33-36.
    [43]王运敏.中国的锰矿资源和电解金属锰的发展[J].中国锰业,2004,22(3):26-30.
    [44]李维健.进口锰矿在电解金属锰生产中的应用前景[J].中国锰业,2012,30(3):1-4.
    [45]杨娟,胡波.锰矿还原技术[J].中国锰业,2011,29(1):40-43.
    [46]袁明亮,梅贤功,陈荩,蒋汉瀛.软锰矿浸出工艺的研究及进展[J].矿产保护与利用,1995,(3):39-42.
    [47] KONONOV R, OSTROVSKI O, GANGULY S. Carbothermal solid state reduction ofmanganese ores:1. manganese ore characterization[J]. ISIJ International,2009,49(8):1115-1122.
    [48] ABDEL HALIM K S, BAHGAT M, MORSI M B, EL-BARAWY K. Pre-reduction ofmanganese ores for ferromanganese industry[J]. Ironmak. Steelmak.,2011,38(4):279-284.
    [49] ABBRUZZESE C. Percolation leaching of manganese ore by aqueous sulfur dioxide[J].Hydrometallurgy,1990,25(1):85-97.
    [50] ISMAIL A A, ALI E A, IBRAHIM A I, AHMED M S. A comparative study on acid leachingof low grade manganese ore using some industrial wastes as reductants[J]. The CanadianJournal of Chemical Engineering,2004,82(6):1296-1300.
    [51]邹梯.硫酸锰生产过程中几个问题的探讨[J].湖南化工,1989,(2):42-43.
    [52]李春,何良惠.软锰矿与黄铁矿共同焙烧制备硫酸锰的研究[J].化学世界,2000,(2):66-69.
    [53]李进中,钟宏.氧化锰矿还原浸出工艺技术研究进展[J].中国锰业,2011,29(4):1-7.
    [54] VRACAR R Z,KARARINA P C. Manganese leaching in the FeS2-MnO2-O2-H2O system athigh temperature in an autoclave[J]. Hydrometallurgy,2000,55(1):79-92.
    [55] SENANAYAKE G. A mixed surface reaction kinetic model for the reductive leaching ofmanganese dioxide with acidic sulfur dioxide[J]. Hydrometallurgy,2004,73(3):215-224.
    [56]余逊贤.锰[Z].长沙:冶金工业部长沙黑色冶金矿山设计院,1980.
    [57]朱道荣.软锰矿-硫酸亚铁的酸性浸出[J].中国锰业,1992,10(1):30-31.
    [58] NAYL A A, ISMAIL I M, ALY H F. Recovery of pure MnSO4H2O by reductive leaching ofmanganese from pyrolusite ore by sulfuric acid and hydrogen peroxide[J]. InternationalJournal of Mineral Processing.2011,100:116-123.
    [59] BAFGHI M S, ZAKERI A, GHASEMI Z, ADELI M. Reductive dissolution of manganeseore in sulfuric acid in the presence of iron metal[J]. Hydrometallurgy.2008,90(2-4):207-212.
    [60] LASHEEN T A, EL HAZEK M N, HELAL A S. Kinetics of reductive leaching ofmanganese oxide ore with molasses in nitric acid solution[J]. Hydrometallurgy,2009,98(3-4):314-317.
    [61] MOMADE F W Y, MOMADE Z G. A study of the kinetics of reductive leaching ofmanganese oxide ore in aqueous methanol-sulphuric acid medium[J]. Hydrometallurgy,1999,54:25-39.
    [62]谢红艳,王吉坤,杨世诚,马进,李天杰,纳吉信,彭东.从软锰矿中湿法浸出锰的研究进展[J].中国锰业,2011,29(1):5-11.
    [63]卢宗柳,都安治.两矿法浸出氧化锰矿的几个工艺问题[J].中国锰业,2006,24(1):39-42.
    [64] PARAMGURU R K, KANUNGO S B. Electrochemical phenomena in MnO2-FeS2leachingin dilute HCl: Part1, Theoretical derivation of rate equations under various limitingconditions[J]. Canadian Metallurgical Quarterly,1998(37):389-393.
    [65] TAO J, YANG Y B, et al. Leaching kinetics of pyrolusite from manganese-silver ores in thepresence of hydrogen peroxide[J]. Hydrometallurgy,2003(8):1-10.
    [66]华毅超,陈国松,张红漫.工业硫酸锰湿法还原生产工艺[J].南京工业大学学报,2004,26(5):50-53.
    [67] PRADYUMNA K N, SUKLA L B, DAS S C. Aqueous SO2leaching studies on Nishikhalmanganese ore through factorial experiment[J]. Hydrometallurgy,2000,54:217-228.
    [68] GRIMANELIS D, NEOU-SYNGOUNA P, VAZARLIS H. Leaching of rich Greekmanganese ore by aqueous solution of sulphur dioxide[J]. Hydrometallurgy,1992,31:139-146.
