双基地高频地波雷达飞行目标高度估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达(HFSWR)能够超视距探测海上舰船和飞机目标,对于我国海防和海上交通管制现代化建设具有重要意义。由于HFSWR构成仰角窄波束困难,不能直接提供飞行目标高度信息,因而无法判别飞行目标的高度属性,即无法判别目标的视距/超视距属性。针对单基地HFSWR目标飞行高度估计精度低、不稳定、可信度差的问题,本研究提出双基地HFSWR飞行目标高度估计新方法,重点研究飞行目标高度属性判别和高度估计算法,推动本成果在飞行目标类型识别和目标威胁度估计等领域的应用。本文主要研究内容如下:
     1.首先理论分析垂直极化电磁波传播衰减基本原理。基于Rotheram传播衰减模型,重点研究垂直极化电磁波在低空区域和高空区域上的传播衰减特征。目标信号回波强度是与低空飞行目标高度估计有关的重要信息,目标RCS作为影响目标飞行高度估计精度的重要参量,本文还对高频地波雷达飞行目标RCS随姿态角的变化特征进行研究。
     2.双基地高频地波雷达低空飞行目标高度估计研究。传统低空飞行目标高度估计模型在高度上是不完全可观测的,导致高度估计存在多解问题。本研究将感兴趣的高度区间划分为多个高度子区间,每个高度子区间上构建一个不存在多解问题的滤波模型,最后通过加权求和得到高度估计结果。针对目标RCS起伏问题,本研究利用AR模型对目标RCS起伏分量建模,减小目标RCS起伏对高度估计的影响。
     3.基于斜距、方位和信号回波强度信息的高空飞行目标高度估计研究。目标在高空飞行状态下一般飞行高度较高,电波传播衰减在高度方向上变化很小。因而信号回波强度不能应用于目标飞行高度估计。因此,本研究利用T/R站和R站接收到的目标斜距、方位和信号回波强度构建高空飞行目标高度组合估计算法。在该高度估计算法中,利用目标斜距和方位信息估计目标飞行高度,利用信号回波强度信息估计目标RCS。
     4.飞行目标高度属性判别与高度估计研究。本研究目的是在判别目标视距/超视距属性的同时,并估计目标飞行高度信息。目前的飞行目标高度估计方法只能适用于高空或低空飞行目标,而且假定目标的视距/超视距属性是已知的。但是在真实场景下,目标高度属性信息是未知的。因此,本研究利用目标高度属性判别与高度估计相互依赖、相互影响的特点,提出一种目标高度属性判别与高度估计算法。该算法估计出目标具体飞行高度信息,并根据目标高度信息和距离信息判别目标的视距/超视距属性。
     5.高频地波雷达飞行目标高度属性判别算法。在工程应用中,最为关心的是希望能够直接、快速判别目标的高度属性信息(视距/超视距属性信息),这远比估计目标的具体飞行高度更有实际应用意义。基于上述工程设计思想,本研究重点解决高频地波雷达飞行目标的高度属性判别问题,构建目标高度属性判别算法和准则,并提出一种高度属性可信度计算方法。此外,针对信号回波强度存在固定偏差问题,本研究提出一种基于余弦相似度的高度属性判别可信度计算方法,从而减小信号回波强度固定偏差的影响。
High frequency surface wave radar (HFSWR) transmits vertically polarized electromagnetic wave to detect surface vessels and low-flying aircraft at ranges far beyond the visible horizon, which is essential for the coast defence and marine traffic control. The operation frequency in high frequency (HF) band makes it difficult to form a narrow beam on elevation. HFSWR traditionally cannot detect the target altitude information and lacks the capability to identify the target flight modes, such as over the horizon or within the line of horizon. The current altitude estimation methods in monostatic HFSWR always yield low accurate and unstable results. Therefore, in this dissertation, the novel approaches are proposed to estimate target altitude and identify the flight mode with bistatic HFSWR. The performance of the proposed approach is evaluated with real trials. The research in this dissertation would promote the application of bistatic HFSWR in target classification and marine traffic control fields. The main contents of the dissertation are summarized as following:
     1. The propagation attenuation mechanism of the ground wave at different altitude intervals is analyzed with Rotheram model. The propagation attenuation of ground wave indicates distinct characteristics at diffferent altitude intervals, which is the fundamental principle of target altitude estimation and flight mode identification in HFSWR. Besides, target RCS is an crucial parameter for the altitude estimation of low-flying target. The variation property of RCS on different attitudes is also studied.
