辽宁省森林植被碳储量动态仿真模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化严重影响人类生存环境和经济社会的可持续发展。森林与气候变化关系十分密切,森林生态系统是陆地最大的碳储库,在应对气候变化中具有独特的功能,在维持地球碳平衡中具有重要的作用。
     本文通过系统分析国内外学者对森林植被碳储量、系统动态学的研究动态与最新进展,针对辽宁省森林资源结构及其特点,探讨如何估算与测量造林活动(项目)的碳储量,提出碳计量流程和方法;分析3篇应用森林资源调查资料研究我国森林植被碳储量和碳密度的文章,提炼出可供辽宁省森林植被碳储存量仿真模型各林龄组碳密度变量所需要的参考值。应用系统动态学因果关系与循环关系框架流程图方法,研建林地动态流程图,森林资源蓄积量、生长量动态流程图,木材采伐蓄积量动态流程图,森林植被碳储量动态流程图和森林经营、林地、蓄积量、森林植被碳储量等综合动态流程图。采用世界先进的模拟仿真软件——Vensim软件,建立辽宁省森林植被碳储量动态仿真模型。设计3种不同方案情景,应用森林植被碳储量动态仿真模型,分别对辽宁省和14个市的森林植被碳储量的未来变化趋势进行动态分析,模拟测算森林植被碳储量对碳密度的敏感程度。主要研究结果是:
     1.更新与提升造林工作理念,把增加森林植被碳储存能力作为造林活动的重要任务之一。造林活动(项目)启动时,应用造林项目碳计量流程和方法,对造林项目碳储存能力进行预测,筛选造林树种,制订造林实施方案,确保造林项目能发挥最大的潜能吸收碳、增加碳储存能力,进而提高森林植被的碳储量。
     2.应用系统动态学理论与方法,探析辽宁省森林资源结构,分析森林植被碳储量动态结构,应用系统动态学因果关系与循环关系框架流程图方法,构建森林资源林地动态流程图、森林资源林组资源动态流程图、森林资源木材生产经营动态流程图、森林植被碳储量动态流程图以及森林经营与森林植被碳储量综合动态流程图,建立森林植被碳储量动态仿真模型,
     3.应用Vensim软件创建森林资源动态流程图,建立起辽宁省森林植被碳储量动态仿真模型。在论文撰写过程中,设计多种经营方案对辽宁省森林植被碳储量进行模拟,选出3种具有代表性的方案情景,进行分析论证。
     (1)现时经营方案。按现在经营措施和管理手段,森林植被碳储量从2005年的1.22亿吨分别增加到2010年的1.28亿吨、2035年的1.5亿吨,提高4.92%、22.95%。
     (2)发展方案。加大森林经营力度,增加幼龄林、中龄林人工抚育强度,提高造林成活率,改善森林质量。森林植被碳储量从2005年的1.22亿吨分别提高到2010年的1.37亿吨、2035年的1.59亿吨,增加12.29%、30.33%。
     (3)战略方案。森林资源数量稳步增长,进一步调整和改善森林结构,加强森林抚育与管护水平。森林植被碳储量从2005年的1.22亿吨分别提高到2010年的1.44亿吨、2035年的1.71亿吨,增加18.03%、40.16%。
     研究认为,辽宁省可以采用“发展方案”制订森林植被碳储量中长期规划,经过努力到2035年能够实现森林植被碳储量达到1.59亿吨的目标。
     4.应用仿真模型模拟森林植被碳储量对不同情景碳密度的敏感程度。从森林植被碳储量对碳密度的敏感程度分析中发现,碳储量对碳密度具有较高的敏感性。因此在提高森林植被碳储量水平的工作中,关键是要高度重视如何提高各林分林组的碳密度。也就是说,即使碳密度水平提高较小,碳储量也会有较大的提高。
     5.应用辽宁省森林植被碳储量动态仿真模型,模拟出辽宁省14个市2010-2035年的森林植被碳储量,进行对比分析发现:抚顺市、丹东市和本溪市森林植被碳储量约占全省森林植被碳储量的50%,铁岭市和朝阳市约占20%,大连市、鞍山市和葫芦岛市等9个市约占30%。森林植被碳储量若按行政市域划分,分布不均、差距较大。
     6.如果用不同区域的森林资源数据资料初始化仿真模型相关变量,那么就可以把已建立的森林资源流程图和森林植被碳储量动态仿真模型应用到不同区域(县、市、省、国家)。模拟出在不同经营方案下的森林植被碳储量动态变化趋势,研究探讨挖掘森林植被碳储存潜力的方法,为科学制订森林植被碳储量的发展战略奠定理论基础。
The global climate change has seriously impacted the living environment and sustainable development of human-being society. Forest plays a very important role on addressing mitigation climate change. Forest ecological system is not only the largest carbon storage pool, but also plays a key function on global carbon circulation and a fundamental base on sustaining carbon balance in the world.
