质量敏感型有毒有害气体传感器及阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪,全球各国都将可持续发展作为所面临的首要问题而给予了高度关注,环境污染是其中最主要的困难之一。各国对各种有毒有害气体的探测,对大气污染、工业废气的监控以及对人居环境质量的检测都提出了更高的要求。因此,发展低成本可携带的有毒有害气体传感器及阵列,对于环境污染的源头进行监控具有重要的意义。在众多气体传感器中,质量敏感型气体传感器结构紧凑、工艺性好、成本低、适宜于批量生产等优点而被广泛应用于有毒有害气体的检测中。但质量敏感型元件本身对气体或蒸气不具有选择性,其作为化学传感器的选择性仅仅依赖于表面敏感膜的性质。因此本文以质量敏感型传感器元件为基础,合成新型气体敏感材料聚炔和超分子材料,以及基于聚炔的有机无机复合材料,制备有毒有害气体传感器单元,并测试其对可燃气体甲烷和有毒气体挥发性有机化学物质(VOC)的敏感特性,在此基础上建立质量敏感型气体传感器阵列,与现有传感器组成的阵列实现有毒有害气体的定性定量识别。其主要内容包括以下几个方面:
     1.通过对质量敏感型传感器的质量敏感效应、敏感薄膜与气体分子的吸附特性以及气体分子在敏感薄膜上吸附作用的线性溶剂化能关系等的研究,建立敏感机理的物理化学模型。用多物理场耦合模型实现了对声波气体传感器的仿真,利用仿真过程大大减少了原型机的实验量,缩短传感器开发周期,降低开发成本。
     2.用Stelle耦合反应合成含苯基的聚炔材料聚-2,5-二甲氧基乙炔苯(PDMEB),用Sonogashira耦合反应合成含稀有金属的苯基聚炔材料聚-(2三乙烷化磷-铂-二乙炔苯)(Pt-DEB),并采用旋涂方法在质量敏感型传感器元件上成膜,用以制备基于聚炔类敏感材料的传感器单元,测试该传感器单元对可燃气体甲烷和有毒气体VOC的气体敏感特性。实验结果发现室温下PDMEB对结构牢固的甲烷有较明显的气敏特性,表面形貌分析发现PDMEB的表面存在有孔洞,为甲烷气体分子提供了较多的吸附位及较好的吸附/脱附条件,红外光谱分析发现PDMEB还和甲烷存在一定的结合,从而使其对甲烷有气敏特性。室温下Pt-DEB对VOC的气敏响应明显优于PDMEB,包括较好的基频稳定性,很好的重复性,气敏响应的线性化等。Pt-DEB对VOC的探测极限可达1ppm。结合Pt-DEB的表面形貌分析其敏感机理主要源自于溶胀现象。
     3.用廉价的香草醛为原料,采用改进的二次三聚合的方法合成超分子材料穴番-A,用静电喷雾的成膜方法在质量敏感型传感器元件上制备成气体传感器单元,测试其对甲烷的气敏特性并研究温湿度对传感器的影响。实验发现基于穴番-A的声波型传感器对甲烷有较好的气敏特性,探测极限可达0.05% (v/v)。采用分子力学的方法初步分析穴番-A对甲烷敏感的原因主要来自于主体分子对客体分子的范德华引力。
     4.在合成PDMEB聚合物的基础上原位合成了PDMEB/SnO2和PDMEB/In2O3有机无机纳米复合敏感材料,旋涂在质量敏感型传感器元件上用以制备气体传感器。实验发现SnO2和In2O3纳米粒子的加入不仅改变了聚合物的形貌,改善了成膜特性,还增强了室温下聚合物PDMEB对甲烷的灵敏度。结合气体传感器的实时频率响应曲线,分析甲烷气体在敏感膜上的吸附和脱附动力学理论,推导甲烷气体在聚合物敏感膜PDMEB以及其有机无机敏感膜PDMEB/SnO2和PDMEB/In2O3上的吸附速度和脱附速度,加入SnO2和In2O3无机纳米粒子的传感器对1000ppm甲烷的吸附速率常数相等,均为0.0145,大于纯聚合物PDMEB对1000ppm甲烷的吸附速率常数(0.0138),它们两个的脱附常数也都高于纯PDMEB。无机材料的加入还改变了PDMEB对VOC气敏的选择性,PDMEB/SnO2对醇类有较好的气敏特性,而PDMEB/In2O3则对四氢呋喃有较好的气敏特性,它们对氯仿和丙酮都没有气敏特性。
     5.采用层层自组装的方法将碳纳米管有机无机复合材料成膜在质量敏感型传感器元件上制备传感器单元,测试气敏特性。并比较了不同溶剂分散对气敏的影响,实验结果发现气敏特性出现溶剂功能化效应,即用某种溶剂分散的碳纳米管对该溶剂的蒸汽呈现很好的气敏特性,这对改善传感器的选择性具有一定的意义。而在聚阳离子PDDA和聚阴离子PSS的静电作用下自组装成膜的碳纳米管则对氨蒸汽呈现很好的气敏特性,温度对该气敏响应的影响符合阿累尼乌斯方程的负温度依赖关系。
     6.建立质量敏感型声表面波气体传感器阵列,以及现有的半导体式和催化燃烧式气体传感器组成阵列,结合数据处理方法实现对可燃性气体甲烷和氢气以及常见有毒气体VOC的定性识别和定量分析。
Countries around the world pay great attention to the sustainable development in the twenty-first century. Environmental pollution is one of the most important difficulties. There is a critical need for toxic and harmful gas detection such as atmospheric pollution, industrial emissions monitoring and the detection of the quality of human settlements. Therefore, the development of low-cost portable gas sensor and array is of great significance. Among gas sensors, mass-sensitive gas sensors have been widely used in the detection of toxic and harmful gases because of their compact structure, good technology, low cost, suitable for mass production and so on. However, the selectivity of the mass-sensitive gas sensors depends on the type of the surface sensitive membrane. The dissertation focused on the mass-sensitive gas sensors. Especially, a great deal investigations have been done on the sensitive materials such as poly-enes, supramoleculars and organic inorganic composites. The mass-sensitive gas sensors deposited these sensitive materials are tested for the gas sensitivity to the flammable methane gas and toxic gas volatile organic chemicals (VOC). Furthermore, the application of surface aoustive gas sensor array to qualitalive and quantitative analysis of VOC was also described. The main research contents were as follows:
     1. Study on the working principle of mass-sensitive gas sensor. Establish the physical and chemical model of sensitive mechanism based on the mass-effect and the adsorption characteristics of gas on the senstive membrane. The linear solvation energy relationship (LSER) has been developed to describe and quantify these various interactions. Simulate the mass-sensitive gas sensor based on COMSOL multiphysics software. The simulation significantly reduces the amount of prototype experiments, sensor development cycle and development costs.