     2. An altitude estimation model is proposed for the low flying target with bistatic HFSWR. The incomplete observability of the traditional altitude estimation model leads to poor performance for altitude estimation. A novel model is proposed to estimate the altitude of the low-flying target with multiple model approach. In this new model, the altitude interval of interest is divided into several subintervals. An independent estimation model is constructed on each subinterval. The ultimate altitude estimation result is achieved by weighted summation. Besides, autoregressive model is also incorporated to eliminate the effection of the RCS fluctuation on altitude estimation.
     3. An altitude estimation model with the range, azimuth and target echo is presented for the high-flying target. Both target range and azimuth are available information for the target altitude estimation of high-flying target. Target echo amplitude does not benefit the altitude estimation as it is independent on altitude, which is only utilized to estimate target RCS. An altitude and RCS estimation model set is proposed with the target range, azimuth and echo amplitude information received by T/R-R HFSWR. The model set contains three different estimation models. Each model is completely observable to the state.
     4. Simultaneous target altitude and flight mode identification. The objective of this research is to identify the flight mode as well as estimate the target altitude. With the property that the estimation and identification processes are mutually dependent, an integrated method named simultaneous identification and estimation(SIE) is proposed by applying two level multiple model approach to the flight mode probability mass function(pmf) and state probability density function(pdf) simultaneously. The multiple model approach incorporated in SIE is different from the traditional interacting multiple model (IMM). It is applied at two levels: within each mode-conditioned estimation model set and across all the mode-conditioned estimation model sets. Simulations and real trials demonstrate the performance of the proposed SIE method.
     5. Flight mode identification algorithm in HFSWR. In practical engineering applications, it is preferable and more promising to identify the flight mode directly than estimate the specific target altitude for threat assessment. Thus a flight mode identification model is proposed with the distinct propagation attenuation characteristics on the low and high altitude intervals. A certainty factor value is also derived to evaluate the accuracy of the flight mode identification, in which cosine similarity is involved to eliminate the impact of the target echo amplitude errors for flight mode identification.
引文
[1] Anderson S J. Optimizing HF Radar Siting for Surveillance and RemoteSensing in the Strait of Malacca[J]. IEEE Transactions on Geoscience andRemote Sensing,2013,51(3):1805-1816.
    [2] Maresca S, Braca P, Horstmann J. Data Fusion Performance of HFSWRSystems for Ship Traffic Monitoring[C].//Proceeding of InternationalConference on Information Fusion,2013:1273-1280.
    [3] Xie J, Sun M, Ji Z. First-order Ocean Surface Cross Section for ShipborneHFSWR[J]. Electronics Letters,2013,49(16):1025-1026.
    [4] Zhou H, Wen B, Wu S. Ionospheric Clutter Suppression in HFSWR UsingMultilayer Crossed-Loop Antennas[J]. IEEE Geoscience and Remote SensingLetters,2014,11(2),429-433.
    [5] Grosdidier S, Forget P, Barbin Y, et al. HF Bistatic Ocean Doppler Spectra:Simulation Versus Experimentation[J]. IEEE Transactions on Geoscience andRemote Sensing,2014:2138-2148.
    [6] Bruno L, Braca P, Horstmann J, etal. Experimental Evaluation of theRange-Doppler Coupling on HF Surface Wave Radars[J]. IEEE Geoscience andRemote Sensing Letters,2013,10(4):850-854.
    [7] Sathyan T, Chin T J, Arulampalam S, et al. A multiple Hypothesis Tracker forMultitarget Tracking with Multiple Simultaneous Measurements[J]. IEEEJournal of Selected Topics in Signal Processing,2013,7(2):448-460.
    [8] Abramovich Y I, Frazer G J, Johnson B A. Principles of Mode-Selective MIMOOTHR[J]. IEEE Transactions on Aerospace and Electronic Systems,2013,49(3):1839-1868.
