毛乌素沙地油蒿种群格局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛乌素沙地是我国四大沙地之一,位于中国北方半干旱区的农牧交错带。由于气候及人为干扰因素的影响,该地区出现了固定沙丘活化、草场生产力下降、物种多样性丧失和耕地退化等问题,是我国荒漠化发展较快、危害比较严重的地区之一。油蒿为旱生沙生植物,分布于暖温带的干草原和荒漠草原带,喜生于固定沙地和覆沙土壤上,是草原区沙地半灌木群落的重要建群植物,为优良的固沙植物。本文基于野外调查及遥感影像数据,应用点格局、地统计、多元统计、区组方差分析等方法研究了毛乌素沙地油蒿种群及其组分的空间格局,结果表明:
     (1)在小尺度域范围内,随着沙地固定年限的增加,油蒿种群密度逐渐变大,而油蒿的冠幅呈减小趋势,其空间变异程度也逐渐减小。油蒿种群的空间自相关性都随着间隔距离的增加而迅速减小,且都在0.6m的空间尺度上呈现最强的空间自相关性;随着沙地固定年限的增加,油蒿种群的空间自相关性随着间隔距离的增加而减弱的速度更快,空间异质性程度增加的更加快速,而油蒿种群的半方差模型的变程则显著减小,表明油蒿种群空间自相关的尺度逐渐减小。在油蒿种群盖度小于30%时,一般具有2-3次斑块分化现象,个体水平上的分化现象出现的区组尺度为2-2.5m,中区组尺度为6m附近,而较大区组尺度为11-15.5m,且大尺度上的分化现象要比小尺度上的强烈。当油蒿盖度大于35%时,油蒿种群出现2-3次斑块分化现象,且个体水平上分化的区组尺度为1m-1.5m,中尺度群体水平上分化现象出现在4m,大尺度群体水平分化出现在7.5m-15.5m,且个体水平上的分化现象比群体水平上的分化现象强烈。油蒿种群盖度越小,其个体水平分化现象出现的区组尺度越大。
     (2)毛乌素沙地中尺度域油蒿种群的空间格局分为三种类型,第一种为上升式,第二种为波浪式,第三种为平稳式。上升式类型样地中油蒿种群空间自相关的距离较大,并且随着尺度的增加,其空间异质性程度增加的速率相对较小,一般在很大的尺度上才能达到平稳状态,其斑块分化现象只出现在较大区组尺度上,与之对应的沙地景观空间格局也呈现出同步的特征。波浪式类型样地中油蒿种群半方差函数都具有比较小的变程值及较大的分维数值,其空间异质性程度随着尺度的增加而呈现波浪式特征,并且函数曲线的波浪式特征逐渐减小,趋于平稳;油蒿种群呈现出明显的等级分布特征;油蒿种群在较小及较大的区组尺度上都具有斑块分化现象,而一般在中间区组尺度的分化强度较小,与之对应的沙地景观的空间格局特征具有相似特征。平稳式类型样地油蒿种群的半方差函数变程值以及分维数值介于上升式及波浪式类型之间,具有较高的拟合优度,半方差函数曲线比较平稳,油蒿种群的斑块分化现象一般出现中间区组尺度上,与之对应的沙地景观的空间格局特征具有相似的特征。毛乌素沙地中尺度域上沙地发育的空间格局先后顺序为上升式——波浪式——平稳式。
     (3)开花油蒿在较小尺度上表现为非聚集分布,在较大的尺度上为聚集分布,且随着尺度的增加其聚集程度逐渐减小并趋向于随机分布。未开花油蒿在小尺度上为聚集分布,大于6m的空间尺度上更趋向于随机分布。死亡油蒿的L(r)函数在较小尺度上空一般为随机或均匀分布,而在较大尺度上呈聚集或随机分布,死亡油蒿的g(r)函数一般在较小尺度上表现为聚集分布或随机分布,而在较大尺度上呈随机分布。
     随着沙地环境的改善,开花油蒿在较小尺度上逐渐由随机分布转变为均匀分布,而较大尺度上聚集分布的强度逐渐变小,具有转变为随机分布的趋势。未开花油蒿随着沙地环境的改善,其L(r)函数在极小尺度上出现了随机分布,其在大尺度上的聚集程度呈现出先增大后减小的趋势,g(r)函数在较大尺度上从随机分布转变为聚集分布而后又转为随机分布。死亡油蒿随着沙地环境改善,其较大尺度上经历了聚集——随机——聚集的变化过程。存活油蒿与开花油蒿相似,在较小尺度上由随机分布逐渐变为均匀分布,其较大尺度上聚集分布的强度有减小的趋势,个别样地在大尺度上已经表现为随机分布。
As one of the four huge sandlands in china, Mu Us sandland is in the ecotone betweensemi-arid and sub-humid zone in northern China. Due to climate and human disturbancefactors, some problem came out, such as fixed dunes activation, pasture decline in productvity,biodiversity loss and degradation of agriculture lands. The desertification developed rapidly inMu Us sandland.Artemisia ordosica was desert plant, which distributed in warm temperate drygrassland and desert steppe belt, born in the fixed sandy soil and overlying sand, and it wasconstructive species and excellent sand-fixation plants in steppe sandy shrub communities.Based on field survey and remote sensing data, spatial distribution pattern of the Artemisiaordosica population and its components in Mu Us sandland was studied with the methods aspoint pattern analysis,geostatistics,multivatiate statistics, and block variance. Results showed:
     (1) In the scope of small-scale domain, with the improvement of the sandy habitats,Artemisia ordosica population density gradually became larger, and the crown showed adecreasing trend, so was its extent of spatial heterogeneity. With the increasing of intervaldistance, the extent of spatial autocorrelation of Artemisia ordosica population decreasedrapidly, and it showed high extent of spatial autocorrelation in the scale of0.6m. With theincrease of Artemisia ordosica coverage, the extent of spatial autocorrelation weakened morerapidly. With the interval distance, and extent of spatial heterogeneity increased more rapidly,while the range of semi-variance model of Artemisia ordosica population significantly reduced.As the coverage of Artemisia ordosica population <30%, there was2-3patch differentiation,while the differentiation occured in the scale of2-2.5m in individual level,6m in small grouplevel, and11-15.5m in large group level. As the coverage of Artemisia ordosica population>35%, there was2-3patch differentiation, while the differentiation occured in the scale of1-1.5m,4m in the small group level, and7.5-15.5m in large group level. The differentiation extent of individual level was higher than group level. The block scale of differentiation waslarger in individual level when the coverage of Artemisia ordosica population was smaller.
     (2) Spatial pattern of Artemisia ordosica populations in mesoscale domain divided intothree types, first the rise style, second wave style, and third for the smooth style. Spatialautocorrelation range of Artemisia ordosica populations was large in the plots of rise style.Spatial heterogeneity of Artemisia ordosica populations increased more slowly with theincrease of scale, and the phenomenon of patch differentiation just occured in large block scale,while the spatial pattern of sandy landscape showed the similar characteristics. Thesemivariance function of Artemisia ordosica populations of wave style had relatively smallerranges and the larger fractal dimension, while its spatial heterogeneity showed wave-likecharacteristics with increasing scale, and the wave function curve became stabilized gradually.
     Artemisia ordosica populations pattern showed significant level distributioncharacteristics. Artemisia ordosica populations had patch differentiation in various block scales,and the differentiation extent in intermediate block scale was small. The rang and fractaldimension of semi-variance function in smooth style plots was between the rise andwave-style,and it had a high goodness of fit, its semi-variance function curve was relativelystable. The phenomenon of patch differentiation occured in intermediate block scale. Spatialpattern of the sandy landscape had the similar characteristics as Artemisia ordosica populationsand sandy landscape in mesoscale domain was rise style–wave style–smooth style.