     2. Poly-2, 5-dimethoxyethynylbenzene (PDMEB) was synthesized according to stelle coupling reaction, while poly-(bistriethylphosphine)-platinum-diethynylbenzene (Pt-DEB) was synthesized by dehydrohalogenation reaction (Sonogashira coupling reaction). The polymer films were deposited onto the surface of acoustic devices by spin-coating method to fabricate gas sensors. Sensitive properties of them to methane and VOC have been studied. It was found that the PDMEB based acoustic sensor has good sensitivity to methane at room temperature. The surface morphology revealed that the existence of holes on the PDMEB surface provided adsorption sites for methane gas molecules. The infrared spectra confirmed there was a certain combination of PDMEB in methane gas. Pt-DEB based acoustic sensor has better sensitivity to VOC than PDMEB based acoustic sensor such as reversibility, reproducibility, and linear sensitivity at room temperature. The low detection limits about 1.0 ppm to trichloromethane was found. The sensing mechanism is due to the swelling phenomenon.
     3. Supramolecular cryptophane-A was synthesised from vanillyl alcohol using a double trimerisation method and deposited on acoustic device via electrospray method to fabricated gas sensor. The sensor was exposed to various concentrations of methane gas. The influence of humidity was also examined. The sensor’s response showed that it is sensitivity to methane gas. A fast response and recovery was observed at room temperature. Detection limit for methane is 0.05% (v/v). The mechanism of CH4 interactions with cryptophane-A arises from size complementarity and efficient van der Waals interactions.
     4. Inorganic nanoparticles SnO2 and In2O3 were dispersed in PDMEB using an in-situ synthesis technique to prepare organic-inorganic nanocomposites PDMEB/SnO2 and PDMEB/In2O3. The nanocomposites were spun-coated on acoustic devices to fabricate gas sensors. It was found that SnO2 and In2O3 nanoparticles not only changed the morphology of PDMEB and improved the film properties, but also enhanced the sensitivity to methane at room temperature. The adsorption and desorption curves were carefully analysed using kinetic theory for the resonse of methane gas on PDMEB and PDMEB/SnO2 and PDMEB/In2O3 nanocomposites coatings. The adsorption constants of PDMEB/SnO2 and PDMEB/In2O3 nanocomposites to 1000 ppm methane are equal. The value is 0.0145, which is more than the value of pure PDMEB (0.0138). The desorption constants of PDMEB/SnO2 and PDMEB/In2O3 nanocomposites are also more than of pure PDMEB. The inorganic nanoparticles changed the selectivity of the polymer to different VOC. PDMEB/In2O3 showed good sensitivity to THF, but PDMEB and PDMEB/SnO2 had good sensitivity to alcohol (methane, ethane and isopropyl alcohol). All of them had no sensitivity to acetone and chloroform.
     5. Carbon nanotubes (CNTs) based organic-inorganic composite was deposited on acoustic devices through layer-by-layer self-assembly method to fabricate gas sensors. Dispersed in different solvents, the CNTs showed different response. They showed better gas-sensing properties to the VOCs whose polarity is similar to the polarity of the solvent, which was mentioned as solvent-functionalized CNTs. This has a certain significance to improve the selectivity of CNTs based sensors. The layer-by-layer assembly carbon nanotube thin film used PDDA and PSS as polycation and polyanionic, respectively. It had has good sensing properties to ammonia at room temperature. The senosr response was decreased when the temperature increased, which is in accordance with Arrhenius equation.