    [9] Abramovich Y I, Frazer G J, Johnson B A. Noncausal Adaptive Spatial ClutterMitigation in Monostatic MIMO Radar: Fundamental Limitations[J]. IEEEJournal of Selected Topics in Signal Processing,2010,4(1):40-54.
    [10] Merrill I. Skolnik.雷达系统导论(第三版)[M].左群声等,译.北京:电子工业出版社,2006:392-393.
    [11] Croser I T. Phased Array Technology in Australia[J]. IEEE Journal of SelectedTopics in Signal Processing,2007,1(1):114-123.
    [12] Grosdidier S, Baussard A. Ship Detection Based on Morphological ComponentAnalysis of High-Frequency Surface Wave Radar Images[J]. IET Radar Sonarand Navigation,2012,6(9):813-821.
    [13] Guinvarc'h R, Gillard R, Uguen B, et al. Improving the Azimuthal Resolution ofHFSWR with Multiplicative Beamforming[J]. IEEE Geoscience and RemoteSensing Letters,2012,9(5):925-927.
    [14] Zhou H, Wen B, Wu S. Ionospheric Clutter Suppression in HFSWR UsingMultilayer Crossed-Loop Antennas[J]. IEEE Geoscience and Remote SensingLetters,2014,11(2):429-433.
    [15]钟耀照,李炎,吴雄斌.苏北浅滩波浪传播速度的高频地波雷达探测[J].科学通报,2014,(z1):412-418.
    [16]李伦,吴雄斌,龙超.基于正则化方法的高频地波雷达海浪方向谱反演[J].地球物理学报,2013,56(1):219-229.
    [17]王赞,陈伯孝.利用压缩感知技术的分布式高频地波雷达DOA估计方法[J].西安电子科技大学学报,2014,41(2):69-77.
    [18] Mao X P, Liu A J, Hou H J, et al. Oblique Projection Polarization Filtering forInterference Suppression in High Frequency Surface Wave Radar[J]. IET Radar,Sonar and Navigation,2012,6(2):71-80.
    [19] Wang W, Wyatt L R. Radio Frequency Interference Cancellation for Sea StateRemote Sensing by High-frequency Radar[J]. IET Radar, Sonar and Navigation,2011,5(4):405-415.
    [20] Dakovic M, Thayaparan T, Stankovic L. Time-frequency-based Detection ofFast Maneuvering Targets[J]. IET Signal Processing,2010,4(3):287-297.
    [21] Ponsford A M, D'Souza I A, Kirubarajan T. Surveillance of the200NauticalMile EEZ Using HFSWR in Association with A Spaced-based AISInterceptor[C].//Proceedings of IEEE Conference on Technologies forHomeland Security,2009:87-92.
    [22] Liu C, Chen B, Zhang S. Co-channel Interference Suppression by Time andRange Adaptive Processing in Bistatic High-frequency Surface Wave SynthesisImpulse and Aperture Radar[J]. IET Radar, Sonar and Navigation,2009,3(6):638-645.
    [23] Walsh J, Huang W, Gill E. The First-order High Frequency Radar OceanSurface Cross Section for An Antenna on A Floating Platform[J]. IEEETransactions on Antennas and Propagation,2010,58(9):2994-3003.
    [24]文必洋,李自立,周浩.便携式高频地波雷达东海洋山海域探测深度试验[J].电子与信息学报,2010,32(4):998-1002.
    [25] Jangal F, Saillant S, Hélier M. Ionospheric Clutter Mitigation UsingOne-dimensional or Two-dimensional Wavelet Processing[J]. IET Radar, Sonarand Navigation,2009,3(2):112-121.
    [26] Kassab R, Lesturgie M, Fiorina J. Performance Analysis of Interrupted SparseHFSWR Waveform Coded with Successive Fast Fourier Transforms[J].Electronics letters,2009,45(10):525-527.
    [27] Lesturgie M. Improvement of High-frequency Surface Waves RadarPerformances by Use of Multiple-input Multiple-output Configurations[J]. IETRadar, Sonar and Navigation,2009,3(1):49-61.
    [28] Whitman D, Sunhillo C. The Need and Capability of a Surveillance DataDistribution System[C].//Proceedings of Integrated Communications,Navigation and Surveillance Conference,2009:1-6.