     (3) The fowering Artemisia ordosica showed non-aggregeted distribution in small scalesand aggregated. Distribution in large scales. The extent of aggregation decreased graduallywith increasing scale and tends to be random distribution. The non-flowering Artemisiaordosica showed aggregated distribution in small scales and tend to be randomly distributed asthe scales>6m. The L(r) function of dead Artemisia ordosica showed non-aggregateddistribution in small scales and aggregated or random distribution in large scales. The g(r)function of dead Artemisia ordosica showed aggregated distribution in small scales andrandom distribution in large scales.
     With the improvement of the sandy environment, spatial point pattern of floweringArtemisia ordosica turned from random distribution into uniform distribution in the small scale,while the extent of aggregated distribution decreased gratually, with a trend into randomdistribution. With the improvement of the sandy enviroment, the L(r) function showed that theextent of aggregation of non-flowering Artemisia ordosica firstly increased and thendecareased. The g(r) function showed that spatial point pattern of non-flowering Artemisiaordosica turned from random distribution into aggregated distribution and then randomdistribution. Dead Artemisia ordosica experienced the process of aggregation–random–aggregation. The spatial point pattern of living Artemisia ordosica was as similar as floweringArtemisia ordosica.
引文
[1]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社,2007.
    [2]王仰麟.格局与过程-景观生态学的理论前沿[M].基础科学研究新进展,北京:科学技术出版社,1995,437-441.
    [3] O'Neill R V, Riitters K H, Wickham J D, et al. Landscape pattern metrics and regional assessment[J].Ecosystem Health,1999,5(4):225-233.
    [4] Dorner B, Lertzman K, Fall J. Landscape pattern in topographically complex landscapes: issues andtechniques for analysis[J]. Landscape Ecology,2002,17(8):729-743.
    [5]张娜.生态学中的尺度问题[J].生态学报,2006,26(7).
    [6] Turner M G, Gardner R H, O'Neill R V. Landscape ecology in theory and practice: pattern andprocess[M]. Springer Verlag,2001.
    [7] Dale M R T. Spatial pattern analysis in plant ecology.[M]. Cambridge. United Kingdom.1999.
    [8] Watt A S. Pattern and process in the plant community[J]. Journal of ecology,1947,35(1/2):1-22.
    [9]张金屯.数量生态学[M].北京:科学出版社,2004.
    [10] Real L A, Mcelhany P. Spatial pattern and process in plant-pathogen interactions[J]. Ecology,1996:1011-1025.
    [11] Levin S A. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture[J].Ecology,1992,73(6):1943-1967.
    [12] Skellam J G. Random dispersal in theoretical populations[J]. Biometrika.1951,38(1/2):196-218.
    [13]李海涛.植物种群分布格局研究概况[J].植物学通报,1995,12(2):19-26.
    [14] Greig-Smith P. Quattitative plant Ecology,Zndedition[M]. London: Butterworths,1964.
    [15] Kershaw K A, Looney J H. Quantitative and dynamic Plant Ecology. Edward Arnold[J]. Victoria,1985:282.
    [16]李博.植物生态学实验[M].北京:人民教育出版社,1981.
    [17] Pielou E C.数学生态学[Z].北京:科学出版社,1988.
    [18] Morisita M. Measuring of the dispersion of individuals and analysis of the distributional patterns[J].Mem. Fac. Sci. Kyushu Univ. Ser. E,1959,2(21):5-23.
    [19] Mi X, Ren H, Ouyang Z, et al. The use of the Mexican Hat and the Morlet wavelets for detection ofecological patterns[J]. Plant Ecology,2005,179(1):1-19.
    [20] Cressie N. Statistics for spatial data[J]. Terra Nova,1992,4(5):613-617.
    [21] Fortin M J, Dale M R T. Spatial analysis: a guide for ecologists[M]. Cambridge Univ Pr,2005.
    [22] Illian J. Statistical analysis and modelling of spatial point patterns[M]. Wiley-Interscience,2008.
    [23]侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析[J].植物生态学报,1997,21(3):242-249.