     6. Establish surface acoustic wave (SAW) based gas sensor array and commercial semiconductor-type and catalytic sensor array. The SAW array is used to discriminate and quantify VOC with data processing methods. The commercial sensor array is used to qualitative and quantitative analysis among combustible gas methane and hydrogen.
引文
[1]左伯莉,刘国宏.化学传感器原理及应用.北京:清华大学出版社,2007,1-9
    [2]林雷.可燃气体和有毒气体检测器的选用.企业标准化,2007, 1:30-31
    [3] E. A. Solomon, M. Kastner, I. R. MacDonald, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geoscience, 2009, 2:561-565
    [4]张少梅,沈晋明.室内挥发性有机化合物(VOC)污染的研究.洁净与空调技术,2003,3:1-4
    [5]李冬梅,黄元庆,张佳平,等.几种常见气体传感器的研究进展.传感器世界,2006,01:6-11
    [6]赵宇龙,孙智.氧化物半导体甲烷传感器研究进展.煤炭科学技术,2005,33(7):69-76
    [7] S. Bose, S. Chakraborty, B. K. Ghosh, et al. Maiti Methane sensitivity of Fe-doped SnO2 thick films. Sensors and Actuators B: Chemical, 2005, 105(2): 346-350
    [8] D. Gruber, F. Kraus, J. Müller. A novel gas sensor design based on CH4/H2/H2O plasma etched ZnO thin films. Sensors and Actuators B: Chemical, 2003, 92(1-2):81-89
    [9] S. Barazzouk, R. P. Tandon, S. Hotchandani. MoO3-based sensor for NO, NO2 and CH4 detection. Sensors and Actuators B: Chemical, 2006, 119(2): 691-694
    [10] K. Zakrzewska. Mixed oxides as gas sensors. Thin Solid Films, 2001, 391(2): 229-238
    [11] S. Chakraborty, I. Mandal, I. Ray, et al. Improvement of recovery time of nanostructured tin dioxide-based thick film gas sensors through surface modification. Sensors and Actuators B: Chemical, 2007, 127(2): 554-558
    [12] D. Q. Li, X. W. Huang, S. L. Bai, et al. CH4 sensor of Sn, In, and Ti nanosized oxides. IEEE Sensors Journal, 2007, 7(2):293-294
    [13] X. Q. Lv, Z. Y. Zhang, D. Y. Kong. A Catalytic sensor using MEMS process for methane detection in mines. Proceedings of the 2007 International Conference on Information Acquisition, 2007: 4-9
    [14] L. N. van Rij, R. C. van Landschoot, J. Schoonman. Detection of methane in oxygen-poor atmospheres using a catalytic asymmetric sensor design. Sensors and Actuators B: Chemical, 2001,75(1-2):111-120
    [15]崔康.新型电化学传感器的研究: [硕士论文].江西师范大学.2009
    [16] V. V. Plashnitsa, P. Elumalai, Y. Fujio, et al. Zirconia-based electrochemical gas sensors using nano-structured sensing materials aiming at detection of automotive exhausts Electrochimica Acta, 2009, 54(25): 6099-6106
    [17] J. W. Fergus. Materials for high temperature electrochemical NOx gas sensors. Sensors and Actuators B: Chemical, 2007, 121(2):652-663
    [18]李瑛,杨集,冯士维.光纤气体传感器研究进展.传感器世界,2005,1:6-10
    [19] J. P. Silveira, J. Anguita, F. Briones, et al. Micromachined methane sensor based on low resolution spectral modulation of IR absorption radiation. Sensors and Actuators B: Chemical, 1998, 48(1-3):305-307
    [20] R. Rubio, J. Santander, J. Fonollosa. Exploration of the metrological performance of a gas detectorbased on an array of unspecific infrared filters. Sensors and Actuators B: Chemical, 2006, 116:183-191
    [21] R. Claps, F. V. Englich, D. P. Leleux. Ammonia detection by use of near infrareddiode laser based overtone spectroscopy. Applied Optics, 2001, 40(24): 4387-4394
    [22] K. L. McNesby, R. T. Wainner, R. G. Daniel. High-sensitivity laser absorption measurements of broadband absorbers in the near-infrared spectral region. Applied Optics, 2000, 39(27): 5006-5011
    [23]张云,景士廉.便携式气相色谱仪工作原理及特点.北京东西分析仪器有限公司
    [24]张磷,郁建桥,周卫华.快速博立叶变换红外光谱仪和气相色谱/表面声波分析技术在应急监测中的应用.分析仪器,2008(3):20-23
    [25] A. K. Wanekaya, M. Uematsu, M. Breimer. Multicomponent analysis of alcohol vapors using integrated gas chromatography with sensor arrays. Sensors and Actuators, B: Chemical, 2005, 110 (1):41-48
    [26]殷铭俊,陈执中.新型气相色谱—表面声波传感器联用技术及其应用进展.化学传感器,2005,25(2)
    [27]李顺洲,朱佐刚,刘久玲.气相色谱仪联用的声表面波传感器.仪表技术与传感器,2009增刊:121-126
    [28] M. J. Vellekoop. Acoustic wave sensors and their technology. Ultrasonics, 1998, 36 (1-5): 7-14
    [29]姚守拙.化学与生物传感器.化学工业出版社,2006:1-89
    [30] S. Huankiat, T. Harry L. F. Holger. Defect properties of langasite and effects on BAW gas sensor performance at high temperatures. Journal of the European Ceramic Society, 2004, 24 (6): 1425-1429
    [31] H. Cheng, L. Qin, Q. Wang. High temperature langasite BAW gas sensor based on ZnO nano wire arrays. Proceedings - IEEE Ultrasonics Symposium, 2007: 1361-1364
    [32] G. Wingqvist, V. Yantchev, I. Katardjiev. Mass sensitivity of multilayer thin film resonant BAW sensors. Sensors and Actuators, A: Physical, 2008, 148 (1): 88-95
    [33] S. Sivaramakrishnan, R. Rajamani, C. S. Smith, et al. Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing. Sensors and Actuators B: Chemical, 2008, 132(1): 296-304