     On the base of domestic and overseas scholars' research status and new progresses on carbon storage of forest vegetation and System Dynamics, this study explores how to calculate carbon storage of forestation activities (projects) which directly influence on carbon storage of forest vegetation, that puts forward carbon accounting programs and methods, gives some reference numerical values of forest carbon density in different age groups for Liaoning province after analyzing three papers about research on carbon storage and density of forest vegetation by the use of forest resources inventory data in China. Based on the forest resource structures and characteristics, the flowchart is established by the use of reason-effect relationship and circulation relationship of System Dynamics, which reflects overall dynamic change of carbon storage of forest vegetation. Forest land dynamic flowchart, dynamic flowchart of forest resource volume and growth, dynamic flowchart of logging volume and dynamic flowchart of carbon stocks are set up on the base of forest resource structure. According to comprehensive dynamic flowchart of forest management, forest resource structure and carbon storage of forest vegetation, Dynamic Simulation Model of carbon storage of forest vegetation in Liaoning province is established by adopting modern dynamic simulation software-Vensim in the world. This thesis simulates and analyzes changeable trends of carbon storage of forest vegetation in Liaoning province and its 14 cities in the future by means of Dynamic Simulation Models. The conclusions are as follows:
     (1)At the beginning of the forestation, the increment of carbon storage of forest vegetation should be taken as a main target of forestation activities (projects). At the start of forestation activities, forest carbon accounting and surveying methods are used to appraise carbon storage ability of forestation project. In order to ensure absorption carbon potential of forestation project, increase carbon storage ability and improve forest carbon stocks, forestation tree species will be selected and implementation scheme should be set.
     (2)Theory and methods of System Dynamics are used to analyze forest resource structure and establish a forest resource dynamic simulation flowchart. The variables and auxiliary variables are used to describe forest structure and management status. The level variable and rate variable are used to reflect forest structure dynamic status. Under the different forestation plans and management measures, the model simulates many variable results of different forest resource structures and forest carbon stocks. These results are useful for policy makers to make high efficient forest resource management schemes.
     (3)Forest resource dynamic simulation flowchart is created, forest carbon stock simulation model established and some models listed by the use of Vensim software. Based on the analysis of forest resources and investigation, some management schemes are put forward. Three typical schemes are selected. The simulation results show:
     ①The carbon storage of vegetation would reach 128 million tons in 2010 and 150 million tons in 2035 from 122 million tons in 2005 under present management scheme, respectively increases 4.92%, 22.95%.
     ②The carbon storage of vegetation would reach 137 million tons in 2010 and 159 million tons in 2035 from 122 million tons in 2005 under development scheme, respectively increases 12.29%, 30.33%.
     ③The carbon storage of vegetation would reach 144 million tons in 2010 and 171 million tons in 2035 from 122 million tons in 2005 under strategic scheme, respectively increases 18.03%,40.6%.
     Liaoning province could realize 159 million tons of carbon storage of forest vegetation in 2035 if it adopt development scheme to make middle or long time plan by the hard work.
