竹炭/氧化锌复合材料的制备与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹炭是竹材的热解产物,具有孔隙率较高、比表面积大、吸附能力强等优点,纳米氧化锌是一种宽禁带半导体材料,能够光催化降解有机污染物。
     本文以氯化锌和氢氧化钠为原料,采用水热法在竹炭表面负载纳米氧化锌,合成了竹炭/氧化锌复合材料。研究了竹炭吸附的影响因素,纳米氧化锌生长的影响因素,同时以甲基橙为光催化降解对象,研究了纳米氧化锌和竹炭/氧化锌复合材料的光催化影响因素。研究结果如下:
     (1)在一定范围内,竹炭对甲基橙的吸附率,与吸附时间、投加量成正比,与溶液pH、甲基橙初始浓度成反比。在吸附的初始阶段,甲基橙的吸附率随着温度的升高而增加,超过80℃后,又成下降趋势。
     (2)水热反应中乙醇的引入,有效的降低了粒子团聚现象。不同的反应物配比会影响溶液的饱和度,从而影响纳米氧化锌的生长。CTAB的引入,影响了纳米氧化锌的生长形貌,当引入量过多时,增加了后期洗涤的困难程度。不同的反应时间和反应温度都会在一定程度上影响纳米氧化锌的生长。
     (3)在一定范围内,纳米氧化锌和竹炭/氧化锌复合材料对甲基橙的降解率,与时间、投加量成正比,与温度、溶液pH、甲基橙初始浓度成反比,其中竹炭的最佳掺杂量为1.5000g。竹炭/氧化锌复合材料对甲基橙的降解效果,明显高于单一的竹炭和纳米氧化锌,二者的复合起到了1+1>2的协同耦合作用。
Bamboo Charcoal is one kind of pyrolysis products of bamboo wood, and it has higherporosity, larger specific surface area, and stronger adsorption ability. NanoZnO is a wide bandgaps semiconductor material, and it has photocatalytic degradation on organic pollutants.
     Coating bamboo charcoal surface with NanoZnO is successfully performed by hydrothermaldecomposition method using ZnCl2and NaOH. At the same time, we study on the influencefactors of Bamboo Charcoal’s absorbability, influence factors of growth of NanoZnO, influencefactors of photocatalytic degradation of NanoZnO and Bamboo Charcoal/ZnO. The resultsshow below:
     (1)The Bamboo Charcoal’s adsorption rate increased with the increased of time andBamboo Charcoal amount, decreased with the increased of original concentration of methylorange and the pH of solution. The absorption rate increased with the increased of temperature,but it decreased after80min.
     (2)The introduction of ethanol in hydrothermal reaction effectively reduced the particlereunion. Different ratio of reactants would affect the saturation degree of solution, whichaffected the growth of NanoZnO. The introduction of CTAB in hydrothermal reactioneffectively affected the growth of the NanoZnO morphology, when added too much; it wouldincrease the difficulty in the later washing. The reaction time and temperature influenced thegrowth of the NanoZnO morphology.
     (3) The degradation rate of Nano ZnO and Bamboo Charcoal/ZnO increased with theincreased of time, amount of Nano ZnO and BambooCharcoal/ZnO, but decreased with theincreased of temperature, original concentration of methyl orange and the pH of solution, thebest doping amount of Bamboo Charcoal is1.5000g. The degradation of BambooCharcoal/ZnO is better than the single Charcoal Charcoal and NanoZnO.