    [34] L. Al-Mashat, H. D. Tran, W. Wlodarski, et al. Polypyrrole nanofiber surface acoustic wave gas sensors. Sensors and Actuators B: Chemical, 2008, 134 (2):826-831
    [35] H. Yatsuda, M. Nara, T. Kogai, et al. STW gas sensors using plasma-polymerized allylamine. Thin Solid Films, 2007, 515 (9): 4105-4110
    [36] E. I. Radeva, I. D. Avramov. High-resolution humidity measurements with surface transverse wave based resonant devices. Applications to wireless remote sensing. Materials Science and Engineering: C, 2000, 12,(1-2): 71-76
    [37] C. Déjous, M. Savart, D. Rebière, et al. A shear-horizontal acoustic plate mode (SH-APM) sensor for biological media. Sensors and Actuators B: Chemical, 1995, 27(1-3): 452-456
    [38] http://www.bfc.com.cn/2005/k/2/1/1.htm
    [39]蒋亚东,谢光忠.敏感材料与传感器.成都:电子科技大学出版社,2008,181-207
    [40] K. Bodenhoefer, A. Hierlemann, G. Noetzel, et al. Comparison of mass-sensitive devices for gas sensing: bulk acoustic wave (BAW) and surface acoustic wave (SAW) transducers. International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Proceedings, 1995, 2:728-731
    [41] J. Bardong, M. Schulz, M. Schmitt, et al. Precise measurements of BAW and SAW properties of langasite in the temperature range from 25℃to 100℃. 2008 IEEE International Frequency Control Symposium, 2008FCS: 326-331
    [42] D. S. Ballantine Jr, S. L. Rose, J. W. Grate, et al. Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition. Analytical Chemistry, 1986, 58 (14):3058-3066
    [43] www.alpha-mos.com
    [44] R. A. McGill, V. K. Nguyen, R. Chung, et al. The“NRL-SAWRHINO”: a nose for toxic gases. Sensors and Actuators B: Chemical, 2000, 65:10-13
    [45] H. B. Lin, J. S. Shih. Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors. Sensors and Actuators B: Chemical, 2003, 92: 243-254
    [46] A. Z. Sadek, W. Wlodarski, K. Shin, et al. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology, 2006, 17: 4488-4492
    [47]骆国芳,吕晖,曹丙庆.声表面波气体传感器化学敏感膜研究进展.分析仪器,2007,3:1-5
    [48] P. Si, J. Mortensen, A. Komolov, et al. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Analytica Chimica Acta, 2007, 597:223-230
    [49] M. Penza, G. Cassano, A. Sergi, et al. SAW chemical sensing using poly-ynes and organometallic polymer films. Sensors and Actuators B: Chemical, 2001, 81:88–98
    [50] A. ?zmen, F. Tekce, M. A. Ebeo?lu, et al. Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sensors and Actuators B: Chemical, 2006, 115:450-454
    [51] I. A. Koshets, Z. I. Kazantseva, Y. M. Shirshov, et al. Calixarene films as sensitive coatings for QCM-based gas sensors. Sensors and Actuators B: Chemical, 2005, 106:177-181
    [52] K. Beck, T. Kunzelmann, M. von Schickfus, et al. Contactless surface acoustic wave gas sensor. Sensors and Actuators B: Chemical, 1999, 76:103-106
    [53] V. I. Anisimkim, M. Penza, A. Valentini, et al. Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line. Sensors and Actuators B: Chemical, 1995, 23:197-201
    [54] L. Geng, X. Huang, Y. Zhao, et al. H2S sensitivity study of polypyrrole/WO3 materials. Solid State Electronics, 2006, 50:723-726
    [55] J. Tamaki. High sensitivity semiconductor gas sensors using novel sensing materials and nano-design of electrode structure. Chem. Sens., 2006, 22:118-120
    [56] R. Ionescu, A. Hoel, C. G. Granqvist. Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors. Sensors and Actuators B: Chemical, 2005, 104: 132-139
    [57] G. Xie, J. Yu, X. Chen, et al. Gas sensing characteristics of WO3 vacuum deposited thin films. Sensors and Actuators B: Chemical, 2007, 123:909-914
    [58] J. Yoo, S. Chatterjee, E. D. Wachsman, et al. Sensing properties and selectivities of a WO3/YSZ/Pt potentiometric NOx sensor. Sensors and Actuators B: Chemical, 2007, 12:644-652
    [59] N. Dewan, S. P. Singh, K. Sreenivas, et al. Influence of temperature stability on the sensing properties of SAW NOx sensor. Sensors and Actuators B: Chemical, 2007, 124:329-335
    [60] Y. J. Lee, H. B. Kim, Y. R. Roh, et al. Development of a SAW gas sensor for monitoring SO2 gas. Sensors and Actuators B: Chemical, 1998, 64:173-178
    [61] J. W. Grate. Acoustic wave microsensor arrays for vapor sensing. Chemical Reviews, 2000, 100 (7): 2627-2648
    [62] M. Penza, G. Cassano. Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methano-propanol in a binary mixture by SAW multi-sensor array. Sensors and Actuators B: Chemical, 2003, 89: 269-284