     (4)The model is used to simulate how degree carbon storage of forest vegetation is sensitive to carbon density. The results show that the carbon storage of forest vegetation is greatly sensitive to carbon density. In order to increase the carbon storage of forest vegetation in the future, Liaoning province should pay more attention to how improve the carbon density in different age groups. In other words, the carbon storage of forest vegetation greatly increases though the carbon density rises a little.
     (5)This model is used to simulate carbon storages of forest vegetation in Liaoning province and its 14 cities in 2010-2035. The simulation results express that the carbon storage of forest vegetation in Fushun, Dandong and Benxi city is approximate 50 percent of that of Liaoning province, the carbon storage of forest vegetation in Tieling, Chaoyang city is about 20 percent of that of Liaoning province, the carbon storage of forest vegetation in Dalian, Anshan, and Hulutao and other 6 cities is approximate 32.14 percent of that of Liaoning province; The allocation of forest carbon stocks is various in the different city. The difference among them is huge.
     (6)The dynamic simulation models of carbon storage of forest vegetation would be widely used in different regions (such as county, city, province and country) if the input data in the simulation model be replaced by their data. In order to establish a fundamental base for stimulating efficient management programs on carbon storage of forest vegetation, dynamic changeable situations of carbon storage of forest vegetation are simulated, researched and explored.
引文
[1]白顺江.雾灵山森林生物多样性及生态服务功能价值仿真研究[D].北京林业大学,2006
    [2]成洪山,王艳,李韶山,等.系统动力学软件Stella在生态学中的应用[J].华南师范大学学报,2007,(3):126-131
    [3]程堂仁.甘肃小陇山森林生物量及碳储量研究[D].北京林业大学,2007
    [4]陈成鲜,严广乐.我国水资源可持续发展系统动力学模型研究[J].上海理工大学学报,2000,22(2):154-159
    [5]丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析[J].地理学报,1999,54(5):431-437
    [6]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16:497-508
    [7]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638
    [8]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-975
    [9]方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报,2001,25:414-419
    [10]方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学.2007,37(6):804-812
    [11]冯宗炜,王效科,吴刚.中国森林生态系统的生物量[M].北京:科学出版社,1999
    [12]国家林业局应对气候变化和节能减排工作领导小组办公室编.中国绿色碳基金造林项目碳汇计量与监测指南[M].北京:中国林业出版社,2008
    [13]国家林业局应对气候变化办公室.碳汇林业[J].湖南林业,2009,(06):17
    [14]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2000
    [15]黄莉新.江苏水资源承载能力评价[J].水科学进展,2007,18(6):879-883
    [16]蒋延龄,周广‘胜.兴安落叶松林碳平衡及管理活动影响研究[J].植物生态学报,2002,26(3):317-322
    [17]康惠宁,马钦彦等.中国森林碳汇功能基本估计[J].应用生态学报,1996,7(3):230-234.
    [18]李怒云.中国林业碳汇[M].北京:中国林业出版社,2007
    [19]李文华,李飞,中国森林资源研究[M].北京:中国林业出版社,1996
    [20]李美岩,刘应宗.系统动力学在建设用地管理中的应用[J].北京理工大学学报,2009,11(3):65-69
    [21]刘一樵等.森林植物学[M].北京:中国林业出版社,1993
    [22]刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展[M].西北植物学报,2005,25(4):835-843
    [23]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(3):733-740
    [24]罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].中国科学院地理科学与资源研究所,1996
    [25]秦钟,章家恩,骆世明.系统动力学模拟软件在种群生态学中的应用[J].安徽农业科学,2008,36(26):461-463
    [26]史军,刘纪远,高志强,等.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67
    [27]沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317
    [28]沈文清.江西千烟洲人工针叶林生态系统碳收支研究[D].北京林业大学,2006
    [29]陶波,葛全胜,李可让,等.陆地生态系统碳循环研究进展[J].地理研究,2001,20:564-575
    [30]唐丽霞,谢宝元,张志强,等.湖南省森林资源动态变化趋势的系统动力学分析[J].林业资源管理,2008(6):42-46
    [31]史军.造林对中国陆地碳循环的影响研究[D].中国科学院地理科学与资源研究所,2005
    [32]王文权.辽宁森林资源[M].北京:中国林业出版社,2008
    [33]王洪斌,姚德民.系统动态学方法在森林工业发展战略研究中的应用[J].林业科学,1986,(3):115-118
    [34]Jay W.著,王洪斌译.系统原理[M].北京:清华大学出版社,1986
    [35]王效科,冯宗炜.森林生态系统生物量和碳储存量的研究历史[A].见:王如松,方精云,高林等.现代生态学的热点问题研究[C].北京:中国科学技术出版社,1996,335-347
    [36]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16
    [37]王绍强,陈育峰.陆地表层碳循环模型研究及其趋势[J].地理科学进展,1998,17(4):64-72.