引文
[1]戴树桂.环境化学进展[M].北京:化学工业出版社,2005
    [2]余刚,黄俊等.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护,2001,4:37~39
    [3]韩婧.纳米氧化锌薄膜制备改性及光催化性能研究[D].华东师范大学,2008
    [4] Fujishima, Honda. TiO2photoelectrochemistry and photocatalysis [J] Nature,1972,37;238
    [5] Woong Lee, Min-Chang Jeong, Jae-Min Myoung. Catalyst-free growth of ZnO nanowires bymetal-organic chemical vapour deposition(MOCVD) and thermal evaporation[J]. Acta Materilia,2004,52:3949~3957
    [6] T. Dietl, H, Ohno, F. Matsukura, J. Cibert, et al. Zener Model Description of Ferromagnetism in Zinc–Blende Magnetic Semiconductors[J]. Science,2000,287:1019~1022
    [7] Chan Woong Na, Seung Yong Bae, and Jeunghee Park. Short–Period Superlattice Structure of Sn–Doped In2O3(ZnO)4and In2O3(ZnO)5Nanowries[J]. J. Phys. Chem. B,2005,109(26):12785~12790
    [8] Seung Yong Bae, Chan WOONg Na, Ja Hee Kang, et al. Comparative Structure and Optical Propertiesof Ga-, In-, and Sn–Doped ZnO Nanowires Synthesized via Thermal Evaporation [J]. J. Phys. Chem.B,2005,109(7):2526~2531
    [9]沈玉香,周祚万. T-ZnOw光催化降解甲基橙的动力学研究[J].功能材料,2007,38(5):819~821
    [10]王怡中,陈梅雪等.光催化氧化与生物氧化组合技术对染料化合物降解研究[J].环境科学学报,2000,20(6):772~775
    [11]魏宏斌,李田等.水中有机污染物的光催化氧化[J].环境科学进展,1994,2(3):50~56
    [12]刘春燕.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008.1
    [13]刘子玲.纳米氧化锌复合材料的制备及光催化应用研究[D].湘潭大学,2009
    [14]马正先,姜玉芝等.纳米氧化锌制备原理与技术[M].北京:中国轻工业出版社,2010
    [15]许磊,廖蕾等. ZnO多枝纳米棒水热法生长及其光学性质[J].武汉大学学报(理学版),2006,52(3):315~318
    [16]陈政,王玲玲等.多孔纳米氧化锌的模板法优化制备与电致发光特性[J].无机材料学报,2007,22(5):901~906
    [17]何忠伟,徐政等. TiO2掺杂对ZnO压敏电阻低压化过程的影响[J].硅酸盐学报,2004,32(9):1161~1164
    [18]尹冬梅. Si掺杂ZnO薄膜的制备及光学性质的研究[D].东北师范大学,2009
    [19]王成艳.纳米氧化锌及复合粉体的制备和光催化性能研究[D].东北大学,2005
    [20]吴长乐.纳米氧化锌的形貌控制及性能研究[D].华中科技大学,2008
    [21]郭永升.纳米氧化锌的制备及其光催化研究[D].吉林大学,2009
    [22]尹保忠.二氧化钛光催化剂的制备和改性[D].华东师范大学,2004
    [23] David S. Hacker, John B. Butt. Photocatalysis in a slurry reactor [J]. Chemical Engineering Science,1975, V30(9):1149-1158.
    [24] Barbeni M., Pramauro E., Pelizzetti E., et al. Photodegradation of pentachlorophenol catalyzed bysemiconductor particles [J]. Chemosphere,1985, V14(2):195-208.
    [25] Khodja A. A., Sehili T., Pilichowski J. F., et al. Photocatalytic degradation of2-phenylphenol on TiOand ZnO in aqueous suspensions [J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,V141(2-3):231-239.
    [26] Comparelli R, Fanizza E, Curri M L, et al. UV-induced Photocatalytic degradation of azo dyes byorganic–capped ZnO nanocrystals immobilized onto substrates[J]. Applied Catalysis B:Environmental,2005,(60):1~11
    [27] Matthews RW. Kineties of Photocatalytic oxidation of organic solutes over titanium dioxide[J]. J Catal,1988,111:264~272
    [28] Seung B P, Yun C K. Photocatalytic activity of nanometer size ZnO particles prepared by spraypyrolysis[J]. J Aerosol Sci,1997,28(1):473~74
    [29]朱亦仁,解恒参等. ZnO粉体的制备及在光催化法处理造纸废水中的应用[J].南京工业大学学报,2005,27(3):21~25
    [30]徐静,宋小杰等.紫外吸收光谱法研究ZnO/碳纳米管复合材料催化降解偶氮染料[J].光谱学与光谱分析,2007,27(12):2510~2513
    [31]汪应灵,谢友海等.凝胶模板燃烧法制备纳米ZnO及其光催化性能[J].环境化学,2007,26(5):630~633
    [32]苏苏,卢士香等.铝掺杂纳米ZnO颗粒光催化降解活性艳蓝X-BR[J].过程工程学报.2008,8(1):54~59
    [33]刘双枝,石海洋.纳米氧化锌的制备及其光催化降解印染废水的研究[J].开封大学学报,2009,23(4):90~94
    [34]刘田田,贾瑛等.纳米球状氧化锌的制备及光催化性能研究[J].化学推进剂与高分子材料,2011,9(5):79~82
    [35] C. X. Xu, X. W. Sun, B, J, Chen. Field emission from gallium–droped zinc oxide nanofiber array [J].Appl. Phys. Lett.,2004,84(9):1540~1542
    [36] J. J. Liu, M. H. Yu, and W. L. Zhou. Well–aligned Mn–droped ZnO nanowires synthesized buchemical vapor deposition method [J]. Appl. Phys. Lett.,2005,87
    [37] R. K. Zheng, H. Liu, and X. X. Zhang, V. A. L. Roy. Exchange bias and the origin of magnetism in Mn–doped ZnO tetrapods [J]. Applied Physics Letters,2004,85(13):2589~2591