    [69] NEGI S A H, KONISH Y. Reductive dissolution of manganese dioxide in aqueous sulfurdioxide solutions[J]. The Canadian Journal of Chemistry Engineering,1986,64(4):237-242.
    [70] RAISONI P R, DIXIT S G. Leaching of manganese ore with aqueous sulphur dioxidesolutions[J]. Bull. Mater. Sci.,1988,10(5):479-483.
    [71] SEVIM F, DEMIR D. Investigation of reduction kinetics of Cr2-2O7in FeSO4solution [J].Chemical Engineering Journal,2008,143:161-166.
    [72] DAS S C, SAHOO P K, RAO P K. Extraction of manganese ores by FeSO4leaching[J].Hydrometallurgy,1992,15:35-47.
    [73]王德全,宋庆双,彭瑞东.用硫酸亚铁浸出同时沉淀铁矾法处理低品位锰矿[J].东北大学学报(自然科学版),1998,19(2):168-170.
    [74] SAHOO R N, NAIK P K, DAS S C. Leaching of manganese from low-grade manganese oreusing oxalic acid as reductant in sulphuric acid solution[J]. Hydrometallurgy,2001,62:157-163.
    [75] ZHANG Y H, LIU Q, SUN C Y. Sulfuric acid leaching of ocean manganese nodules usingphenols as reducing agents[J]. Minerals Engineering,2001,14(5):525-537.
    [76] ZHANG Y H, LIU Q, SUN C Y. Sulfuric acid leaching of ocean manganese nodules usingaromatic amines as reducing agents[J]. Minerals Engineering,2001,14(5):539-542.
    [77] FURLANI G, PAGNANELLI F, TORO L. Reductive acid leaching of manganese dioxidewith glucose: Identification of oxidation derivatives of glucose[J]. Hydrometallurgy,2006,81(4):234-240.
    [78] FURLANI G, MOSCARDINI E, PAGNANELLI F. Recovery of manganese from zincalkaline batteries by reductive acid leaching using carbohydrates as reductant [J].Hydrometallurgy,2009,99(2):115-118.
    [79] PAGNANELLI F, FURLANI G, VALENTINI P, et al. Leaching of low-grade manganeseores by using nitric acid and glucose: optimization of the operating conditions[J].Hydrometallurgy,2004,75(3):157-167.
    [80] HARIPRASAD D, DASH B, GHOSH M K, ANAND S. Leaching of manganese ores usingsawdust as a reductant[J]. Miner. Eng.,2007,20(14):1293–1295.
    [81]黄齐茂,王春平,徐旺生,潘志权.木屑还原浸出低品位软锰矿制备硫酸锰工艺研究[J].无机盐工业,2010,42(2):49-51.
    [82] TIAN X K, WEN X X, YANG C, LIANG Y J, PI Z B, WANG Y X. Reductive leaching ofmanganese from low-grade manganese dioxide ores using corncob as reductant in sulfuricacid solution[J]. Hydrometallurgy,2010,100:157-160.
    [83]杨明平,宋和付,李国斌.米糠-硫酸直接浸锰工艺条件研究[J].无机盐工业,2005,37(2):30-32.
    [84]曹柏林,黄斌.用贫软锰矿制备硫酸锰[J].湖南有色金属,2000,16(3):18-20.
    [85]杨幼平,黄可龙.植物粉料-硫酸法直接浸出软锰矿的实践[J].中国矿业,2001,10(5):54-56.
    [86]李进中,钟宏.氧化锰矿还原浸出工艺技术研究进展[J].中国锰业,2011,29(4):1-7.
    [87] KIM K S, YANG J H, KANG K W, SONG K W. Measurement of Gd content in (U,Gd)O2using thermal gravimetric analysis. J. Nucl. Mater.,2004,325(2-3):129-133.
    [88] THONGPIN C, JUNTUM J, SA-NGUAN-MOO1R, SUKSA-ARD A, SOMBATSOMPOPN. Thermal stability of PVC with γ-APS-g-MMT and zeolite stabilizers by TGAtechnique[J]. Journal of Thermoplastic Composite Materials,2010,23:435-445.
    [89] SLOPIECKA K, BARTOCCI PI, FANTOZZI F. Thermogravimetric analysis and kineticstudy of poplar wood pyrolysis[J]. Applied Energy,2012.97:491-497.
    [90] CAI J M, ALIMUJIANG S. Kinetic analysis of wheat straw oxidative pyrolysis usingthermogravimetric analysis: statistical description and isoconversional kinetic analysis[J].Ind. Eng. Chem. Res.,2009.48(2), pp.619-624.
    [91] GANI A, NARUSE I. Effect of cellulose and lignin content on pyrolysis and combustioncharacteristics for several types of biomass[J]. Renewable Energy,2007,32:649-661.