    [38]王其藩.系统动力学-1986[A],全国系统动力学会议文集[C],1987
    [39]吴刚,冯宗炜.中国主要五针松群落学特征及其生物量的研究[J].生态学报,1995,15(3):260-267
    [40]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展.2007,26(6):1-10
    [41]熊光楞.控制系统数字仿真[M].北京:清华大学出版社,1988
    [42]杨洪晓.吴波等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177
    [43]杨京平.生态系统管理技术[M].北京:化学工业出版社,2004
    [44]杨晓梅.子午岭天然柴松林碳汇量与碳密度研究[D].中国科学院,2010
    [45]张小全,武曙红.中国CDM造林再造林项目指南[M].北京:中国林业出版社,2006
    [46]张国斌;岷江上游森林碳储量特征及动态分析[D].中国林业科学研究院,2008
    [47]支玲,文冰,王振,等.中国绿色碳基金发展现状及对策[J].世界林业研究,2009,22(1):57-62
    [48]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54
    [49]赵士洞,罗天祥.区域尺度生物生产力估测方法[J].资源科学,1998,20(1):24-34
    [50]周玉容,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522
    [51]Andrew Ford. Modeling the environment—An introduction to system Dynamics Models of environmental system. Island press,1999
    [52]A lexeyev V, Birdsey R, StakanovV. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution. Water, Air and Soil Pollution,1995,82:271-282
    [53]Bunn,Derek et al. Modelling latent market power across gas and electricity markets. System Dynamics Review 13,no.4 (winter):20-24
    [54]Brown S L, Scheder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management,1999,123:8-90
    [55]Brown S and Lugo A E. The storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica,1982,14:161-187
    [56]Brown S and Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes. Science,1984,223:1290-1293
    [57]Brown S, Gillespie A J R, Lugo A E. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science,1989,35:881-902
    [58]Brown S L, Sehroeder P E. Sparial patterns of aboveground production and mortality of woody biomass for eastern U. S. forests. Ecol Appl.1999.9:968-980
    [59]Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management,1999,123:81-90
    [60]Birdsey R A, Plantinga A J, Heath L S. Past and prospective carbon storage in United States forests. Forest Ecology and Management,1993,59:33-40
    [61]Ciais P, Tans P, Trolier M. A large Northern Hemisphere terrestrial carbon sink indicated by 13C/12C of atmospheric CO2. Science,1995,269:1098
    [62]Cao M, Woodward F I Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their response to climate change. Global Change Biology,1998,4:185-198
    [63]Clark,Colin. Bioeconomic modelling and fisheries management. New York:John Wiley,1985
    [64]Dixon R K, Brown S. et al. Carbon pools and flux of global forest ecosystems. Science,1994,262:185-190
    [65]Detwiler R P, Hall C S. Tropical forests and the global carbon cycle. Science, 1988,239:42-47
    [66]de Geus A P. Planning as learning. Harvard Business Review.2008(March/April): 70-74
    [67]Duncan, Angus. Northwest Power Planning Council. A proposal for a Columbia basin watershed planning council,1994, August
    [68]Eberlein, Robert, Simplification and understanding of models. System Dynamics Review 2005,5, no.1 (winter):51-68
    [69]Few, Arthur. Systems behaviour and system modeling. Sausalito, CA:University Science Books,1996
    [70]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292:2320-2322
    [71]Fan S, Gloor M, Pacala S, Sarmiento J, Takahashi T, Tans P. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science.1998,282:442-445
    [72]Graeme M, Hall J, Susank W, et al. Stragies to estimate national forest carbon stocks from inventory data:the 1990 New Zealand baseline. Global Change Biology, 2001,7:389-403