    [63] F. Bender, N. Barié, G. Romoudis, et al. Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring. Sensors and Actuators B: Chemical, 2003, 93: 135-141
    [64] J. P. Santos, M. J. Fernández, J. L. Fontecha, et al. SAW sensor array for wine discrimination. Sensors and Actuators B: Chemical, 2005, 107:291-295
    [65] S. T. Chan, M. W. Y. Yao, Y. C. Wong, et al. Evaluation of chemical indicators for monitoring freshness of food and determination of volatile amines in fish by headspace solid-phase microextraction and gas chromatography-mass spectrometry. European Food Research and Technology, 2006, 224(1):67-74
    [66]许聪.水热法制备纳米SnO2及厚膜气敏元件初探:[硕士论文].华中科技大学.2006
    [67]赵声衡.石英晶体振荡器.湖南:湖南大学出版社.1997:37-102
    [68]冯冠平.谐振传感理论及器件.北京:清华大学出版社.2008:144-174
    [69] G. Sauerbrey. Use of crystal oscillators for weighing thin films and for microweighing. Z Phys, 1959, 155, 206-222
    [70] R. D. S. Yadava, R. Chaudhary. Solvation, transduction and independent component analysis for pattern recognition in SAW electronic nose. Sensors and Actuators B, 2006,113:1-21
    [71] Z. Ali. Acoustic wave mass sensors. Journal of Thermal Analysis and Calorimetry, 1999, 55:397-412
    [72] R. M. White, F. W. Voltmer. Direct piezoelectric coupling to surface elastic waves. Applied Physics Letters, 1965, 7:314-316
    [73] H. Wohltjen, R. Dessy. Surface acoustic wave probes for chemical analysis. III. Thermomechanical polymer analyzer. Analytical Chemistry, 1979, 51(9):1470-1475
    [74] F. Josse, R. Dahint, J. Schumacher, et al. On the mass sensitivity of acoustic-plate-mode sensors. Sensors and Actuators A, 1996,53:243-248
    [75] S. W. Wenzel, R. M. White. A multisensor employing an ultrasonic Lamb-wave oscillator. IEEE Transactions on Electron Devices, 1988, 35:735-743
    [76] H. Yatsuda, M. Nara, T. Kogai, et al. STW gas sensors using plasma-polymerized allylamine. Thin Solid Films, 2007, 515:4105-4110
    [77] C. Zimmermann, D. Rebiere, C. Dejous. A love-wave gas sensor coated with functionalized polysiloxane for sensing organophosphorus compounds. Sensors and Actuators B, 2001,76:86-94
    [78] P. Mazein, C. Zimmermann, D. Rebière, et al. Dynamic analysis of Love waves sensors responses: application to organophosphorus compounds in dry and wet air. Sensors and Actuators B, 2003, 95:51-57
    [79] J. A. Thiele and M. Pereira da Cunha. High temperature LGS SAW devices with Pt/WO3 and Pd sensing films. 2003 IEEE Ultrasonics Symposium:1750-1753
    [80] K. Yamanaka, S. Ishikawa, N. Nakaso. Ball SAW device for hydrogen gas sensor. 2003 IEEE Ultrasonics Symposium:299-302
    [81] K. Yamanaka, T. Abe, N. Iwata. Ball surface acoustic wave hydrogen sensor with widest sensing range and fastresponse.2007 IEEE:2549-2552
    [82] H. M. Lee, D. Y. Han, H. Ahn. Design and fabrication of SAW gas sensor with resonator structure. IEEE 1997:1057-1060
    [83] B. A. Auld. Acoustic fields and wWaves in solids of SAW gas sensor with resonator structure, New York: 1973, 2(12):63-104
    [84] H. Wohltjen. Mechanism of operation and design considerations for surface acoustic wave device vapour sensor. Sensors and Actuators, 1984, 5(4): 307-325
    [85] A. J. Ricco, S. J. Martin, T. E. Zipperian. Surface acoustic wave gas sensor based on film conductivity changes. Sensors and Actuators, 1985, 8(4): 319-333
    [86] A. J. Ricco, S. J. Martin. Thin metal film characterization and chemical sensors: monitoring electronic conductivity, mass loading and mechanical properties with surface acoustic wave devices. Thin Solid Films, 1991, 206(1-2):94-101
    [87] S. J. Martin, G. C. Frye. Surface acoustic wave response to changes in viscoelastic film properties. Applied physics letters, 1990, 57:1867-1869
    [88] J. W. Grate, M. Klusty, R. A. McGill, et al. The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors. Analytical Chemistry, 1992, 64 (6):610-624
    [89] V.I.Anisimkin, I.M.Kotelyanskii, P.Verardi, et al. Elastic properties of thin-film palladium for SAW sensors. Sensors and Actuators. 1995, B23:203-208
    [90]徐秀明,王俊德,李海洋.QCM和SAW传感器的原理及其在现场检测中的应用.化学进展,2005,17(5):876-880
    [91] R.S.Falconer, R.Lec, J.F.Vetelino and Z. Xu. Optimization of a SAW Metal Oxide Semiconductor Gas Sensor. 1989 IEEE Ultrasonics Symposium:585-590
    [92]近藤精一,石川达雄,安部郁夫著,李国希译.吸附科学.北京:化学工业出版社,2005
    [93]闫峰,魏东炜.声表面波化学传感器聚合物涂膜材料特性及选择.化学通报,2006,69:1-6
    [94] C. R. Mitchell, D. W. Armstrong, A. Berthod. Could linear solvation energy relationships give insights into chiral recognition mechanisms: 2. Characterization of macrocyclic glycopeptide stationary phases. Journal of Chromatography A, 2007, 1166:70-78
