铅锌冶炼废渣堆场土壤产黄青霉菌F1浸出修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铅锌冶炼过程产生大量含重金属的废渣,并弃置于环境,导致渣场及附近土壤遭受重金属的严重污染,治理废渣堆场重金属污染土壤是国内外研究的焦点,我国尤为迫切。目前常采用的化学方法或植物修复法存在见效慢、成本高或具有二次污染潜在危害等不足。本论文对铅锌冶炼废渣堆场土壤重污染的特征、微生物的分离筛选、浸出修复工艺及其机理等开展了较系统的研究,取得了如下成果:
     研究阐明了典型铅锌冶炼废渣堆场土壤的污染特征。铅锌冶炼废渣堆场土壤遭受重金属的重度污染:表层土壤中Pb、Zn、Cd和Cu的含量分别为1889.6mg·kg-1,5682mg·kg-1,48.4mg·kg-1和1848.6mg·kg-1,其中Pb超过《土壤环境质量标准(GB15618-1995)》二级标准限值的5.4倍,Zn超标18.94倍,Cd超标80.7倍,Cu超标18.5倍。且废渣堆场土壤Pb、Zn、Cd和Cu含量呈现随土层深度的增加而降低,随距污染源距离的增加而减少的空间分布规律。
     基于微生物在极端环境下生存的胁迫机制,从铅锌冶炼废渣堆场重污染土壤中分离筛选出一株具产酸特性、能使浸出液pH值从6.7降到2.7的重金属耐受菌,经18S rDNA和ITS鉴定为产黄青霉菌(Penicillium chrysogenum),命名为F1。产黄青霉菌F1生长受pH值和重金属浓度的影响较大,能正常生长的pH值范围为5.0-9.0,当土液比在0-1:13.3范围内时,产黄青霉菌F1的生长符合SGompertz和Logistic模型。
     通过对铅锌冶炼废渣堆场污染土壤微生物浸出条件的优化,提出了“菌株培养产酸-重金属浸出”的二步法浸出修复新方法。产黄青霉菌F1浸出修复的最佳条件为温度28℃、土液比1:20、pH7.0,碳源葡萄糖投加量为90g.L-1,氮源A投加量为3g-L-’。在最佳条件下,产黄青霉菌F1对重金属含量高达12.62g.kg-1重污染土壤中Cd、Cu、Pb、 Zn、Mn和Cr的浸出率分别为74%、59%、24%、55%、57%和25%,远远高于0.5%的柠檬酸、草酸、苹果酸和琥珀酸的浸出率。
     阐述了铅锌冶炼废渣堆场土壤产黄青霉菌F1浸出的作用机制。在浸出过程中,产黄青霉菌F1通过葡萄糖代谢,产生了葡萄糖酸、丙酮酸和草酸等有机酸。产黄青霉菌F1浸出修复土壤后,菌丝细胞壁外分泌大量胞外聚合物,且周围吸附大量的金属离子,表明产黄青霉菌F1对重金属的抗性机理为重金属通过胞外聚合物的截留。
     揭示了产黄青霉菌F1对土壤中重金属的形态转化规律。在浸出过程中,土壤中的Cd、,Zn和Mn主要以离子形态被浸出;Pb和Cr主要体现为形态的转换,以铁锰氧化物结合态和强有机态赋存的Pb转化成了残渣态,铁锰氧化物结合态的Cr转化成碳酸盐结合态;Cu既以离子形态被浸出,又有形态间的转换,被产黄青霉菌F1浸出后,Cu的铁锰氧化物结合态转化为水溶态和离子交换态。发现了重金属和pH值对葡萄糖氧化酶活性的调控机理,为浸出修复时土液比的确定提供了科学依据。单一重金属中,Pb、Cu、Cd、Mn和Cr对产黄青霉菌F1葡萄糖氧化酶活性具有抑制作用,Zn对葡萄糖氧化酶活性具有激活作用,以上六种重金属复合对葡萄糖氧化酶活性的影响大于单一重金属。酸性条件下产黄青霉菌F1胞外葡萄糖氧化酶的活性大于偏中性条件下的活性。
     从铅锌冶炼废渣堆场土壤筛选到的产黄青霉菌F1在治理重金属污染土壤过程中具有较好的应用前景。
Abstract:A large amount of slags rich in heavy metals had been produced during nonferrous smelting process. These smelting slags were directly piled and no recycling technology was used on them, thus the soil was polluted severely by heavy metals at Pb/Zn smelting slag site. Remediation on the heavy metal polluted soil is a focus in the world, especially in China. At present, chemical remediation and phytoremediation are often used to harness heavy metal polluted soil, but they own several shortcomings such as high cost, low efficiency and the possibility of secondary pollution. The characteristics of the heavy metal polluted soil, the strain's isolation and screening, and the technology and mechanism of bioleaching were studied in this paper. Some conclusions were drawn as follows:
     The characteristics of the soil at Pb/Zn smelting slag site were studied in this paper. It showed that the soil at Pb/Zn smelting slag site was severely polluted by heavy metals, the content of the heavy metals were as follows:1889.6mg·kg-1Pb,5682mg·kg-1Zn,48.4mg·kg-1Cd and1848.6mg·kg-1Cu, individually. According Chinese GB15618-1995, the content of Pb, Zn, Cd and Cu were5.4,18.94,80.7and18.5times as much as the secondary standard limit value. The heavy metals'spatial distribution pattern at the slag site was decreased with the increase of soil depth, and it was also decreased with the increase of the distance from the pollution sources.