    [24]张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344-349.
    [25] Pereira H M, David Cooper H. Towards the global monitoring of biodiversity change[J]. Trends inEcology&Evolution,2006,21(3):123-129.
    [26] Perry G L W, Miller B P, Enright N J. A comparison of methods for the statistical analysis of spatialpoint patterns in plant ecology[J]. Plant Ecology,2006,187(1):59-82.
    [27] Ripley B D. Tests ofrandomness' for spatial point patterns[J]. Journal of the Royal Statistical Society.Series B (Methodological),1979:368-374.
    [28] Stoyan D, Penttinen A. Recent applications of point process methods in forestry statistics[J]. StatisticalScience,2000,15(1):61-78.
    [29] Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species[J].Science,2000,288(5470):1414.
    [30] Ward J S, Parker G R, Ferrandino F J. Long-term spatial dynamics in an old-growth deciduous forest[J].Forest Ecology and Management,1996,83(3):189-202.
    [31] Perry J N, Liebhold A M, Rosenberg M S, et al. Illustrations and guidelines for selecting statisticalmethods for quantifying spatial pattern in ecological data[J]. Ecography,2002,25(5):578-600.
    [32] Wiegand T, A Moloney K. Rings, circles, and null‐models for point pattern analysis in ecology[J].Oikos,2004,104(2):209-229.
    [33] Wiegand T, Gunatilleke S, Gunatilleke N, et al. Analyzing the spatial structure of a Sri Lankan treespecies with multiple scales of clustering[J]. Ecology,2007,88(12):3088-3102.
    [34]喻泓.呼伦贝尔沙地樟子松林对林火干扰的响应[D].中国林业科学研究院,2009.
    [35]喻泓,杨晓晖,慈龙骏.地表火对红花尔基沙地樟子松种群空间分布格局的影响[J].植物生态学报,2009,33(1):71-80.
    [36]王政权.地统计学及在生态学中的应用[M].科学出版社,1999.
    [37] Kareiva P. Space: The Final Frontier for Ecological Theory[J]. Ecology,1994,75(1):1.
    [38] Turner M G, Gardner R H. Quantitative methods in landscape ecology: the analysis and interpretation oflandscape heterogeneity[M]. Springer Verlag,1991.
    [39] Pélissier R, Goreaud F. A practical approach to the study of spatial structure in simple cases ofheterogeneous vegetation[J]. Journal of Vegetation Science,2001,12(1):99-108.
    [40]陈玉福,董鸣.生态学系统的空间异质性[J].生态学报,2003,2.
    [41] Druckenbrod D L, Shugart H H, Davies I. Spatial pattern and process in forest stands within theVirginia piedmont[J]. Journal of Vegetation Science,2005,16(1):37-48.
    [42] Nathan R. Long-distance dispersal of plants[J]. Science,2006,313(5788):786-788.
    [43]沈海亮,王季槐,李明.宁夏野生甘草分布空间异质性及分布格局研究[J].草业科学,2007,24(7):18-22.
    [44]杨洪晓,张金屯,李振东,等.毛乌素沙地油蒿(Artemisia ordosica)种群空间格局对比[J].生态学报,2008,28(005):1901-1910.
    [45]杨洪晓,张金屯,吴波,等.毛乌素沙地油蒿种群点格局分析[J].植物生态学报,2006,30(4):563-570.
    [46]李立,陈建华,任海保,等.古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J].植物生态学报,2010,34(3):241-252.
    [47]初玉,杨慧玲,朱选伟,等.浑善达克沙地小叶锦鸡儿灌丛的空间异质性[J].生态学报,2005,25(12):3294-3300.
    [48]白岗栓,李志熙,张占山.毛乌素沙地高等植物资源[J].草地学报,2006,14(2):170-180.
    [49]时惠君,杜峰,张兴昌.毛乌素沙地几种主要植物的光合特征[J].西北林学院学报,2010,25(4):29-34.