    [29] Li X R, Jilkov V P. Survey of Maneuvering Target Tracking. Part II: MotionModels of Ballistic and Space Targets[J]. IEEE Transactions on Aerospace andElectronic Systems,2010,46(1):96-119.
    [30] Wang S J, Sui D. Aircraft Flight Safety Analysis in Low Altitude Airspace[J].Transactions of Nan Jing University of Aeronautics and Astronautics,2009,26(2):147-153.
    [31]张勇,李彬蕙,贾春.低空空域开放促进我国通用航空的发展[J].民用飞机设计与研究,2013,(z2):63-67.
    [32]王世锦,隋东.低空空域航空器飞行安全分析[J].南京航空航天大学学报,2009,26(2):147-153.
    [33] Barrick D, Pederson L. HF Surface-wave Radar: Revisiting a Solution for EEZShip Surveillance[J]. EEZ International,2004:35-37.
    [34] Gurgel K W, Essen H H and Schlick T. HF Surface Wave Radar forOceanography-A Review of Activities in Germany[C].//Proceedings of theInternational Radar Conference,2003:700-705.
    [35] Riddlls R J. A Canadian Perspective on High-Frequency Over-the-horizonRadar[J]. Defence R&D Canada-Ottawa report,2006:1-10.
    [36] Barrick D. History Present Status and Future Directions of HF Surface WaveRadar in the US[C].//Proceedings of International Conference on Radar2003:652-655.
    [37] Farrell D C. An Investigation into Height Banding Techniques for HF SurfaceWave Radar[C].//DRA Milestone Report. Malvern,1994:297-299.
    [38] Howland P E, Clutterbuck C F. Estimation of Target Altitude in HF SurfaceWave Radar[C].//Proceedings of Seventh International Conference on HFRadio Systems and Techniques,1997:296-300.
    [39] Guo R J, Yuan Y S, Quan T F. AMHT Track Initiator for HFSWR Tracking ofFast and Small Targets[J]. Journal of Systems Engineering and Electronics,2005,16(2):316–320.
    [40]郭汝江,袁业术,权太范.高频地波雷达飞行小目标跟踪方法研究[J].电子学报,2005,33(9):1586-1589.
    [41]张硕,金永镐,郭汝江.高频地波雷达目标高度估计的AR模型方法[J].现代防御技术,2007,35(2):118-124.
    [42]张硕,金永镐,于长军.高频地波雷达目标高度估计起始的HPEKF算法[J].哈尔滨工业大学学报,2007,39(5):725-729.
    [43]郭汝江.高频地波雷达飞行小目标跟踪与高度估计[D].哈尔滨:哈尔滨工业大学,2005:68-74.
    [44]张硕.基于EKF的高频地波雷达飞行目标高度估计[D].哈尔滨:哈尔滨工业大学,2005:29-54.
    [45] Gai M J, Xiao Y I. An Approach to Tracking a3D Target with2D Radar[C].//Proceedings of IEEE International Radar Conference,2005:763-768.
    [46] Su H, Liu H, Shui P, et al. Adaptive Beamforming for Nonstationary HFInterference Cancellation in Skywave Over-the-horizon Radar[J]. IEEETransactions on Aerospace and Electronic Systems,2013,49(1):312-324.
    [47] Habtemariam B, Tharmarasa R, Thayaparan T, et al. A multiple Detection JointProbabilistic Data Association Filter[J]. IEEE Journal of Selected Topics inSignal Processing,2013,7(3):461-471.
    [48] Quan Y H, Xing M D, Zhang L, et al. Transient Interference Excision andSpectrum Reconstruction for OTHR[J]. Electronics letters,2012,48(1):42-44.
    [49] Cuccoli F, Facheris L, Sermi F. Coordinate Registration Method based onSea/Land Transitions Identification for Over-the-Horizon Sky-Wave Radar:Numerical Model and Basic Performance Requirements[J]. IEEE Transactionson Aerospace and Electronic Systems,2011,47(4):2974-2985.