     Based on the stress mechanism of microbes to survive in extreme environment, a fungi with the ability of heavy metal tolerance and producing organic acids was selected, it was identified as Penicillium chrysogenum (P. chrysogenum) using18S rDNA and ITS, and named as F1. P. chrysogenum F1can tolerate568mg·L-1Zn,188.9mg-L"1Pb,185mg·L-1Cu,4.8mg·L-1Cd and10.4mg-L"1Cr at the same time. The growth of P. chrysogenum F1was influenced by heavy metals and pH value. During the pH value range of5.0-9.0, P. chrysogenum F1grew normally. The growth of P. chrysogenum F1was fitted for SGompertz and Logistic model during the ratio range of0-1:13.3.
     A new method of two-step bioleaching was proposed. The optimization conditions of bioleaching using P. chrysogenum F1were as follows:the ratio soil to liquid of1:20, the temperature of28℃, pH value of7.0,9·L-1glucose as carbon source and3g`L-1A as nitrogen source. Under the best condition, the removal percentage of Cd, Cu, Pb, Zn, Mn and Cr was74%,59%,24%,55%,57%and25%. The removal percentage by P. chrysogenum F1was better than by nitric acid, malic acid, humic acid and oxalic acid under the concentration of0.5%.
     The mechanism of bioleaching using P. chrysogenum F1was elaborated. The bioleaching remediation on heavy metal polluted soil at the slag site was the extraction of heavy metals by organic acids which produced by P. chrysogenum F1. During bioleaching process, glucose acid, pyruvic acid, citric acid, oxalic acid, malic acid and succinic acid were produced through the metabolism of glucose. After bioleaching process, there were many untouched extracellular polymeric substances and particles around the cell wall so that the heavy metal resistant mechanism of P. chrysogenum F1might be the interception of extracelluar polymeric substances.
     The regularity of the fractions'transformation of heavy metals was revealed. During bioleaching, all the fractions of Cd, Zn and Mn were extracted in ionic form, Fe-Mn oxide-bonded and organic fraction of Pb were transformed into residual fraction, Fe-Mn oxide-bonded of Cr was transformed into carbonate-bonded fraction, water-soluble fraction and ion-exchangeable fraction of Cu were transformed from Fe-Mn oxide-bonded.
     The regulation mechanism of glucose oxidase activity by heavy metal and pH value was found. For single metal, the inhibitory impact of Pb on extracellular glucose oxidase activity was the biggest than Cu, Cd, Mn and Cr, the activity of glucose oxidase was activated by Zn. The inhibitory impact of multi-metal was bigger than single metal. The activity of extracellular glucose oxidase was larger under acid condition than under neutral condition.
     P. chrysogenum F1selected from the soil at the slag site has the great potential for the remediation on heavy metal polluted soil.
引文
[1]郭朝晖,程义,柴立元,等.有色冶炼废渣的矿物学特征与环境活性[J].中南大学学报,2007,38(6):1100-1104.
    [2]杨国清,刘康怀.固体废物处理工程[M].北京:科学出版社,2005.
    [3]Gorai B, Jana RK, Premehand. Characteristies and utilization of copper slag-a review [J]. Resourees, Conservation and Recycling,2003,39 (5):299-313.
    [4]Nadine MP, Robert RS, Jane MH. Mineralogical and geochemicalcontrols on the release of traceelements from slag produced by base-and Precious- metal smelting at abandoned mine sites [J]. Applied Geochemistry,2004,19 (7): 1039-1064.
    [5]吴攀,刘丛强,杨元根.炼锌固体废渣中重金属(Pb. Zn)的存在状态及环境影响[J].地球化学,2003,32(2):139-145.
    [6]林文杰.土法炼锌区生态退化与重金属污染[J].生态环境学报,2009,18(1):149-153.
    [7]赵永鑫,徐争启,滕彦国,等.攀钢冶炼废渣中重金属地球化学特征及其环境效应[J].广东微量元素科学,2011,18(7):63-69.
    [8]Nan ZR, Zhao CY. Heavy metal concentrations of in gray calcareous soils of baiyin region, Gansu, Province, P.R. China [J]. Water Air and Soil Pollution, 2000,118:131-141.
    [9]Li Y, Wang YB, Guo X, et al. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China [J]. Journal of Environmental Science,2006,18 (6):1124-1134.
    [10]许中坚,吴灿辉,刘芬,等.典型铅锌冶炼厂周边土壤重金属复合污染特征研究[J].湖南科技大学学报,2007,22(1):111-114.
    [11]吴双桃,吴晓芙,胡曰利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-157,160.
    [12]李东伟,徐中慧,肖祖菊,等.古冶炼废渣环境毒性鉴别[J].重庆大学学报,2010,33(11):102-107.
    [13]杨哗,陈英旭,孙振世.重金属胁迫下根际效应的研究进展[J].农业环境保护,2001,20(1):55-58.
    [14]Hattori H. Decomposition of organic matter with previous cadmium adsorption in soils [J]. Soil Science and Plant Nutrition,1996,42 (4):745-752.
    [15]Brookes PC, Mcgrathe SP. Effect of metal toxicity on the size of the soil microbial biomass [J]. European Journal of Soil Science,1984,35 (2): 341-346.
    [16]Hemida SK, Omar SA, Abdel-MAllek AY. Microbial populations and enzyme activity in soil treated with heavy metals [J]. Water Air & Soil Pollution,1997, 95 (1-4):13-22.
    [17]Vig K, Megharaj M, Sethunathan N, et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review [J]. Advances in Environmental Research,2003,8 (1):121-135.
    [18]Giller KE, Witter E, McGrath SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review [J]. Soil Biology and Biochemistry,1998,30 (10-11):1389-1414..
    [19]Kelly JJ, Tate RL. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter [J]. Journal of Environmental Quality,1998,27 (3):609-617.