    [38] Guozhen Shen, Jung Hee Cho, Jin Kyoung Yoo, et al. Synthesis and Optical Properties of S–DopedZnO Nanostructures: Nanonails and Nanowires [J]. J. Phys. Chem. B,2005,109(12):5491~5496
    [39] Seu Yi Li, Pang Lin, Chia Ying Lee, et al. Effect of Sn dopant on the properties of ZnO nanowires [J]. J.Phys. D: Appl. Phys.,2004,37:2274~2282
    [40]周小岩,王文新等. Ag修饰的纳米ZnO的合成、表征及光催化特性[J].西北师范大学学报(自然科学版),2010,46(4):58~61
    [41]汤佳,钟世安等. ZnO/TiO2纳米管的制备及光降解性能研究[J].化工新型材料,2010,38(8):84~87
    [42] Shao–Min Zhou, Xiao–Hong Zhang, Xiang–Min Meng, Shi–Kang Wu, Shuit–Tong Lee.Synthesis and optical properties of Pb–doped ZnO nanowires [J]. Phys. Stat. Sol.(A),2005,202(3):405~410
    [43] Shao–Min Zhou, Xiao–Hong Zhang, Xiang–Min Meng, Xia Fang, Shi–Kang Wu, Shuit–TongLee. Preparation and photoluminescence of Sc–doped ZnO nanowires [J]. Physica E,2005,25:587~591
    [44] D Banerjee, J Y Lao, D Z Wang, J Y Huang, D Steeves, B Kimball and Z F Ren. Synthesis andphotoluminescence studies on ZnO nanowires [J]. Nanotechnology,2004,15:404~409
    [45] S. Ozaki, T. Tsuchiya, Y. Inokuchi, and S. Adachi. Photoluminescence and photomodulatedtransmittance spectroscopy of ZnO nanowires [J]. Phys. Stat. Sol.(A),2005,202(7):1325~1335
    [46] L. Liao, D. H. Liu, J. C. Li, et al. Synthesis and Raman analysis of1D–ZnO nanostructure via vaporphase growth [J]. Applied Surface Science,2005,240:175~179
    [47] Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang. Nanobelts of semiconducting oxides [J]. Science,2001,291(6):1947~1949
    [48] Debasish Banerjee, Sung Ho Jo, and Zhi Feng Ren. Enhanced Field Emission of ZnO Nanowires [J].Adv. Mater,2004,16(22):2028~2032
    [49]姚超,刘敏等. ATP/ZnO纳米复合材料的制备及其对亚甲基蓝吸附性能的影响[J].非金属矿,2009,32(3):57~60
    [50]牟柏林,侯天意等.天然沸石负载ZnO/SnO2复合半导体的光催化活性[J].硅酸盐学报,2005,33(11):1366~1370
    [51]张雯,王绪绪等. Pt/TiO2光催化降解苯的磁场效应研究[J].化学学报,2005,63(8):715~719
    [52] Kataoka S, Dean T. J. Environ. Photochem. Photobio. A:Chem.,2002,148:323~330
    [53] Horikoshi S, Hidaka H, Serpone N. Chemical Physics Letters,2003,376:475~480
    [54] Horikoshi S, Hidaka H, Serpone N. Environ. Sci. Technol.,2002,36:1357~1366
    [55]周建斌.竹炭环境效应及作用机理的研究[D].南京:南京林业大学,2005
    [56]张文标.竹炭·竹醋液[D],南京:南京林业大学,2002
    [57]兰淑澄.活性炭水处理技术[M].北京:中国环境科学出版社,1992.
    [58]朱文炎.竹炭-二氧化钛复合材料的制备及对甲醛的吸附与光催化降解的研究[J].福建师范大学,2007
    [59]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26~7
    [60] Poniius F W. Complying With future water regulations [J]. JAWWA,1999,91(3):46~58
    [61] Lahaye J. The chemistry of carbon surfaces [J]. Fuel,1998,77(6):543~54
    [62] Radovic L R, Silva I F, Ume J I, et al. An experimental and theoretical study of adsorption of aromaticspossessing electron–with drawing and electron–donating functional groups by chemical modifiedactivated carbon[J] Carbon,1997,35(9):133~134
    [63]张丽敏.竹炭基废水处理剂的制备及性能研究[D].福建师范大学,2009
    [64]孙新元,吴光前,张齐生.竹炭对微污染水中有机污染物的吸附[J].环境科技,2010,23(1):15~18
    [65]杨磊,陈清松等.竹炭对甲醛的吸附性能研究[J].林业化学与工业,2005,25(1):77~80
    [66]陈清松,朱文炎,等.竹炭负载二氧化钛光催化降解甲醛的研究[J].福建师范大学学报(自然科学版),2009,25(4):72~75
    [67]周建斌,邓丛静等.纳米TiO2改性竹炭对空气中苯的吸附与降解[J].南京林业大学学报(自然科学版),2008,32(6):5~8
    [68]周建斌,邓丛静等.竹炭负载纳米TiO2吸附与降解甲苯的研究[J].新型炭材料,2009,24(2):131~135
    [69]周建斌,叶汉玲等.生物改性竹炭制备工艺及其应用的研究[J].水处理技术,2008,34(10):38~41
    [70] Ohe K, Nagae Y, Nakamura S,et al. Removal of nitrate anion by carbonaceous materials prepared frombamboo and coconut shell [J]. Journal of Chemical Engineering of Japan,2003,36(4):511~515
    [71] Kei M. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal [J].Bioresource Technology,2004,95(3):255~257
    [72] Bhattaeharyya K G, Sarma N. Colour removal from pulp and paper mill effluent using waste products[J]. Indian J Chem. Teeh.,1997,4(5):237.