    [50]郭柯.毛乌素沙地油蒿群落的循环演替[J].植物生态学报,2000,24(2):243-247.
    [51]李博.生态学[M].北京:高等教育出版社,2000:155-172.
    [52]张军,黄永梅,焦会景.毛乌素沙地油蒿群落演替的生理生态学机制[J].中国沙漠,2007,27(6):977-983.
    [53]李俊清,牛树奎.森林生态学[M].北京:高等教育出版社,2006:367-376.
    [54]侯仁之.从红柳河上的古城废墟看毛乌素沙地之变迁[J].文物,1973,1.
    [55]吴薇.毛乌素沙地沙漠化过程及其整治对策[J].中国生态农业学报,2001,9(3):15-18.
    [56]邓辉,夏正楷,王瑜.从统万城的兴废看人类活动对生态环境脆弱地区的影响[J].中国历史地理论丛,2001,16(2):104-124.
    [57]梁生智.马可波罗游记[M].北京:中国文史出版社,1998:91-92.
    [58]杨永梅,杨改河,冯永忠,等.毛乌素沙漠沙化过程探析[J].西北农林科技大学学报:自然科学版,2006,34(009):103-108.
    [59]韩昭庆.清末西垦对毛乌素沙地的影响[J].地理科学,2006,26(6):728-734.
    [60] Zhao-Qing H. Effect of Opening Western Part of Inner Mongolia for Cultivation on Change of Mu UsDesert at the End of the Qing Dynasty [J][J]. Scientia Geographica Sinica,2006,6.
    [61]董光荣,高尚玉,金炯.毛乌素沙漠的形成、演化和成因问题[J].中国科学(B辑),1988(6):633-642.
    [62]董光荣,金炯,高尚玉,等.晚更新世以来我国北方沙漠地区的气候变化[J].第四纪研究,1990,3:213-222.
    [63]董光荣,李保生,高尚玉,等.鄂尔多斯高原的第四纪古风成沙[J].地理学报,1983,38(4):341-347.
    [64]黄银洲,王乃昂,何彤慧,等.毛乌素沙地历史沙漠化过程与人地关系[J].地理科学,2009(002):206-211.
    [65]李小强,周卫建,安芷生.沙漠/黄土过渡带13kaBP以来季风演化的古植被记录[J].植物学报,2000,42(8):868-872.
    [66]王炜林.毛乌素沙漠化年代问题之考古学观察[J].考古与文物,2002(5):80-85.
    [67]邵亚军.萨拉乌苏河地区晚更新世以来的孢粉组合及其反映的古植被和古气候[J].中国沙漠,1987,7(2):22-26.
    [68]陈渭南,高尚玉,孙忠.毛乌素沙地全新世地层化学元素特点及其古气候意义[J].中国沙漠,1994,14(1):22-30.
    [69]陈渭南,朱锦熙,高尚玉.从沉积重矿物与土壤养分特点看毛乌素沙地全新世环境变迁[J].中国沙漠,1994,14(4):1-9.
    [70]靳鹤龄,董光荣,苏志珠,等.全新世沙漠-黄土边界带空间格局的重建[J].科学通报,2001,46(7):538-543.
    [71]靳鹤龄,董光荣,左昕昕.滴哨沟湾地层沉积特征记录的毛乌素沙漠变迁[J].中国沙漠,2008,28(6):1064-1072.
    [72]鲁瑞洁,王亚军,张登山.毛乌素沙地15ka以来气候变化及沙漠演化研究[J].中国沙漠,2010,30(2):273-277.
    [73]邢福来,李明,孙周勇.陕西神木新华遗址1999年发掘简报[J].考古与文物,2002(1):3-11.
    [74]薛祥煦,李永项,于学峰.陕西神木新华遗址中的动物遗骸[M].北京:科学出版社,2005:355-367.
    [75]王乃昂,黄银洲,何彤慧.鄂尔多斯高原古城夯层沙的环境解释[J].地理学报,2006,61(9):937-945.