    [20]Pennanen T, Frostegard A, Fritze H, et al. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferousforests [J]. Applied and Environmental Microbiology,1996,62 (2):420-428.
    [21]Smit E, Leeflang P, Wernars K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis [J]. FEMS Microbiology Ecology,1997, 23 (3):249-261.
    [22]Muller AK, Westergaard K, Christensen S. The effect of long-term mercury pollution on the soil microbial community [J]. FEMS Microbiology Ecology, 2001,36(1):11-19.
    [23]Frostegard A, Tunlid, A, Baath E. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals [J]. Soil Biology and Biochemistry,1996,28 (1):55-63.
    [24]关松荫,张德生,张志明.土壤酶及研究方法[M].北京:中国农业出版社,1986,274-338.
    [25]Nowak J, Kaklewski K, Ligocki M. Influence of selenium on oxidoreductive enzymes activity in soil and in plants [J]. Soil Biology & Biochemistry,2004, 36 (10):1553-1558.
    [26]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-2167.
    [27]顾尚义,王展.铅锌冶炼废渣对土壤酶活性影响的试验研究[C].中国环境科学学会学术年会论文集,2010:3876-3879.
    [28]张彦,张惠文,苏振成,等.长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响[J].应用生态学报,2007,18(7):1491-1497.
    [29]Mounieou S, Mesheehy S, PunarJ, et al. Analysis of selenized yeast for selenium speciation by size-exclusion chromatography and capillary zone electrophoresis with inductively coupled plasma mass spectrometric detection (SEC-CZE-ICP-MS) [J]. Journal of Analytical Atomic Spectrometry,2002,17:15-20.
    [30]李湘洲.重金属铅和镉对土壤与作物的危害及防治[J].经济林研究,2000,18(4):12-15.
    [31]吴迪,李存雄,邓琴,等.典型铅锌矿区土壤-农作物体系重金属含量及污染特征分析[J].安徽农业科学,2010,38(2):849-851.
    [32]南忠仁,程国栋.干旱区污灌农田作物系统重金属Cd Pb生态行为研究[J].农业环境保护,2001,20(4):210-213.
    [33]段兴潮,董团瑞,吕家根.急性重金属污染后重金属在玉米植株的分布蓄积研究[J].西南大学学报,2009,31(2):94-96.
    [34]Gier S, Johns W. Heavy metal-adsorption on micas and clay minerals studied by X-ray Photoeleetron spectroscopy [J]. Applied Clay Science,2000,16: 289-299.
    [35]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-27.
    [36]郑春霞,王文全,骆建敏,等.重金属Pb2+对玉米苗生长的影响[J].光谱学与光谱分析,2005,25(8):1361-1365.
    [37]朱贤英,论有毒重金属污染对人体健康的危害及饮水安全[J].湖北教育学院学报,2006,23(2):72-74.
    [38]游勇,鞠荣.重金属对食品的污染及其危害[J].环境,2007,3:21-23.
    [39]Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater:an evaluation [J]. Engineering Geology, 2001,60:193-207.
    [40]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76.
    [41]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应 用基础与工程科学学报,2003,11(2):143-151.
    [42]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.
    [43]陈志良,仇荣亮,张景书,等.重金属污染土壤的修复技术[J].工程与技术,2002,6:21-23.
    [44]Chaney RL, Li YM, Angle JS, et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextract ion systems:Approaches and progress, In:Terry N. and Bacuelo s G.S. eds. Phytoremediation of Trace elements [M]. Miami, USA:ann Arbor Press,1999:234-245.
    [45]Griffiths RA. Soil-washing technology and practice [J]. Journal of Hazardous Materials,1995,40:175-190.
    [46]Interstate Technology and Regulatory Council (ITRC), fixed Facilities for foil washing a regulatory analysis [EB/OL]. Washington, DC:metals in soils work team,1997. (http://www.arcadis-global.com).
    [47]Wu G, Kang HB, Zhang XY, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:Issues, progress, eco-environmental concerns and opportunities [J]. Journal of Hazardous Materials,2010,174:1-8.
    [48]Mulligan CN, Yong RN, Gibbs BF, et al. Metal Removal from Contaminated Soil and Sediments by the Biosurfactant Surfactin [J]. Environmental Science & Technology,1999,33:3812-3820.
    [49]Davis AP, Member ASCE, Hotha BV. Washing of various lead compounds from a contaminated soil column [J]. Journal Environment Engineering,1998, 124:1066-1075.
    [50]Zou ZL, Qiu RL, Zhang WH, et al. The study of operating variables in soil washing with EDTA [J]. Environmental Pollution,2009,157:229-236.
    [51]Ko I, Lee CH, Lee KP, et al. Remediation of Soil Contaminated with Arsenic, Zinc, and Nickel by Pilot-Scale Soil Washing [J]. Environmental Progress,25 (1):39-42.
    [52]Ahn CK, Kim YM, Woo SH, et al. Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon [J]. Journal of Hazardous Materials,2008,154:1-3.
    [53]Hauser L, Tandy S, Schulin R, et al. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS [J]. Environmental Science & Technology,2005,39:6819-6824.
    [54]可欣,李培军,巩宗强,等.重金属污染土壤修复技术中有关淋洗剂的研究进展[J].生态学杂志,2004,23(5):145-149.
    [55]Lestan D, Luo CL, Li XD. The use of chelating agents in the remediation of metal-contaminated soils [J]. Environmental Pollution,2008,153:3-13.
    [56]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景 [J].农业环境保护,2000,19(3):179-183.
    [57]Tandy S, Bossart K, Mueller R, et al. Extraction of heavy metals from soils using biodegradable chelating agents [J]. Environmental Science & Technology,2004,38:937-944.
    [58]周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508.