    [73]Gaboury, S.Boucher, J. F. Villeneuve. Estimating the net carbon balance of boreal open woodland afforestation:A case-study in Quebec's closed-crown boreal forest. Forest Ecology and Management,2009,257(3)
    [74]Groen,T Nabuurs, G J Schelhaas. Carbon accounting and cost estimation in forestry projects using CO2FIXV3. Climatic Change,2006,74(1)
    [75]Houghton R A. Land use change and the carbon cycle. Global Change Biology, 1995,1:275-287
    [76]Hannon, Bruce et al. Modeling dynamic biological systems, New York:Springer-Verlag.1997
    [77]Huggett, Richard. Modeling the human impact on nature. New York:Oxford University Press.1993
    [78]Hakkila P. Utilization of Residual Forest Biomass. Berlin: Springer Verlag,1989, 55
    [79]Heach C S, Birdsey R A. Carbon trends of Productive temperate forests of the contem- inous United States Water, Air, and Soil Pollution,1993,70:279-293
    [80]Heath L S, Kauppi P E, Burschel P, et al. Contribution of temperate forests to the world's carbon budget. Water, Air and Soil Pollution,1993,70:55-69
    [81]Holland E A, Browu S. et al. North American carbon sink. Science.1999,283:1815a.
    [82]Houghton R A, Haeckler J L. The US carbon budget contributions from land use change. Science.1999.285:574-578
    [83]IPCC. Land use, Land use Change, and Forestry, Special Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2000
    [84]IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto protocol.Science,1998,280:1393-1394
    [85]IPCC. Spacial report for the UN framwork convention on climate change on radiative forcing of climate change.1994,1-13
    [86]Isaev A, Korvin G, ZamoIodchikov D et al. Carbon stock and deposition in phytomass of the Russian forests. Water, Air, and Soil Pollution,1995,82:247-256
    [87]Joseph, Lawrence. The growth of an idea. New York:St. Martin Press,1990
    [88]Johnson W C, Sharpe D M. The ratio of total to merchantable forest biomass and its application to the global carbon budge. Canadian Journal of Forest Research,1983,13:372-383
    [89]Kirkwood, Craig. An overview of methods for applied decision analysis. Interfaces 22, no.6 1992 (November):28-39
    [90]Krankina O N, Harmon M E, Winjum J M. Carbon storage and sequestration in Russian forest sector. Ambio,1996,25(4):284-288
    [91]Kolchugina T P, Vinson T S Comparison of two methods to assess the carbon budget of forest biomass in the Former Soviet Union. Water, Air and Soil Pollution, 1993,70:207-221
    [92]Kramer P J. Carbon dioxide concentration, photo synthesis, and dry matter production. BioScience,1981,31:29-33
    [93]Kauppi P E, Mielikainen K, Kuusela K. Biomass and carbon budget of European Forests 1971 to 1990. Science,1992,256:70-74
    [94]Klchugina T P, Vinson T S. Role of Russian forests in the global carbon balance. Ambio,1995,24(5):258-264
    [95]Krost W M, Emanuel W R, Zinke P J et al. Soil pools and world life zone. Nature,1982,298:156-159
    [96]Keeling R F, Piper S C, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric CO2 concentration. Nature,1996,381:218-221
    [97]Krankina 0 N, Hannon M E, W injum J K. Carbon storage and sequestration in Russian forest sector. Ambio,1996,25(4):284-288
    [98]Kurz W A, Apps M J, Webb TM. The Carbon Budget of the Canadian Forest Sector. Phase I Nor-X-326. Forestry Canada Edmonton, Alberta,Canada 1992,40-51