    [92] ANTAL M J, FRIEDMANT H L, ROGERS F E. Kinetics of cellulose pyrolysis in nitrogenand steam[J]. Combustion Science and Technology,1980,21:141-152.
    [93] VOLKER S, RIECKMANN T. Thermokinetic investigation of cellulose pyrolysis impact ofinitial and final mass on kinetic results[J]. Journal of Analytical and Applied Pyrolysis,2002,62:165-177.
    [94] GOLDBERG V M, TODINOVA A V, SHCHEGOLIKHIN A N, VARFOLOMEEV S D.Kinetic Parameters for solid-phase polycondensation of L-aspartic acid: comparison ofthermal gravimetric analysis and differential scanning calorimetry data[J]. Polymer Science,Ser. B,2011,53(1):105-110.
    [95]马孝琴.生物质燃烧动力学特性实验研究[J].可再生能源,2004,6(118):18-22.
    [96]秦育红.生物质气化过程中焦油形成的热化学模型[D].太原理工大学博士学位论文,2009.
    [97] MEHRABIAN R, SCHARLER RC, OBERNBERGER I. Effects of pyrolysis conditions onthe heating rate in biomass particles and applicability of TGA kinetic parameters in particlethermal conversion modeling[J]. Fuel,2012,93,567-575.
    [98] LAPUERTA M, HERNANDEZ J J, RODRIGUEZ J. Kinetics of devolatilisation of forestrywastes from thermogravimetric analysis[J]. Biomass&Bioenergy,2004,27(4):385-391.
    [99] COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201(4914):68-69.
    [100] GRANADA E, EGUíA P, VILAN J A, COMESA A J A, COMESA A R. FTIRquantitative analysis technique for gases. Application in a biomass thermochemicalprocess[J]. Renewable Energy,2012,41:416-421.
    [101] CASTILLO S, BENNINI S G, TRAVERSE J P. Pyrolysis mechanisms studied on labeledlignocellulosic materials: method and results[J]. Fuel,1989,68:174-177.
    [102] YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and ligninpyrolysis[J]. Fuel,2007,86:1781-1788.
    [103] EVANS R J, MILNE T A. Molecular characterization of the pyrolysis of biomass:1.Fundamentals[J]. Energy&Fuels,1987a,1:123-138.
    [104] EVANS R J, MILNE T A. Molecular characterization of the pyrolysis of Biomass:2.Applications[J]. Energy&Fuels,1987b,1:311-319.
    [105] SáNCHEZ R, RODRíGUEZ A, GARCíA J C, ROSAL A, JIMéNEZ L. Exploitation ofhemicellulose, cellulose and lignin from Hesperaloe funifera[J]. Bioresource Technology,2011,102:1308-1315.
    [106]姚穆,孙润军,陈美玉,来侃.植物纤维素、木质素、半纤维素等的开发和利用[J].精细化工,2009,26(10):937-941.
    [107] LV G J, WU S B. Analytical pyrolysis studies of corn stalk and its three main componentsby TG-MS and Py-GC/MS[J]. J. Anal. Appl. Pyrol.,2012,97:11-18.
    [108] LV G J, WU S B, LOU R. Kinetics study of the thermal decomposition of hemicelluloseisolated from corn stalk[J]. Bioreources,2010, vol.5, pp.1281-1291.
    [109] JAHAN M S, MUN S P. Isolation and Characterization of lignin from tropical and temperatehardwood[J]. Bangladesh J. Sci. Ind. Res.,2009,44:271-280.
    [110] JAHAN M S, MUN S P. Characteristics of dioxane lignins isolated at different ages ofNalita Wood (Tremaorientalis)[J]. Journal of Wood Chemistry and Technology,2007,27:83-98.
    [111] ALENAZEY F, COOPER C G, DAVE C B, ELNASHAIE S S E H, SUSU A A, ADESINAA A. Coke removal from deactivated Co–Ni steam reforming catalyst using differentgasifying agents: An analysis of the gas–solid reaction kinetics[J]. Catal. Commun.2009,10(4):406-411.
    [112] Khedr M H. Isothermal reduction kinetics at900-1100°C of NiFe2O4sintered at1000-1200°C[J]. J. Anal. Appl. Pyrolysis,2005,73:123-129.
    [113]陈铁军,邱冠周,朱德庆.石煤提钒焙烧过程钒的价态变化及氧化动力学[J].矿冶工程,2008,28(3):64-67.
    [114]韩其勇.冶金过程动力学[M].北京:冶金工业出版,1983.
    [115]王兴庆,钟军华,洪新.超细氧化铁粉低温还原热力学研究[J].粉末冶金材料科学与工程,2008,13(3):150-154.
    [116]叶大伦,胡建华.无机物热力学数据手册[M].冶金工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700