    [76]孙同兴,王宇飞,侯甬坚,等.陕北统万城地区历史自然景观及毛乌素沙漠迁移速率[J].古地理学报,2004,6(003):363-371.
    [77]满志敏.关于唐代气候冷暖问题的讨论[J].第四纪研究,1998(1):20-30.
    [78]史培军.地理环境演变研究的理论与实践—鄂尔多斯地区晚第四纪以来地理环境演变研究[M].北京:科学出版社,1991:103-105.
    [79]周杰,周卫键,陈惠忠,等.新仙女木时期东亚夏季风降水不稳定的证据[J].科学通报,1999,44(2):205-208.
    [80]高建慧,刘健,王苏民.中国中世纪暖期气候研究综述[J].地理科学,2006,26(003):376-383.
    [81]陕西省文管会.统万城城址勘测计[J].考古,1981(3):225-232.
    [82]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991(增刊4):991.
    [83]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [84]北京大学地理系,中国科学院自然资源综合考察委员会,中国科学院兰州沙漠研究所.毛乌素沙区自然条件及其改良利用[M].北京:科学出版社,1983.
    [85]张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报,1994,18(001):1-16.
    [86]崔望诚.半荒漠地带的油蒿群落[J].中国草地,1991(002):50-52.
    [87]王庆锁,陈仲薪,史振英.油蒿草场的保护与改良[J].生态学杂志,1995,14(4):54-57.
    [88]张强.油蒿群落更新的研究[J].生态学杂志,1983,2:14-19.
    [89]黄振英, G Y.油蒿与中国和以色列沙漠中的两种蒿属植物种子萌发策略的比较[J].植物学报:英文版,2000,42(001):71-80.
    [90] Huang Z, Gutterman Y. Water absorption by mucilaginous achenes of Artemisia monosperma: floatingand germination as affected by salt concentrations[J]. Israel journal of plant sciences,1999,47(1):27-34.
    [91]张军红,吴波,雷雅凯,等.毛乌素沙地油蒿植株形态与结构特征分析[J].西南林学院学报,2011,31(5):6-9.
    [92]秦艳,王林和,张国盛,等.毛乌素沙地臭柏与油蒿群落细根生物量的季节动态及其空间变化[J].中国沙漠,2008,28(3):455-461.
    [93]刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学与地植物学丛刊,1982,6(4):314-319.
    [94]赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981,23(4).
    [95] Chang Y C, Lee T M. High temperature-induced free proline accumulation in Gracilaria tenuistipitata(Rhodophyta)[J]. Botanical Bulletin of Academia Sinica,1999,40.
    [96] Maggio A, Reddy M P, Joly R J. Leaf gas exchange and solute accumulation in the halophyteSalvadora persica grown at moderate salinity[J]. Environmental and experimental botany,2000,44(1):31-38.
    [97] Treichel S, Brinckmann E, Scheitler B, et al. Occurrence and changes of proline content in plants in thesouthern Namib Desert in relations to increasing and decreasing drought[J]. Planta,1984,162(3):236-242.
    [98] Le Rudulier D, Strom A R, Dandekar A M, et al. Molecular biology of osmoregulation[J]. Science,1984,224(4653):1064-1068.
    [99] Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as an osmolyte in plantsunder water stress[J]. Plant and Cell Physiology,1997,38(10):1095-1102.
    [100] Yancey P H, Clark M E, Hand S C, et al. Living with water stress: evolution of osmolyte systems[J].Science,1982,217(4566):1214.
    [101]廖汝棠,张文军.毛乌素流动沙地适宜植被覆盖率研究[J].沙生植物水分关系与适宜种植规模.毛乌素沙地开发整治研究中心研究文集(第一集).呼和浩特:内蒙古大学出版社.1992.
    [102]周雅聃,陈世苹,宋维民,等.不同降水条件下两种荒漠植物的水分利用策略[J].植物生态学报,2011,35(8):789-800.
    [103]王庆锁.我国油蒿研究的一些进展[J].中国草地,1993(002):74-78.