    [73] Kannan N, Meenakshisundaram M. Adsorption of congo red on various activated carbons: Acomparative study [J]. Water, Air, and Soil Pollution,2002,138(1-4):289~305
    [74] Hameed B H, Din A T, Ahmad A L. Adsorption of methyl blue onto bamboo-based activated carbonkinetic and equilibrium studies [J]. J Hazardous Material,2007,141(3):819~825
    [75]吴燕,修光利等.竹炭净化文物保存微环境空气低浓度氮氧化物[J].环境科学与管理,2009,34(1):79~83
    [76]周琼.竹炭对水溶液中Cr(Ⅵ)的吸附特性及动力学研究[J].工业用水与废水,2009,40(5):61~63
    [77]张文标,钱新标等.不同炭化温度的竹炭对重金属离子的吸附性能[J].南京林业大学学报(自然科学版),2009,33(6):20~24
    [78]罗锡平,傅深渊等.纳米二氧化钛改性竹炭光催化降解2,4-二氯苯酚的研究[J].浙江林学院学报,2007,24(5):524-527
    [79]李志欣,陈清松等.竹炭对水中乙酰甲胺磷的吸附性能研究[J].亚热带资源与环境学报,2009,4(3):26~30
    [80]周小琴,褚淑祎等.竹炭对2-氯苯酚的吸附性能研究[J].环境工程,2009,27(增刊):283~285
    [81]郑志锋,袁洋春等.竹炭制备工艺的比较[J].生物质化学工程,2010,44(2):5~8
    [82]王大为,修光利.不同改性方式对竹炭净化气态氮氧化物效果的影响[J].环境工程学报,2010,4(8):1857~1862
    [83]吴光前,张齐生等.固定化微生物竹炭对废水中主要污染物的降解效果[J].南京林业大学学报(自然科学版),2009,33(1):20~24
    [84]程大莉,蒋身学,张齐生. TiO2/竹炭复合体光催化材料的孔隙结构及分布[J].南京林业大学学报(自然科学版),2010,34(3):117~120
    [85]张丽敏,陈清松,李晓燕,丁富传.竹炭-ZnO复合材料的制备及对苯酚的光催化降解作用[J].林产化学与工业,2009.29(1):33~37
    [86]李国德,武士威等.竹炭/聚乙烯醇缩甲醛复合材料的制备[J].矿冶,2009,18(2):34~36
    [87]王伯勇,魏丰华等. TiO2、ZnO和CdS的光催化甲基橙脱色比较[J].工业水处理,2002,22(4):40~42
    [88]张敏,赵清岚等. TiO2和ZnO表面CO光催化氧化活性研究[J].化学研究,2005,16(4):66~69
    [89]李学德,岳永德等.水中2,4-二氯苯酚的光催化降解研究[J].农业环境保护,2002,21(2):156~158
    [90]周云龙,胡志彪.竹炭对甲基橙溶液吸附行为的研究[J].材料导报:研究篇,2009,23(1):37~39
    [91]李济琛,万家齐.溶剂配比对水热法制备纳米氧化锌形貌和光催化性能的影响[J].青岛科技大学学报(自然科学版),2011,32(4):335~337
    [92]王步国,施尔畏等.水热条件下ZnO微晶的结晶习性及其形成机理[J].硅酸盐学报,1997,25(2):223~229
    [93]向群,刘荣利等.水热合成一维氧化锌及其影响因素[J].上海大学学报(自然科学版),2006,12(3):283~287
    [94]宋旭春,徐铸德等氧化锌纳米棒的制备和生长机理研究[J].无机化学学报,2004,20(2):186~190
    [95]储德韦,曾宇平等.表面活性剂辅助水热合成氧化锌纳米棒[J].无机材料学报,2006,21(3):571~575
    [96]李学德,岳永德等.水中2,4-二氯苯酚的光催化降解研究[J].农业环境保护,2002,21(2):156~158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700