    [50] Frazer G J, Abramovich Y I, Johnson B A. Multiple-input Multiple-outputover-the-horizon Radar: Experimental Results[J]. IET Radar Sonar andNavigation,2009,3(4):290-303.
    [51] Zhang Y, Frazer G J, Amin M G. Concurrent Operation of TwoOver-the-horizon Radars[J]. IEEE Journal of Selected Topics in SignalProcessing,2007,1(1):114-123.
    [52] Anderson C W, Green S D, Kingsley S P. HF Sky Wave Radar: EstimatingAircraft Heights Using Super-Resolution in Range[J]. IET Radar, Sonar andNavigation,1996,143(4):281-285.
    [53] Michael P, Jeffrey L K. Estimation of Aircraft Altitude and Altitude Rate withOver-the-horizon Radar[C].//Proceedings of IEEE International Conference onAcoustics, Speech and Signal Processing,1999,(4):2103-2106.
    [54]游伟,何子述,胡进峰.基于匹配场处理的天波雷达高度估计算法[J].电子与信息学报,2013,35(2):401-405.
    [55]江鹏飞,顾秋明,鲍拯.天波超视距雷达微多径测高信号模型研究[J].空军预警学院学报,2013,27(1):16-19.
    [56] Michael P, Jeffrey L. Matched-field Estimation of Aircraft Altitude fromMultiple Over-the-horizon Radar Revisits[J]. IEEE Transactions on SignalProcessing,1999,47(4):966-976.
    [57]江鹏飞,陈建文,鲍拯.基于匹配域处理的天波超视距雷达测高方法研究[J].空军雷达学院学报,2012,26(3):157-161.
    [58]江鹏飞,陈建文,鲍拯.天波雷达匹配域处理测高方法目标机动影响分析[J].信号处理,2012,28(11):1535-1542.
    [59] Michael P, Krolik J L. Electromagnetic Matched-field Processing for TargetHeight Finding with Over-the-Horizon Radar[C].//Proceedings of IEEEInternational Conference on Acoustics, Speech and Signal Processing,1997:559-562.
    [60]王赞,陈伯孝.基于压缩感知的高频地波雷达射频干扰抑制[J].系统工程与电子技术,2012,34(8):1565-1570.
    [61]付天骄,周共健,田文龙.无角度双站地波雷达组合定位跟踪和滤波算法[J].系统工程与电子技术,2011,33(3):552-556.
    [62]王健.高频地波雷达舰船目标跟踪关键技术研究[D].哈尔滨:哈尔滨工业大学,2008:41-76.
    [63] Zhou G, Zhou J, Fu T, et al. Multisensor Multitarget Tracking Based onHierarchical Association Only Using Range Doppler Measurements[C].//Proceedings of IET International Radar Conference,2013:1-4.
    [64] Bruno L, Braca P, Horstmann J, et al. Experimental Evaluation of theRange–Doppler Coupling on HF Surface Wave Radars[J]. IEEE Geoscience andRemote Sensing Letters,2013,10(4):850-854.
    [65] Maresca S, Braca P, Horstmann J. Data Fusion Performance of HFSWRSystems for Ship Traffic Monitoring[C].//Proceedings of InternationalConference on Information Fusion,2013:1273-1280.
    [66]吴小川,邓维波,杨强.基于CS-MUSIC算法的DOA估计[J].系统工程与电子技术,2013,35(9):1821-1824.
    [67]胡恒,贺亚鹏,庄珊娜.高频地波雷达稀疏频率波形优化设计[J].电子与信息学报,2012,34(6):1291-1296.
    [68]谢俊好,李波. T/R-R高频地波雷达球面定位算法研究[J].电子学报,2012,40(3):435-440.
    [69] Marrone P. Omnistatic High Frequency Surface Wave Radar Architecture andApplications[C].//Proceedings of IEEE International Conference on Radar,2013:122-127.
    [70] Ehrman L, Daleblair W. Using Target RCS When Tracking Multiple RayleighTargets[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(2):706-716.
    [71] Mertens M, Ulmke M. Ground Target Tracking with RCS Estimation UtilizingProbability Hypothesis Density Filters[C].//Proceedings of InternationalConference on Information Fusion,2013:2145-2152.
