20CrMoH齿轮弯曲疲劳强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20CrMoH渗碳齿轮由于加入了Mo元素而显著提高了材料的淬透性和心部硬度,因而具有较好的工艺性能和传动性能。这种齿轮广泛应用于中、重型汽车传动装置中。齿轮在工作过程中承受较大的载荷,齿轮的弯曲疲劳强度往往是其传动性能的关键技术指标。目前关于20CrMoH渗碳齿轮弯曲疲劳强度的研究尚未见报道。本文的研究主要包括以下几个方面:
     ①针对20CrMoH渗碳齿轮开展单齿弯曲疲劳强度试验。试验采用脉动加载法和成组试验方案,在电磁谐振疲劳试验机上对齿轮轮齿进行了5个应力级的疲劳强度试验。
     ②依据平截面法和折截面法对不同载荷级下的齿根应力进行了计算,并对齿轮试样疲劳断口的宏观形貌进行了分析。
     ③应用概率论与数理统计理论对试验数据进行对数正态分布、二参数威布尔分布和三参数三种概率分布类型的假设检验,分析定应力下20CrMoH渗碳齿轮弯曲疲劳寿命的概率分布形式。
     ④对20CrMoH渗碳齿轮的弯曲疲劳寿命进行可靠性分析,拟合出该齿轮的P - S - N曲线以及不同可靠度下的弯曲疲劳极限应力。
     ⑤结合APDL与齿廓方程,建立了20CrMoH渗碳齿轮参数化的有限元分析模型;基于ANSYS/FE—SAFE、以齿轮的计算齿根应力为基础,进行了齿轮弯曲疲劳强度分析,为齿轮弯曲疲劳强度研究提供了一种新的思路。
Because of the chemical element with the symbol Mo can remarkable raise the hardenability of steel, 20CrMoH carburized gear have great processability and transmission performance. This kind of gear is widely used in driving device of medium and heavy vehicle. The gear undertake relatively large load during the working time, so the bending fatigue strength is always the key indicator for the transmission performance. There is no relative research about the bending fatigue strength of 20CrMoH carburized gear so far. Major contents of the thesis as follows:
     ①The test of the single-tooth bending fatigue strength of 20CrMoH carburized gear have been discussed. The test method of pulse load in single-tooth and the group method have been used in the experiment, the bending fatigue strength test of tooth of the gear at 5 classes of constant stress levels was carried out on the electromagnetic resonance testing machine.
     ②By employing planar section method and broken-line method, the root stress of gear teeth under different load levers have been calculated. The macro morphology of fatigue fracture of gear test specimens have been analyzed.
     ③By making use of the probability theory and the principle of statistics, through hypothesis test to the test data in three different forms of probability distribution like log-normal distribution, two-parameter Weibull distribution and three-parameter Weibull distribution, the form of the probability distribution of gear bending fatigue life of 20CrMoH carburized gear have been analyzed under constant stress.
     ④Analyzed the reliability of the bending fatigue strength of 20CrMoH carburized gear. The P - S - N curves of the gear and the limiting bending fatigue stress of gear teeth under different reliability have been achieved.
     ⑤Combined with the equation of tooth profile and Ansys parametric design language(APDL), the parametrized finite element model of gear test specimens was presented. Then on the basis of the tooth root stress of the gear test specimen, the bending fatigue strength of gear have been analyzed based on ANSYS/FE-SAFE. It’s a new approach to evaluate the bending fatigue strength of gear teeth.
引文
[1]曾春华,邹十践.疲劳分析方法及应用[M].机械研究与应用国防工业出版社, 1991.
    [2]李舜酩.机械疲劳与可靠性[M].科学出版社, 2006.
    [3]张瑜.机载天线疲劳寿命分析[D].西安电子科技大学硕士论文, 2008.
    [4]吴跃成.驱动桥疲劳可靠性分析与试验方法研究[D].浙江大学硕士论文, 2008.
    [5] Miner M A. Cumulative damage in fatigue[J]. Jonrnal of App lied Mechanics, 1945, 12(3) : 159-164.
    [6] Freudenthal A M. Safety of structures[J]. Trans action, ASCE, 1947, 112:125-180.
    [7] L.r.eoffin. A study of the effeets of cyclie thermal stresses on a duetile metal[J]. Transactions of the American society of mechanical Engineers, 1954,76:931-950.