    [95] M. Vitha, P. W. Carr. The chemical interpretation and practice of linear solvation energy relationships in chromatography. Journal of Chromatography A, 2006, 1126(1): 143-194
    [96] M. H.Abraham, G. S. Whiting, R. M. Doherty, et al. Hydrogen bonding. Part 13. A new method for the characterisation of GLC stationary phases-the laffort data set. Journal of the Chemical Society-Perkin Transactions 2, 1990, 1451-1460
    [97] J. W. Grate, B. M. Wise, M. H. Abraham. Method for unknown vapor characterization and classification using a multivariate sorption detector. Initial derivation and modeling based on polymer-coated acoustic wave sensor arrays and linear solvation energy relationships. Analytical Chemistry, 1999, 71:4544-4553
    [98] J. W. Grate, M. H. Abraham, C. M. Du, et al. Examination of vapor sorption by fullerene, fullerene-coated surface acoustic wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships. Langmuir, 1995, 11 (6):2125-2130
    [99] A. Hierlemann, E. T. Zellers, A. J. Ricco. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. Analytical Chemistry, 2001, 73:3458-3466
    [100] M. H. Abraham. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chemical Society Reviews, 1993, 22:73-83
    [101] M. H. Abraham, J. Andonian-Haftvan, G. S. Whiting, et al. Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. Journal of the Chemical Society-Perkin Transactions 1994, 2:1777-1791
    [102] R. A. McGill, M. H. Abraham, J. W .Grate. Choosing polymer coatings for chemical sensors. Chemtech, 1994, 24 (9):27-37
    [103]董辉平.声表面波传感器模拟与仿真:[硕士学位论文],中北大学,2008
    [104]章安良.声表面波器件PSPICE仿真研究.压电与声光,2007,29(4):373-375
    [105] G Kovacs. A Generalised P-matrix Model for SAW Filters. IEEE Ultrasonics Symposium, 2003, 707
    [106]吴佚卓,陈希明,吴小国,等.高频声表面波传感器的仿真.天津理工大学学报,2008,24(4):17-19
    [107]董辉平,鲁旭涛.基于ANSYS的声表面波器件仿真研究.机械工程与自动化,2008,5:63-64
    [108] M. Z. Atashbar, B. J. Bazuin, M. Simpeh, et al. 3D FE simulation of H2 SAW gas sensor. Sensors and Actuators B, 2005, 111-112:213-218
    [109]张玉宝,李强主.基于COMSOL Multiphysics的MEMS建模及应用.北京:冶金工业出版社,2007
    [110] A. Abdollahi, Z. Jiang, S. A. Arabshahi. Evaluation on mass sensitivity of SAW sensores for different piezoelectric materials using finite element analysis. IEEE, 2007, 54(12): 2446-55
    [111]应智花.甲基膦酸二甲酯质量敏感型气体传感器的制备及特性研究:[博士学位论文],成都:电子科技大学,2008
    [112] M. Lee, F. C. Chang, S. Wu et al. The characterization of surface acoustic wave modes on rotated Y-cut quartz (ST-X quartz) with different AlN film thickness. Jpn. J. Appl. Phys. 2001, 40:4590-4592
    [113] C. K. Ho, E. R. Lindgren, K. S. Rawlinson, et al. Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds. Sensors, 2003, 3:236-247
    [114] V. A. Sergeyev, L. I. Vdovina. Synthesis of organometallic polymers, review. Polymer Science USSR, 1984, 26(10):2255-2277
    [115] N. Hagihara, K. Sonogashira, S. Takahashi. Linear polymers containing transition metals in the main chain. Speciality Polymers, 1981, 41: 149-179
    [116] K. Sonogashira, Y.Tohda, N. Hagihara. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters. 1975, 4467-4470
    [117] V. Farina, V. Krishnamurthy, W.J. Scott. The Stelle Reaction. Whiley: New York, 1998
    [118] G. Giardina, P. Rosi, A. Ricci, et al. An efficient one-pot access to poly(arylene ethynylene) homopolymers: use of the Bu3Sn-Moiety as a recyclable carrier to introduce the ethnyl unit into the chain. Journal of Polymer Science: Polymer Chemistry, 2000, l38:2603-2621
    [119] K. Sonogashira. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. Journal of Organometallic Chemistry, 2002, 653:46-49
    [120] U. Stahl a, M. Rappa, T. Wessa. Adhesives: a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications. Analytica Chimica Acta 2001, 450: 27-36
    [121] J.W. Grate, M. Klusty. Surface acoustic wave vapor sensors based on resonator devices. Analytical Chemistry 1991, 63: 1719-1727
    [122] T.Nomura, A.Saitoh, S.Furukawa. Surface acoustic wave gas phase sensor using self-assembled monolayer film. 1998 IEEE Ultrasonics Symposium: 525-528
    [123] J. Zhanga, J.Q. Hua, F.R. Zhu, et al. ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sensors and Actuators B, 2002, 87: 159-167
    [124] J. H. Cheung, A. F. Fou, M. F. Rubner. Molecular self-assembly of conducting polymers. Thin Solid Films, 1994, 244: 985-989
    [125] W. C. Bigelow, D. L. Allara, W. A. Zisman. Oleophobic monolayers films adsorbed from solution in nonpolar liquids. Journal of Colloid and Interface Science, 1946, 1: 513-538
    [126] http://www.knowitall.com/handbook/ir/default_ir.html.