    [99]Kolchugina T P and Vinson T S. Comparison of two methods to assess the carbon budget of forest biome in the Former Soviet Union. Water, Air and Soil Pollution, 1993,70:207-221
    [100]Law R M. Variations in modeled atmospheric transport of carbon dioxide and the consequences for C02 inversions. Global Biogeochem. Cycles,1996.10:783-796
    [101]Miller G. et al. Environmental science. Belmont, CA:Wadsworth Publishing.1997
    [102]Myneni R B. Keebnbg C D. Tucker C J. Asrar G. Nemaru R R. Increased plant growth in the northem high latitudes from 1981-1991. Nature.1997,386:698-702
    [103]Murillo J C R. Temporal variations in the carbon budget of forest ecosystems in Spain. Ecological Applications,1997,7(2):461-469
    [104]N. H. Ravindranath, Madelene Ostwald. Carbon Inventory Methods, Springer Science +Business Media,2008
    [105]Oscar Cacho, Robyn L. Hean, Russell M. Wise. Carbon accounting methods and reforestation incentives. Australian Journal of Agricultural and Resource Economics,2003,47:153-179
    [106]Olson J S, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystoms. Report ORNL-5862. Oak Ridge National Laboratory. Oak Ridge, Tenn. 1983,15-5
    [107]Pedro Moura Costa. Carbon accounting, trading and the temporary nature of carbon storage. The Nature Conservancy,2002
    [108]Potter C S. Terrestrial biomass and the effects of deforestation on the global carbon cycle. BioScience,1999,49(10):769-778
    [109]Sedjo R A. Temperate forest ecosystems in the global carbon cycle. Ambio, 1992,21:274-277
    [110]Sterman John. Forthcoming. Business Dynamics, New York:Irwin/McGraw-Hill 1998
    [111]Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biol.1995.1:77-91
    [112]Schmel D, Melillo J. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science.2000.287:2004-2006
    [113]Schimel D S, House J I. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature,2001,414:169-172
    [114]Schroeder P, Brown S. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci,1997.43:424-434
    [115]Siegenthaler U and Samliento J L. Atmospheric dioxide and the ocean. Nature, 1993,365:119-125
    [116]Tans P P, Fung I Y, Takahashi T. Observational constraints on the global almospheric CO2 budget. Science,1990,247:1431-1438
    [117]Turner D P, Kopper G J, Harmon M E, et al. A carbon budget for forests of the conteminous United States. Ecological Applications,1995,5:421-436
    [118]Tans P, Fung I P. Takahashi. Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438
    [119]Valentrim R, Matteuccl G, Dolman A J, Schulze E D, Rebmann C, Moors E J. Respiration as the main determinant of carbon balance in European forests. Nature.2000,404:861-865
    [120]Wofsy S C. Golden M L.Munger J M. Fan S M. Bakwin P S. Next exchange of CO2 in a mid latitude forest. Science.1993,260:1314-1317
    [121]WBGU. The Accounting of Biological Sinks and Sources under the Kyoto Protocol: A step Forward or Backwards for Global Environmental Protection. WBGU, Bremerhaven,1998
    [122]Whittaker R H, Likens G E. Methods of assessing terrestrial productivity. New York, USA:Springer-Verlag,1975,305-328
    [123]Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget. Science,1978,199:141-146
    [124]Waring R H, Schlesinger W H. Forest Eco-systems:Concepts and Management Inc. Orlando, FL, USA:Academic Press,1985,313-335
    [125]Wolstenholme, Eric. System enquiry:A system dynamics approach. New York:John Wiley,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700