    [104]杨宝珍,刘志茂.油蒿(Artemisiaordosica)的蒸腾作用及其群落的水分状况[J].植物生态学报,1994,18(002):161-170.
    [105]蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用—光响应曲线的新方法[J].植物学通报,1999,16(006):712-718.
    [106]杨洪晓,张金屯,吴波,等.油蒿(Artemisia ordosica)对半干旱区沙地生境的适应及其生态作用[J].北京师范大学学报:自然科学版,2004,40(005):684-690.
    [107]牛书丽,蒋高明,高雷明,等.内蒙古浑善达克沙地97种植物的光合生理特征[J].植物生态学报,2003,27(3):318-324.
    [108]李新荣.干旱沙区土壤空间异质性变化对植被恢复的影响[J].中国科学: D辑,2005,35(4):361-370.
    [109]于云江,林庆功,石庆辉,等.包兰铁路沙坡头段人工植被区生境与植被变化研究[J].生态学报,2002,22(3):433-439.
    [110]陈颖,贺学礼,山宝琴,等.荒漠油蒿根围AM真菌与球囊霉素的时空分布[J].生态学报,2009,29(011):6010-6016.
    [111]邵玉琴.内蒙古库布齐油蒿固定沙丘土壤微生物数量的季节动态分布研究[J].中国草地,2000(02).
    [112]胡小龙,张文军.毛乌素沙地不同覆盖度油蒿群落土壤水分特征研究[J].内蒙古林业科技,1996(3):32-37.
    [113]冯金朝,陈荷生,康跃虎,等.腾格里沙漠沙坡头地区人工植被蒸散耗水与水量平衡的研究[J].植物学报,1995,37(10):815-821.
    [114]郭柯,董学军,刘志茂.毛乌素沙地沙丘土壤含水量特点一兼论老固定沙地上油高衰退原因[J].植物生态学报,2000,24(3):275-279.
    [115]屈志强,张莉,丁国栋,等.毛乌素沙地常见灌木单株对土壤风蚀的影响[J].中国水土保持科学,2008,6(4):66-70.
    [116]卢琦.中国沙情:沙源沙患沙业[M].开明出版社,2000.
    [117]朱灵益,宝音.毛乌素沙地乔灌木立地质量评价[Z].北京:中国林业出版社,1993.
    [118]李博.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990.
    [119]闫峰,王艳姣,武建军,等.基于Ts-EVI时间序列谱的冬小麦面积提取[J].农业工程学报,2009(004):135-140.
    [120] Diggle P J, Diggle P J. Statistical analysis of spatial point patterns[J].1983.
    [121] Haase P. Spatial pattern analysis in ecology based on Ripley's K‐function: Introduction and methodsof edge correction[J]. Journal of Vegetation Science,1995,6(4):575-582.
    [122] Yamada I, Rogerson P A. An Empirical Comparison of Edge Effect Correction Methods Applied to K‐functionAnalysis[J]. GeographicalAnalysis,2003,35(2):97-109.
    [123] Dixon P. Testing spatial segregation using a nearest-neighbor contingency table[J]. Ecology,1994:1940-1948.
    [124] Stoyan D, Stoyan H. Fractals, random shapes and point fields–methods of geometrical statistics[J].Chichester, UK: John Wiley&Sons. Tilman D (1994) Competition and biodiversity in spatiallystructured habitat. Ecology,1994,75:2-16.
    [125] Dale M R T, Dixon P, Fortin M J, et al. Conceptual and mathematical relationships among methods forspatial analysis[J]. Ecography,2002,25(5):558-577.
    [126] Schurr F M, Bossdorf O, Milton S J, et al. Spatial pattern formation in semi-arid shrubland: a prioripredicted versus observed pattern characteristics[J]. Plant Ecology,2004,173(2):271-282.
    [127] Pj D. Statistical Analysis of Spatial Point Patterns[M]. London: Arnold Press,2003.