    [59]Gent DB, Bricka RM, Alshawabkeh AN, et al. Bench-and field-scale evaluation of chromium and cadmium extraction by electrokinetics [J]. Journal of Hazardous Materials,2004,110:53-62.
    [60]Maturi K, Reddy KR. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin [J]. Chemosphere,2006,63:1022-1031.
    [61]Wang JY, Huang XJ, Kao JCM, et al. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process [J]. Journal of Hazardous Materials,2007,144:292-299.
    [62]Zhang J, Xu YF, Li WT, et al. Enhanced remediation of Cr (Ⅵ)-contaminated soil by incorporating a calcined-hydrotalcite-based permeable reactive barrier with electrokinetics [J]. Journal of Hazardous Materials,2012,239-240: 128-134.
    [63]顾继光,林秋奇,胡韧,等.土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133.
    [64]Yeung AT. Contaminant extractability by electrokinetics [J]. Environmental Engineering Science,2006,23 (1):202-224.
    [65]Chen Y, Tang X, Zhan L. Remediation technologies for contaminated sites, in: Advances in Environmental Geotechnics [M]. Hangzhou:Zhejiang University Press,2009:328-369.
    [66]Yeung AT, Gu YY. A review on techniques to enhance electrochemical remediation of contaminated soils [J]. Journal of Hazardous Materials,2011, 195:11-29.
    [67]王慧,马建伟,范向宇.重金属污染土壤的电动原位修复技术研究[J].生态环境,2007,16(1):223-227.
    [68]Alpaslan B, Yukselen MA. Remediation of lead contaminated soils by stabilization/solidification [J].Water Air and Soil Pollution,2002,133 (1): 253-263.
    [69]Dermatas D, Meng XG. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils [J]. Engineering Geology,2003,70 (3): 377-394.
    [70]Gavrilescu M, Pavel LV, Cretescu I. Characterization and remediation of soils contaminated with uranium [J]. Journal of Hazardous Materials,2009,163: 475-510.
    [71]Lothenbach B, Furrer G, Scharli H, et al. Immobilization of zinc and cadmium by montmorillonite compounds:effects of aging and subsequent acidification [J]. Environmental Science & Technology,1999,33:2945-2952.
    [72]Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review [J]. Waste Management,2008,28: 215-225.
    [73]Dermatas D, Meng XG. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils [J]. Engineering Geology,2003,70:377-394.
    [74]Chen QY, Ke YJ, Zhang LN, et al. Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment [J]. Journal of Hazardous Materials,2009, 166:421-427.
    [75]Zhang JL, Liu JG, Li C, et al. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization [J]. Journal of Hazardous Materials,2009,165: 1179-1185.
    [76]郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展[J].应用生态学报,2005,16(10):1990-1996.
    [77]孙小峰,吴龙华,骆永明.有机修复剂在重金属污染土壤修复中的应用[J].应用生态学报,2006,17(6):1123-1128.
    [78]Lombi E, Hamon RE, Mcgrath SP, et al. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques [J]. Environmental Science & Technology,2003,37:979-984.
    [79]冯凤玲,成杰民,王德霞.蚯蚓在植物修复重金属污染土壤中的应用前景[J].土壤通报,2006,37:4809-814.
    [80]王新,周启星.土壤重金属污染生态过程、效应及修复[J].生态科学,2004,23(3):27-28.
    [81]李许明,李福燕,郭彬,等.蚯蚓对土壤重金属的影响[J].安徽农业科学,2007,35(13):3940-3941.
    [82]戈峰,刘向辉,江炳缜.蚯蚓对金属元素的富集作用分析[J].农业环境保护,2002,21(1):16-18.
    [83]Wu G, Kang HB, Zhang XY, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:Issues, progress, eco-environmental concerns and opportunities [J]. Journal of Hazardous Materials,2010,174:1-8.
    [84]王庚仁,崔岩山,董艺婷.植物修复重金属污染土壤整治有效途径[J].生态学报,2011,21(2):326-331.
    [85]Lefe'vre I, Marchal G, Corre'al E, et al. Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop [J]. Plant Growth Regular,2009,59:1-11.
    [86]Kramer U. Metal hyperaccumulation in plants [J]. Annual Review Plant Biology,2010,61:517-34.
    [87]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物-商陆[J].生态学报,2003,5:935-937.
    [88]Yang SX, Li MS, Deng H. Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba [J]. Plant Soil Environment,2008,54 (10): 441-446.
    [89]Liu ZL, He XY, Chen W. Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb [J]. Ecotoxicology,2011,20:698-705.
    [90]Ariyakanon N, Soratana K, Chunkrua T. Comparison of Zinc accumulating efficiency between Brassicajuncea and Brassica chinensis Linn [J].Journal of Science Research Chula University,2003,28:52-60.
    [91]Wenzel WW, Jockwer F. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps [J]. Environmental Pollution,1999,104: 145-155.
    [92]Singh R, Tripathi RD, Dwivedi S, et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica is related to antioxidant system [J]. Bioresource Technology,2010,101:3025-3032.
    [93]Quartacci MF, Irtelli B, Gonnelli C. Naturally-assisted metal phytoextraction by Brassica carinata:Role of root exudates [J]. Environmental Pollution,2009, 157:2697-2703.
    [94]Agunbiade FO, Olu-Owolabi BI, Adebowale KO. Phytoremediation potential of eichornia crassipes in metal-contaminated coastal water [J]. Bioresource Technology,2009,100:4521-4526.
    [95]Vivas A, Birob B, Rui'zLozano JM et al. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity [J]. Chemosphere,2006,62:1523-1533.
    [96]Medina A, Vassileva M, Barea JM, et al. The growth-enhancement of clover by Aspergillus-treated sugar beet waste and Glomus mosseae inoculation in Zn contaminated soil [J]. Applied Soil Ecology,2006,33:87-98.