    [8] D.Keeeeioglu. Probability Analysis of Mechanical Components and system[M]. Nuclear Eneineering and Design, 1977.
    [9] A.M.Freudenthal, E.J.Gumbel. Minimum Life in Fatigue [J]. American Statistical Association Journal. 1954,49(267):349-371.
    [10]周迅.曲轴疲劳行为及可靠性的理论与试验研究[D].浙江大学硕士论文, 2006.
    [11]郝静如.机械可靠性工程[M].国防工业出版社. 2008.
    [12]朱孝录,易秉钺等.齿轮的试验技术与设备[M].机械工业出版社, 1988.
    [13] H.Soyama, D.O.Macodiyo. Fatigue strength improvement of gears using cavitation shotless peening[J]. Tribology Letters,2005, 18(2): 181–184.
    [14] Q. J. Yang. Fatigue test and reliability design of gears[J]. International Journal of Fatigue, 1996,18(3):171–177.
    [15] H. Soyama*, D.O. Macodiyo. Fatigue strength improvement of gears using cavitation shotless peening [J]. Tribology Letters, 2005,18(2):181-184.
    [16]谈悦,张君彩等. 42SiMn调质齿轮弯曲疲劳强度的试验研究[J].机械传动. 2003, 27(3): 51-52.
    [17]陶晋,王小群,谈嘉祯. 40Cr调质齿轮弯曲强度可靠性试验研究[J].北京科技大学学报. 1997,19(5):482~484.
    [18]谈嘉祯,张君彩,傅德明. 25CrZM0v离子渗碳齿轮轮齿弯曲疲劳强度的试验研究[J].物理测试. 1991,(5):43~49.
    [19]张照智,冯帆等. 40CrNi2Mo中硬调质齿轮弯曲疲劳强度试验研究[J].机械传动. 2005, 29(04) :52~55.
    [20]刘更新.渗碳齿轮双齿弯曲疲劳试验研究[J] .金属热处理. 1996,(7):6~7.
    [21]张华丽,陈渊,刘世军等. ZY-1型硬齿面双圆弧齿轮20CrMnMo材料的弯曲疲劳极限应力研究[J].机械传动. 2007,31(01):74~76.
    [22]李金澎.大模数直齿轮轮齿弯曲强度与齿面接触研究[D].大连理工大学硕士论文,2007.
    [23]李德建. 59坦克传动装置齿轮的疲劳分析[D].大连理工大学硕士论文, 2007.
    [24]肖望强,李威,韩建友,段东平.非对称齿廓齿轮弯曲疲劳强度理论分析与试验[J].机械工程学报. 2008,44(10): 44-50.
    [25]肖望强,李威,李梅.双压力角非对称齿廓齿轮齿根弯曲应力的有限元分析[J].北京科技大学学报. 2006,28(6):570-575.
    [26]贺国芳,许海宝.可靠性数据收集与分析[M].国防工业出版社, 1995.
    [27]王毅. 20CrMoH齿轮用钢热处理工艺研究[D].哈尔滨理工大学硕士论文, 2005.
    [28]齿轮手册编委会编.齿轮手册[M].机械工业出版社, 2000.
    [29]兰玉权.东风4型内燃机车启动变速箱噪声分析与研究[D].南京理工大学硕士论文,2004
    [30] Thomas Tobie, Peter Oster, Bernd-Robert Hohn. Systema tic investigations on the influence of case depth on the pitting and bending strength of case carburized gears[J/OL]. Gear Technology,July/August2005,[2011-1-5],http://www.geartechnology.com/pa/members/julya-ug05/section9.pdf.
    [31] GB/T 14230-93.齿轮弯曲疲劳强度试验方法[S].
    [32]王雨华,杨占玉.齿轮单齿弯曲疲劳强度试验夹具[J],矿山机械. 1986,(6): 24-27.
    [33]朱孝录,易秉钺,等.齿轮的试验技术与设备[M].机械工业出版社, 1988.
    [34]何如.高速列车铝合金焊接接头疲劳性能研究[D],北京交通大学硕士论文, 2008.
    [35]杨庆祥,赵言辉,许志强等.渗碳及渗碳喷丸齿轮轮齿弯曲疲劳极限的定量分析[J].机械工程学报, 2004, 40(7):34–40.
    [36] P. J. L. Fernandes. Tooth Bending Faitgue Failures in Gears[J]. Eegineering Failure Analysis, 1996, 3 (3):219-225.