    [127]石文芳,谈谈规定石英谐振器工作温度范围和频率范围依据.航天标准化,2000,3
    [128] E. T. Zellers, M. Han. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays. Analytical Chemistry, 1996, 68: 2409-2418
    [129] M. Penza et al. Carbon nanotubes as SAW chemical sensors materials. Sensors and Actuators B, 2004, 100: 47-59
    [130] L. Xu, X. Hu, Y. T. Lim, et al. Organic vapor adsorption behavior of poly (3-butoxythiophene) LB films on quartz crystal microbalance. Thin Solid Films, 2002, 417: 90-94.
    [131] B. J. Hwang, J. Y. Yang, C. W. Lin. A microscopic gas-sensing modle for ethanol sensors based on conductive polymer composites from polypyrrole and poly (ethylene oxide). Journal of the Electrochemical Society, 1999, 146(3): 1231-1236
    [132]陈晓伟,张秋禹,任华,等.化学传感器法检测硝基化合物.化学通报,2006,69:1-9
    [133]骆广生,夏芳.高分子膜的浸润性能及溶胀.膜科学与技术,1998,18(5):38-41
    [134] Jean-Marie Lehn著,沈兴海等译.超分子化学-概念和发展.北京:北京大学出版社. 2002
    [135] J. A. Atwood, J. W. Steed. Encyclopedia of supramolecular chemistry. Marcel Dekker: New York, NY. CRC Press 2004,2:340-347
    [136] J. Gabard, A. Collet. Synthesis of D3-bis (cyclotriveratrylenyl) macrocage by stereospecific replication of a C3-subunit. Journal of the Chemical social: Chem. Commun. 1981, 2:1137-1139
    [137] J. Canceill, A Collet. Two-step synthesis of D3 and C3h cryptophanes. Journal of the Chemical social: Chem. Commun. 1988, 9:582-584
    [138] D. J. Cram, M. E. Tanner, S. J. Keripen, C. B Knobler. Two chiral [1.1.1] orthocyclophane units bridged by three biacetylene units as a host which binds medium-sized organic guests. Journal of the American Chemical Society, 1991, 113:8909-8916
    [139] B. Thierry, R. Vincent, D. Jean-Pierre. Improved synthesis of functional CTVs and cryptophanes using Sc(OTf)3 as catalyst. The Journal of Organic Chemistry, 2005, 70(16):6187-6195
    [140] A. Collet. Cyclotriveratrylences and cryprophane. Tetrahedron, 1987,43 (24):5725-5759
    [141] L. Garel, J. P. Dutasta, A. Collet. Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution. Angewandte Chemie International Edition in English, 1993, 32 (8):1169-1171
    [142] H. A. Fogarty, P. Berthault, T. Brotin, et al. A cryptophane core optimized for xenon encapsulation. Journal of the American Chemical Society, 2007, 129 (34):10332-10333
    [143] E. Souteyrand, D. Nicolas, J. R. Martin, et al. Behaviour of cryptophane molecules in gas media. Sensors and Actuators B, 1996, 33(1-3):182-187
    [144]吴锁柱,张彦,施和平,等.模式滤光测定甲烷的光纤传感器研究.第二届全国生命分析化学学术报告和研讨会,2008:167
    [145]沈维力,吴锁柱,张彩红,等.穴番(A,E)对甲烷及其卤代衍生物的分子识别研究.山西大学学报(自然科学版),2008,31(2):297-298
    [146] M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, et al. Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules. Sensors and Actuators B, 2005, 107 (1):32-39
    [147] A.Jaworek. Electrospray droplet sources for thin film deposition. Journal of Materials Science, 2007, 42:266-297
    [148] C. C. Tsai, H. S. Teng. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater, 2004,16: 4352
    [149]太慧玲.导电聚合物纳米复合薄膜的制备及其氨敏特性研究:[博士学位论文],成都:电子科技大学,2008
    [150] S. Iijima. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354:56-58
    [151] J. Kong, N. R. Franklin, C. Zhou, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287:622-625,
    [152] O. K. Varghese, P. D. Kichambre, D. Gong,et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 2001, 81:32-41
    [153] R. K. Roy, M. P. Chowdhury, A. K. Pal, Room temperature sensor based on carbon nanotubes and nanofibres for methane detection. Vacuum, 2005, 77:223-229
    [154] D. Li, Y. Xia. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters, 2004, 4:933-938
    [155] S. Bose, S. Chakraborty, B. K. Ghosh, et al. Methane sensitivity of Fe-doped SnO2 thick films. Sensors and Actuators B, 2005, 105:346-350