    [97]Rebele F, Lehmann C. Phytoextraction of Cadmium and phytostabilisation with Mugwort (Artemisia vulgaris) [J]. Water Air Soil Pollution,2011,216: 93-103.
    [98]Marques AGC, Rangel AOS, Castro PML. Remediation of heavy metal contaminated soils:phytoremediation as a potentially promising clean-up technology [J]. Environmental Science and Technology,2009,39:622-654.
    [99]Lebeau T, Braud A, Jezequel K. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils:A review [J]. Environmental Pollution,2008,153:497-522.
    [100]Garbisu C, Alkorta I. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment [J]. Bioresource Technology, 2001,77:229-236.
    [101]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1202.
    [102]Lone MI, He ZL, Stoffella PJ, et al. Phytoremediation of heavy metal polluted soils and water:progresses and perspectives [J]. Journal of Zhejiang University Science B,2008,9 (3):210-220.
    [103]Cheng YJ, Yan FB, Huang F, et al. Bioremediation of Cr (VI) and immobilization as Cr (III) by Ochrobactrum anthropi [J]. Environmental Science &Technology,2010,44:6357-6363.
    [104]Chai LY, Huang SH, Yang ZH, et al. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag [J]. Journal of Hazardous Materials,2009,167:516-522.
    [105]Jeyasingh J, Philip L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions [J]. Journal of Hazardous Materials B,2005,118:113-120.
    [106]Siddique T, Zhang YQ, Okeke BC, et al.Characterization of sediment bacteria involved in selenium reduction [J]. Bioresource Technology,2006,97: 1041-1049.
    [107]Lorte L, Gould WD, Rajan S, et. al. Reduction of Selenate and Selenite to Elemental Selenium by a Pseudomonas stutzeri Isolate [J]. Applied and Environmental Microbiology,1992,58 (12):4042-4044.
    [108]Chataina V, Bayard R, Sanchez F, et al. Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions [J]. Environment International,2005,31:221-226.
    [109]Achal V, Pana XL, Zhang DY. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation [J]. Ecological Engineering,2011,37:1601-1605.
    [110]Davey MC. Microbial formation and transformation of organometallic and organometalloid compounds [J]. FEMS Microbiology Reviews,1993,11 (4): 297-316.
    [111]Karlson U, Frankenberger WT. Biological alkylation of selenium and tellurium. In:Sigel H, Sigel A (Eds.), Metal Ions in Biological Systems. New York: Marcel Dekker,1993:185-227.
    [112]Hobman JL, Wilson JR, Brown NL. Microbial mercury reduction. In:Lovley DR (Ed.), Environmental Microbe-Metal Interactions. Washington:American Society of Microbiology,2000:177-197.
    [113]Rulkens WH, Grotenhuis JTC, Tichy R. Methods of cleaning contaminated soils and sediments [C]. In:Salomons W, Feorstner U, Mader P (Eds.), Heavy Metals Berlin:Springer-Verlag,1995:151-191.
    [114]Seidel H, Loser C, Zehnsdorf A, et al. Bioremediation process for sediments contaminated by heavy metals:feasibility study on a pilot scale [J]. Environmental Science &Technology,2004,38:1582-1588.
    [115]Kumar RN, Nagendran R. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans [J]. Chemosphere,2007,66:1775-1781.
    [116]Kumar RN, Nagendran R. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans [J]. Journal of Hazardous Materials,2009,169:1119-1126.
    [117]Bayat B, Sari B. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge [J]. Journal of Hazardous Materials,2010,174:763-769.
    [118]Chen YX, Hua YM, Zhang SH, et al. Transformation of heavy metal forms during sewage sludge bioleaching [J]. Journal of Hazardous Materials,2005, 123:196-202.
    [119]Wang YS, Pan ZY, Lang JM, et al. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans [J]. Journal of Hazardous Materials,2007,147:319-324.
    [120]Xin BP, Zhang D, Zhang X, et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria [J]. Bioresource Technology,2009,100: 6163-6169.
    [121]Xin BP, Chen B, Duan N, et al. Extraction of manganese from electrolytic manganese residue by bioleaching [J]. Bioresource Technology,2011,102: 1683-1687.
    [122]Xin BP, Jiang WF, Aslam H, et al. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration [J]. Bioresource Technology,2012,106:147-153.
    [123]Rezza I, Salinas E, Elorza M, et al. Mechanisms involv ed in bioleaching of an aluminosilicate by heterotrophic microorganiss [J]. Process Biochemistry, 2001,36:495-500.
    [124]Mulligan CN, Kamali M, Gibbs BF. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger [J]. Journal of Hazardous Materials,2004,110:77-84.
    [125]Anjum F, Bhatti HN, Asgher M, et al. Leaching of metal ions from black shale by organic acids produced by Aspergillus niger [J]. Applied Clay Science, 2010,47:356-361.
    [126]Ahmad B, Bhatti HN, Ilyas S. Bio-extraction of metal ions from laterite ore by Penicillium chrysogenum [J]. African Journal of Biotechnology,2011,10 (54): 11196-11205.
    [127]Yang J, Wang QH, Wang Q, et al. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger [J]. Bioresource Technology,2009,100:254-260.
    [128]Amiri F, Yaghmaei S, Mousavi SM. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum [J]. Bioresource Technology,2011,102:1567-1573.
    [129]Ren WX, Li PJ, Geng Y, et al. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger [J]. Journal of Hazardous Materials, 2009,167:164-169.
    [130]Xin BP, Jiang WF, Li X, et al. Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance [J]. Bioresource Technology,2012,112: 186-192.