    [37]周迅,俞小莉.曲轴疲劳裂纹扩展规律测试及形成机理分析[J].机械工程学报. 2008,44(1):238-242.
    [38]吴继泽,王统.齿根过渡曲线与齿根应力[M].北京:国防工业出版社.1989.
    [39]李金莲.基于折截面法的双圆弧齿轮弯曲应力计算数学模型研究[D].中南大学硕士论文, 2009.
    [40]张华丽,王鹏业,陈渊等.基于折截面法的ZY-1型双圆弧齿轮齿形系数推导[J].机械传动. 2007, 31(4): 90- 92.
    [41]张玉梅,朱如鹏.双压力角非对称齿轮弯曲应力的解析法及有限元分析[J].机械工程师. 2004, 12: 36- 38.
    [42]周长江,唐进元,吴运新.齿根应力与轮齿弹性变形的计算方法进展与比较研究[J].机械传动. 2004,28(5):1-5.
    [43] Nelson E W. Applid Life Data Analysis[M]. New York: Wiley, 1982.
    [44] Wlodzimierz Bryc. The normal distribution: characterizations with applications[M]. Lecture Notes in Statistic, 1995.
    [45] Weibull W. A. A statistical theory of the strength of materials [J]. Journal of Applied Mechanics, 1951,18(3):293-297.
    [46]王正,康锐,谢里阳.以载荷作用次数为寿命指标的失效相关系统可靠性建模[J].机械工程学报. 2010,46(06): 188-194.
    [47]郭必柱,邓建.可靠性分析威布尔三参数估计方法比较分析[J].科学技术与工程. 2010, 10(25):6117-6122.
    [48]胡恩平,罗兴柏,刘国庆.三参数Weibull分布几种常用的参数估计方法[J].沈阳工业学院学报. 2000, 19(3):88-94.
    [49]严晓东,马翔,吴亮.三参数威布尔分布参数估计方法比较[J].宁波大学学报(理工版). 2005, 18(3):301-305.
    [50]王超,王金.机械可靠性工程[M].北京;冶金工业出版社, 1992.
    [51]傅惠民,高镇同.确定威布尔分布三参数的相关系数优化法.航空学报. 1990, 11(7):323-327.
    [52]史景钊,花恒明,李祥付.威布尔分布参数估计在EXCEL中的实现方法研究[J].中国科技论文在线. 2009,2(6):1–6.
    [53] Ashish K. Sen,M. S. Srivastava. Regression analysis: theory, methods and applications[M]. Springer Texts in Statistics, 1990.
    [54]张昉.平面度误差的最小二乘法分析[J].机械制造与研究. 2002,(3):17-19.
    [55]张义民.机械可靠性设计的内涵与递进[J].机械工程学报. 2010, 46(14): 167-187.
    [56]谢里阳,王正,周金宇,武滢.机械可靠性基本理论与方法[M].科学出版社, 2009.
    [57]马建伟.发射器关键零件疲劳可靠性分析[D].大连理工大学硕士论文, 2009.
    [58]曾攀.有限元分析及应用[M].清华大学出版社. 2004.
    [59]孙建国.渐开线圆柱齿轮修形即动力接触特性研究[D].重庆大学硕士论文, 2008.
    [60]吴序堂.齿轮啮合原理[M].北京:机械工业出版社, 1982.
    [61]唐进元,刘艳萍,周长江,吕文利.基于APDL与高级语言的齿轮有限元建模方法[J].机械传动. 2007, 31(3):21-23.
    [62]包家汉,张玉华,薛家国.基于ANSYS的渐开线斜齿轮副参数化建模[J].机械传动. 2006,01:54-56.
    [63]高志刚,刘泽明,李娜.复杂模型的ANSYS有限元网格划分研究[J].机械工程与自动化. 2006, 3: 41-43.
    [64]由美雁,谢里阳. ANSYS的网格划分在工程实例上的应用[J].计算机应用技术. 2007,9(34):37-39.
    [65] M. Benedetti, V. Fontanari, B.-R.H?hn, et al.Influence of shot peening on bending tooth fatigue limit of case hardened gears[J]. International Journal of Fatigue,2002, 24(11): 1127–1136.
    [66]周渝庆.镁合金车轮疲劳寿命预测和优化设计[D].重庆大学硕士论文, 2008.
    [67]姜年朝. ANSYS和ANSYS/FE-SAFE软件工程应用及实例[M].河海大学出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700