    [156] Z. A. Ansari, S. G. Ansari, J. Ko, et al. Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing. Sensors and Actuators B, 2002, 87:105-108
    [157] W. Schmid, N. Barsan, U. Weimar. Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurements. Sensors and Actuators B, 2003, 89:232-236
    [158] G. Korotcenkov, V Brinzari, A Cerneavschi, et al. In2O3 films deposited by spray pyrolysis: gas response to reducing (CO, H2) gases. Sensors and Actuators B, 2004, 98:122-129
    [159] M. Ivanovskaya, A. Gurlo and P. Bogdanov. Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors. Sensors and Actuators B, 2001, 77:264-267
    [160] E. Comini, G. Faglia, G. Sberveglieri, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appllied Physics Letters, 2002, 81:1869-1871
    [161] H. Tai, Y. Jiang, G. Xie, et al. Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin films. Sensors and Actuators B, 2007, 125:644-650
    [162] H. Tai, Y. Jiang, G. Xie, et al. Self-assembly of TiO2/polypyrroIe nanocomposite ultrathin films and application for NH3 gas sensor. International Journal of environment analysis chemistry, 2007, 87(8):539-551
    [163] A. Z. Sadek, W. Wlodarski, K, Kalantar-zadeh, et al. A room temperature polyaniline/In2O3, nanofiber composite based layered ZnO/64°YX LiNbO3 SAW hydrogen gas sensor. IEEE Sensors, 2006:687-690
    [164] A. Z. Sadek, A, Trinchi, W. Wlodarski, et al. A room temperature polyaniline nanofiber based hydrogen gas sensor. 2005 IEEE:207-210
    [165] A. Z. Sadek, W. Wlodarski, K, Shin, et al. A room temperature polyaniline/SnO2 nanofiber composite based layered ZnO/64°YX LiNbO3 SAW hydrogen gas sensor. 2006 IEEE Commad:208-211
    [166] J. H. Cheung, A. F. Fou, M. F. Rubner. Molecular self-assembly of conducting polymers. Thin Solid Films, 1994, 244:985-989
    [167] A. A. Mamedov, N. A. Kotov, M. Prato et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials. 2002, 1:190-194
    [168] G. Decher. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 1997, 277:1232-1237
    [169] D. Li, W. Ding, X. Wang, et al. A simple approach to enhance the deposition of polyaniline films with self-assembled polyelectrolyte layers. Journal of Materials Science Letters, 2001, 20:1925-1928
    [170] V. C. Moore, M. S. Strano, E. H. Haroz, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters, 2003, 3:1379-1382
    [171] Y. Lvov, K. Ariga, M. Onda, et al. Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir, 1997, 13:6195-6203
    [172] J. Li, Y. Lu, Q. Ye, M. Cinke, et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 2003, 37: 929-933
    [173]徐龙君,顾乐观.分形吸附模型.煤炭转化,2000,23(1):91-93
    [174] H.Freundlich. Colloid and Capillary Chemistry. Methuen, London, 1926
    [175] I. Langmuir.The arrangement of electrons in atoms and molecules. Journal of the American Chemical Society, 1919, 41:868-934
    [176] S. Brunauer,P. H. Emmett,E. Teller. Adsorption of gases in mMultimolecular layers. Journal of the American Chemical Society, 1938, 60:309-319
    [177]吴辉煌.表面化学.厦门:厦门大学出版社,1991.238-241
    [178] G. Fischerauer, F. L. Dickert. An analytic model of the dynamic response of mass-sensitive chemical sensors. Sensors and Actuators B, 2007, 123: 993-1001
    [179]姜兆华,孙德智,邵光杰.应用表面化学与技术.哈尔滨:哈尔滨工业大学出版社,2002. 45-81
    [180] H. Hu, M. Trejo, M. E. Nicho, et al. Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sensors and Actuators B, 2002, 82: 14-23
    [181]于梅芳,王士卿.气体传感器阵列.传感器技术,1995,2:6-16
    [182]徐祿.化学计量学一些重要方法的原理及应用.北京:科学出版社,2004
    [183]张覃轶.电子鼻:传感器阵列系统及应用研究:[博士学位论文],武汉:华中科技大学,2005
    [184] K. Arshak, E. Moore, G. M. Lyons. Research article A review of gas sensors employed in electronic nose applications. Sensor review, 2004, 24: 181-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700