    [131]Liu YG, Zhou M, Zeng GM, et al. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching [J]. Journal of Hazardous Materials,2007,141:202-208.
    [132]Shi SY, Fang ZH, Ni JR. Comparative study on the bioleaching of zinc sulphides [J]. Process Biochemistry,2006,41:438-446.
    [133]Tsaia LJ, Yua KC, Chen SF. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching [J].Water Research,2003, 37:2449-2457.
    [134]Kinnunen PHM, Puhakka JA. High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a leptospirillum ferriphilum dominated biofilm [J]. Process Biochemistry,2005,40:3536-3541.
    [135]Feng SS, Yang LH, Xin Y, et al. A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus [J]. Bioresource Technology,2013,129:456-462.
    [136]Seidel H, Wennrich R, Hoffmann P, et al. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments [J]. Chemosphere,2006,62:1444-1453.
    [137]Chen SY, Lin PL. Optimization of operating parameters for the metal bioleaching process of contaminated soil [J]. Separation and Purification Technology,2010,71:178-185.
    [138]Chen SY, Lin JG. Enhancement of metal bioleaching from contaminated sediment using silver ion [J]. Journal of Hazardous Materials,2009,161: 893-899.
    [139]Anjum F, Bhatti HN, Asgher M, et al. Leaching of metal ions from black shale by organic acids produced by Aspergillus niger [J]. Applied Clay Science, 2010,47:356-361.
    [140]Amiri F, Yaghmaei S, Mousavi SM. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum [J]. Bioresource Technology,2011,102:1567-1573.
    [141]Harris DM, Westerlaken I, Schipper D, et al. Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor [J]. Metabolic Engineering,2009,11:125-137.
    [142]Kleijn RJ, Winden WA, Ras C, et al.13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum [J]. Applied and Environmental Microbiology, 2006,72 (7):4743-4754.
    [143]Kleijn RJ, Liu F, Winden WA, et al. Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum [J]. Metabolic Engineering,2007,9:112-123.
    [144]Nasution U, Gulik WMV, Ras C, et al. A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum [J]. Metabolic Engineering,2008,10: 10-23.
    [145]Yuan JQ, Liu YH, Geng J. Stoichiometric balance based macrokinetic model for Penicillium chrysogenum in fed-batch fermentation [J]. Process Biochemistry,2010,45:542-548.
    [146]Christensen LH, Henriksen CM, Nielsen J, et al. Continuous cultivation of Penicillium chrysogenum growth on glucose and penicillin production [J]. Journal of Biotechnology,1995,42:95-107.
    [147]Henriksen CM, Christensen LH, Nielsen J. et al. Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum [J]. Journal of Biotechnology,1996,45:149-164.
    [148]Hockenhull DJD, Herbert M, Walker AD, et al. Organic acid metabolism of Penicillium chrysogenum [J]. Biochemistry,1954,56:73-76.
    [149]Benito MJ, Rodriaguez M, Sosa MJ, et al. Effect of protease epg222 obtained from Penicillium chrysogenum isolated from dry-cured ham in pieces of pork loins [J]. Journal of Agriculture Food Chemistry,2003,51:106-111.
    [150]Nagy Z, Kiss T, Szentirmai A, et al. β-galactosidase of Penicillium chrysogenum:production, purification, and characterization of the enzyme [J]. Protein Expression and Purification,2001,21:24-29.
    [151]Patidar P, Agrawal D, Banerjee T, et al. Optimisation of process parameters for chitinase production by soil isolates of Penicillium chrysogenum under solid substrate fermentation [J]. Process Biochemistry,2005,40:2962-2967.
    [152]Amanullah A, Justen P, Davies A, et al. Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum [J]. Biochemical Engineering Journal,2000,5:109-114.
    [153]Harvey LM, McNeil B, Berry DR. et al. Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates [J]. Enzyme and Microbial Technology,1998,22:446-458.
    [154]Banuelos O, Casqueiro J, Fierro F, et al. Characterization and Iysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase [J]. Gene,1999,226:51-59.
    [155]Berg MA, Albang R, Albermann K, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum [J]. Nature Biotechnology, 2008,26:1161-1168.
    [156]张茜,石艳.尼崎青霉菌葡萄糖氧化酶的分离纯化及性质研究[D].厦门:厦门大学,2009.
    [157]张茜,闫冰,康劲翮,等.金属离子对青霉葡萄糖氧化酶的效应研究[J].厦门大学学报(自然科学版),2010,49(3):396-399.
    [158]张茜,闫冰,王勤,等.修饰剂对青霉菌葡萄糖氧化酶的效应研究[J].厦门大学学报(自然科学版),2010,49(5):544-547.
    [159]Zafar S, Aqil F, Ahmad I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil [J]. Bioresource Technology,2007,98:2557-2561.
    [160]Gadd GM. Fungi and yeast metal accumulation [C]. Ehrlich HL, Brierley CL. Microbiol Mineral Recovery. New York:McGraw-Hill,1990:249-276.
    [161]Gadd GM. Molecular biology and biotechnology of microbial interaction with organic and inorganic heavy metal compounds [C]. Herbert RA, Sharp RJ. Molecular Biology and Biotechnology of Extreamophiles. Glasgow:Blackie and Sons.1992:225-257.
    [162]Gadd GM, Interaction of fungi with toxic metals [J]. New Phytology,1993, 124:25-60.
    [163]Gadd GM, White C. Heavy metal and radionuclide accumulation and toxicity in fungi and yeast [C]. Pole RK, Gadd GM. Metal Microbe Interactions. Oxford:IRL Press.1989:19-38.
    [164]Low BT, Ting YP, Deng SB. Surface modification of Penicillium chrysogenum mycelium for enhanced anionic dye removal [J]. Chemical Engineering Journal,2008,141:9-17.