    [128] Lin Y C, Chang L W, Yang K C, et al. Point patterns of tree distribution determined by habitatheterogeneity and dispersal limitation[J]. Oecologia,2011,165(1):175-184.
    [129] Team R. R: A language and environment for statistical computing[J]. R Foundation for StatisticalComputing Vienna Austria,2010(01/19).
    [130] Baddeley A, Turner R. Spatstat: an R package for analyzing spatial point patterns[J]. Journal ofStatistical Software,2005,12(6):1-42.
    [131] Robertson G P, Gross K L. Assessing the heterogeneity of belowground resources: quantifying patternand scale[M]. Plant exploitation of environmental heterogeneity. Academic Press, New York, USA.1994:237-253.
    [132]吴波,慈龙骏.毛乌素沙地景观格局变化研究[J].生态学报,2001,21(2):191-196.
    [133]王继和,靳虎甲,马全林,等.干旱区油蒿种群结构和分布格局分析[J].中国沙漠,2010,30(3):534-538.
    [134]聂春雷,郑元润.鄂尔多斯高原4种主要沙生植物种子萌发与出苗对水分和沙埋的响应[J].植物生态学报,2005,29(1):32-41.
    [135]马风云,李新荣,张景光,等.沙坡头固沙植被若干土壤物理因子的空间异质性研究[J].中国沙漠,2005,25(2):207-215.
    [136]王晓春,韩士杰,邹春静,等.长白山岳桦种群格局的地统计学分析[J].应用生态学报,2002,13(7):781-784.
    [137]张健,郝占庆,宋波,等.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性[J].应用生态学报,2007,18(8):1681-1687.
    [138]李立,陈建华,任海保,等.古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J].植物生态学报,2010,34(3):241-252.
    [139]程佳佳,米湘成,马克平,等.亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应[J].生物多样性,2011,19(2):168-177.
    [140]李海东,沈渭寿,佘光辉,等.西藏砂生槐种群结构与点格局分析[J].中国沙漠,2012,31(6):1443-1448.
    [141]兰国玉,雷瑞德,安锋,等.秦岭华山松种群格局规模与林窗特征[J].生态学杂志,2008(6).
    [142]张立杰,赵文智,何志斌.青海云杉(Picea crassifolia)种群格局的分形特征及其影响因素[J].生态学报,2008,28(004):1383-1389.
    [143]王鑫厅,王炜,刘佳慧,等.植物种群空间分布格局测定的新方法:摄影定位法[J].植物生态学报,2006,30(4):571-575.
    [144]李秋爽,张超,王飞,等.鄂尔多斯高原油蒿种群分布格局对降水梯度的反应[J].应用生态学报,2009(009):2105-2110.
    [145]阳含熙,李鼎甲,王本楠,等.长白山北坡阔叶红松林主要树种的分布格局[J].森林生态系统研究,1985,5(1): r13.
    [146] Hubbell S P. Neutral theory and the evolution of ecological equivalence[J]. Ecology,2006,87(6):1387-1398.
    [147]黄富祥,高琼.毛乌素沙地不同防风材料降低风速效应的比较[J].水土保持学报,2001,15(1):27-30.
    [148]张华,李锋瑞,伏乾科,等.沙质草地植被防风抗蚀生态效应的野外观测研究[J].环境科学,2004,25(2):119-124.
    [149]刘家琼.草原与荒漠交界地区流沙的固定——以沙坡头铁路防护体系旱路固沙为例[J].中国沙漠,2002(005):495-498.
    [150]张程,张明娟,徐驰,等.宁夏沙湖几种主要荒漠植物成丛性分析[J].植物生态学报,2007,31(1):32-39.
    [151] Stoll P, Bergius E. Pattern and process: competition causes regular spacing of individuals within plantpopulations[J]. Journal of Ecology,2005,93(2):395-403.
    [152]吴承祯,洪伟,闫淑君.同龄纯林自然稀疏过程的经验模型研究[J].应用生态学报,2005,16(2):233-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700