    [165]Niu H, Xu XS, Wang JH. Removal of lead from aqueous solutions by penicillin biomass [J]. Biotechnology & Bioengineering,1993,42:785-787.
    [166]Holan ZR, Volesky B. Accumulation of cadmium, lead and nickel by fungal and wood biosorbents [J]. Applied Biochemistry Biotechnology,1995,53: 133-146.
    [167]Fourest E, Canal C, Roux JC. Improvement of heavy metals biosorption by mycelial dead biomass (Rhizopus arrhizus, Mucor meihi and Penicillium chrysogenum):pH control and cationic activation [J]. FEMS Microbiology Reviews,1994,14:325-332.
    [168]Tsezos M, Volesky B. Biosorption of uranium and thorium [J]. Biotechnology & Bioengineering,1981,23:583-604.
    [169]Tan TW, Hu B, Su HJ. Adsorption of Ni2+ on amine-modified mycelium of Penicillium chrysogenum [J]. Enzyme and Microbial Technology,2004,35: 508-513.
    [170]Sarret GR, Manceau A, Spadini L, et al. Structural Determination of Zn and Pb Binding Sites in Penicillium chrysogenum Cell Walls by EXAFS Spectroscopy [J]. Environment Science Technology,1998,32:1648-1655.
    [171]Ahmad B, Bhatti HN,Ilyas S. Bio-extraction of metal ions from laterite ore by Penicillium chrysogenum [J]. African Journal of Biotechnology,2011,10 (54): 11196-11205.
    [172]Sabral N, Dubourguier HC, Hamieh T. Fungal leaching of heavy metals from sediments dredged from the Defile Canal, France [J]. Advances in Chemical Engineering and Science,2012,2:1-8.
    [173]赵新双.土壤污染现状及防治措施[J].现代农村科技,2009,12:37-39.
    [174]齐文启,汪志国,孙宗光.土壤污染分析中样品采集与前处理方法探[J].分析技术与应用,2000,1:23-25.
    [175]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [176]蔡祖聪,马毅杰.土壤有机质与土壤阳离子交换量的关系[J].土壤学进展,1988,3:21-24.
    [177]GB 15618-1995,土壤环境质量标准[S].北京:中国标准出版社,1995.
    [178]Pascual JA, Garcia PC, Herndez T, et al. Soil microbial activity as a biomarker of deradation and remediation process [J]. Soil Biology & Biochemistry,2000, 32:1877-1882.
    [179]黄启发,李森照,王辉,等.铬在水体、土壤和生物中的迁移转化规律[M].北京:中国环境科学出版社,1982:45-46.
    [180]朱衡,瞿峰,朱立煌.利用氯化苄提取适于分子生物学分析的真菌DNA[J].真菌学报,1994,13(1):34-40.
    [181]Valix M, Tang JY, Malik R. Heavy metal tolerance of fungi [J]. Minerals Engineering,2001,14 (5):499-505.
    [182]Abdullah MF. Influence of heavy metal toxicity on the growth of phanerochate chrysosporium [J]. Bioresource Technology,1997,60:87-90.
    [183]Zwietering MH, Jongenburger I, Rombouts FM, et al. Modeling of the bacterial growth curve [J]. Appllied Environmental Microbiology,1990,56: 1875-1881.
    [184]Erkmen O, Alben E. Mathematical modeling of citric acid production and biomass formation by Aspergillus niger in undersized semolina [J]. Journal of Food Engineering,2002,52:161-166.
    [185]孙儒泳.动物生态学原理[M].北京:北京师范大学出版社,2001:33-35.
    [186]李爱华,岳思君,马海滨.真菌孢子三种计数方法相关性的探讨[J].微生物学杂志,2006,26(2):107-110.
    [187]Zandra A, Bert A. Remediation of metal-contaminated soil by organic metabolites from fungi II-metal redistribution [J]. Water Air Soil Pollution, 2010,207:5-18.
    [188]Anahida S, Yaghmaei S, Ghobadinejad Z. Heavy metal tolerance of fungi [J]. Scientia Iranica C,2011,18 (3):502-508.
    [189]Abdullah MF. Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium [J]. Bioresource Technology,1997,66:87-90.
    [190]Chetan TG, Keith AS. Estimating growth kinetics of Penicillium chrysogenum by nonlinear regression [J]. Biochemical Engineering Journal,1998, I: 191-199.
    [191]Sandip BB, Mahesh VB, Rekha SS, et al. Glucose oxidase-An overview [J], Biotechnology Advance,2009,27:489-501.
    [192]Xu TJ, Ting YP. Fungal bioleaching of incineration fly ash:Metal extraction and modeling growth kinetics [J]. Enzyme Microbiology Technology,2009, 44:323-328.
    [193]Amiria F, Mousavic SM, Yaghmaei S, et al. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions [J]. Biochemical Engineering Journal,2012,67:208-217.
    [194]刘云国,冯宝莹,樊霆,等.真菌吸附重金属离子的研究[J].湖南大学学报(自然科学版),2008,35(1):71-74.
    [195]Chen XC, Shi JY, Chen YX, et al. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metalpolluted soil [J]. Canadian Journal of Microbiology,2006,5:308-315.
    [196]Mulligan CN, Kamali M, Gibbs BF. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger [J]. Journal of Hazardous Materials,2004,110:77-84.
    [197]黄秀梨.微生物学[M].北京:高等教育出版社,1998:93-99.
    [198]Moore JD, Houle D. Soil solution and sugar maple response to NH4NO3 additions in a base-poor northern hardwood forest of Quebec, Canada [J]. Environment Monitor Assessment,2009,155:177-190.
    [199]Reyes I, Bernier L, Simard RR, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants [J]. FEMS Microbiology Ecology, 1999,28:281-290.
    [200]Bankar SB, Bule MV, Singhal RS, et al. Glucose oxidase-An overview [J]. Biotechnology Advances,2009,27:489-501.
    [201]Bayat B, Sari B. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge [J]. Journal of Hazardous Materials,2010,174:763-769.
    [202]Chen SY, Lin JG. Effect of substrate concentration on bioleaching of metal-contaminated sediment [J]. Journal of Hazardous Materials,2001,82: 77-89.
    [203]刘超,袁建国,王元秀,等.葡萄糖氧化酶的研究进展[J].食品与药品,2010,12(7):285-289.
    [204]王镜岩,朱圣耿,徐长法.生物化学(上册)[M].北京:高等教育出版社,2002:20-30.
    [205]王爱杰,许修宏,孔德勇,等.培养料不同碳氮比对双胞蘑菇栽培的影响[C].中国生态学会微生物生态专业委员会2010年年会暨国际研讨会.
    [206]Herrmann A., Witter E., Katterer T., A method to assess whether'preferential use'occurs after 15N ammonium addition implication for the 15N isotope dilution technique [J]. Soil Biology & Biochemistry,2005,37:183-186.
    [207]Azam F, Ifzal M. Microbial populations immobilizing NH4+-N and NO3-N differ in their sensitivity to sodium chloride salinity in soil [J].Soil Biology & Biochemistry,2006,38:2491-2494.
    [208]Chen SY, Lin JG. Bioleaching of heavy metals from sediment:significance of pH [J]. Chemosphere,2001,44:1093-1102.
    [209]Fang D, Zhang RC, Zhou LX, et al. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment [J]. Journal of Hazardous Materials,2011,192:226-233.
    [210]Madeja AS. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide [J]. Journal of Hazardous Materials,2011,186:2157-2161.
    [211]Hamel S, Buckley B, Lioy P. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid [J]. Environment Science Technology,1998,32:358-362.
    [212]Zhang YS, Liu WG, Xu M, et al. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass [J]. Journal of Hazardous Materials,2010,178:1085-1093.
    [213]Gadd GM. Interactions of fungi with toxic metals [J]. New Phytology,1993, 124:25-60.
    [214]Gadd GM. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization [J]. Environmental Biotechnology,2000,11: 271-279.
    [215]Burgstaller WF, Schinner F. Leaching of metals with fungi [J]. Journal of Biotechnology,1993,27:91-116.
    [216]Krasnodebska OB, Paldyna J, Kowalska J. et al. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction [J]. Journal of Hazardous Materials,2009,167:128-135.
    [217]Chen XC, Shi JY, Chen YX, et al. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metalpolluted soil [J]. Canadian Journal of Microbiology,2006,52:308-316.
    [218]Chen XC, Hu SP, Shen CF, et al. Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution [J]. Bioresource Technology,2009,100:330-337.
    [219]Rezza I, Salinas E, Elorza M, et al. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms [J]. Process Biochemistry, 2001,36:495-500.
    [220]Zandra A, Emma J, Thomas K,et al. Remediation of metal contaminated soil by organic metabolites from fungi I-production of organic acids [J]. Water Air Soil Pollution,2010,205:215-226.
    [221]Roane TM. Lead resistance in two bacterial isolates from heavy metal-contaminated soils [J]. Microbiology Ecology,1999,37:218-224.
    [222]王镜岩,朱圣耿,徐长法.生物化学(下册)[M].北京:高等教育出版社,2002:92-99.
    [223]Gedke U, Danson MJ, Russdl NJ, et al. The Structure, Regulation and Function of the Janus Kinases (JAKs) and the Signal Transducers and Activators of Transcription (STATs) [J]. European Journal of Biochemistry,1997,248:49-57.
    [224]辛明秀,周培瑾.冷活性琥珀酸脱氢酶的特性[J].北京师范大学报,2004,40(1):108-113.
    [225]Yang J, Wang Q, Wang Q, et al. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger [J]. Bioresource Technology,2009,100(1):254-260.
    [226]Tobir JM, White C, Gadd GM. Metal accumulation by fungi:applications in environmental biotechnology [J]. Journal of Industrial Microbiology,1994,13: 126-130.
    [227]Fomina M, Charnock J, Bowen AD, et al. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi [J]. Environmental Microbiology,2007,9(2):308-321.
    [228]Roane TM. Lead resistance in two bacterial isolates from heavy metal-contaminated soils [J]. Microbiology Ecology,1999,37:218-224.
    [229]周礼恺.土壤酶学[M].北京:科学出版社,1987:92-95.
    [230]Krasnodebska OB, Paldyna J, Kowalska J. et al. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction [J]. Journal of Hazardous Materials,2009,167:128-135.
    [231]Mishra D, Kim DJ, Ralph DE, et al. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans [J]. Waste Management,2008,28:333-338.
    [232]Beata KO, Joanna P, Joanna K. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction [J]. Journal of Hazardous Materials, 2009,167:28-135.
    [233]钱翌,刘莹.单一及复合有机酸对土壤中镉形态的影响研究[J].土壤通报,2012,13(1):186-189.
    [234]李平,王兴祥,郎漫,等.改良剂对Cu、Cd污染土壤重金属形态转化的影响[J].中国环境科学,2012,32(7):1241-1249.
    [235]Duran I, Marin PS, Beiras R. Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments [J]. Marine Environmental Research,2012,77:43-49.
    [236]丁炳红,俞巧钢,叶静,等.土壤重金属有效性影响因素及其防治对策[J].浙江农业科学,2012,5:729-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700