    [72] Sun B, Wang X, Moran B, et al. Target Tracking Using Range and RCSMeasurements in a MIMO Radar Network[C].//Proceedings of IETInternational Radar Conference,2013:1-6.
    [73] Soummya K K, JoséMoura M F. Distributed Consensus Algorithms in SensorNetworks: Quantized Data and Random Link Failures[J]. IEEE Transactions onSignal Processing,2010,58(3):1383-1400.
    [74] Demaio A, Farina A, Foglia G. Knowledge-Aided Bayesian Radar Detectors andTheir Application to Live Data[J]. IEEE Transactions on Aerospace andElectronic Systems,2010,46(1):170-183.
    [75]闵涛,赵锋,肖顺平.空间相关多基地雷达分辨能力提高方法[J].系统工程与电子技术,2012,34(10):2028-2035.
    [76]严俊坤,纠博,刘宏伟.一种针对多目标跟踪的多基雷达系统聚类与功率联合分配算法[J].电子与信息学报,2013,(8):1875-1881.
    [77] Zhang X, Xu D. Angle Estimation in Bistatic MIMO Radar Using ImprovedReduced Dimension Capon Algorithm[J]. Journal of Systems Engineering andElectronics,2013,24(1):84-89.
    [78] Ai X, Huang Y, Zhao F, et al. Imaging of Spinning Targets via Narrow-BandT/RR Bistatic Radars[J]. IEEE Geoscience and Remote Sensing Letters,2013,10(2):362-366.
    [79]吴耀云,罗飞腾,陈卫东.基于局部航迹关联的多基地雷达多目标跟踪快速算法[J].中国科学技术大学学报,2010,40(2):111-117.
    [80] Smith G E, Chetty K, Baker C J, et al. Extended Time Processing for PassiveBistatic Radar[J]. IET Radar, Sonar and Navigation,2013,7(9):1012-1018.
    [81] Zaimbashi A, Derakhtian M, Sheikhi A. GLRT-Based CFAR Detection inPassive Bistatic Radar[J]. IEEE Transactions on Aerospace and ElectronicSystems,2013,49(1):134-159.
    [82]纪永刚,张杰,王祎鸣.双频率高频地波雷达船只目标点迹关联与融合处理[J].系统工程与电子技术,2014,36(2):266-271.
    [83] Heron M L. The Australian Coastal Ocean Radar Network Facility[C].//Proceedings of Canadian Conference on Electrical and Computer Engineering,2009:23-26.
    [84] Heron M L, Prytz A. The Data Archive for the Phased Array HF Radars in theAustralian Coastal Ocean Radar Network[C].//Proceedings of IEEE OCEANS,2011:1-4.
    [85] Merz C R, Weisberg R H, Liu Y. Evolution of the USF/CMS CODAR andWERA HF Radar Network[C].//Proceedings of IEEE Oceans,2012:1-5.
    [86] Trizna D, Xu L. Target Classification and Remote Sensing of Ocean CurrentShear Using a Dual-Use Multifrequency HF Radar[J]. IEEE Journal of OceanicEngineering.2006,31(4):904-918.
    [87] Helzel T, Kniephoff M. Software Beam Forming for Ocean Radar WERAFeatures and Accuracy[C].//Proceedings of IEEE Oceans,2010:1-3.
    [88] Liu C, Chen B, Zhang S. Co-channel Interference Suppression by Time andRange Adaptive Processing in Bistatic High-frequency Surface Wave SynthesisImpulse and Aperture Radar[J]. IET Radar, Sonar and Navigation,2009,3(6):638-645.
    [89] Marrone P. Omnistatic High Frequency Surface Wave Radar Architecture andapplications[C].//Proceedings of International Conference on Radar,2013:122-127.
    [90] Hua Z, Changjun Y, Gongjian Z, et al. Track Initiation in Monostatic-BistaticComposite High Frequency Surface Wave Radar Network Based on NFEModel[C].//Proceedings of International Conference on Electronics andInformation Engineering,2010,2: V2-81-V2-85.
    [91] Marrone P, Edwards P. The Case for Bistatic HF Surface Wave Radar[C].//Proceedings of International Conference on Radar,2008:633-638.
    [92]何缓,柯亨玉,万显荣.双基地高频地波雷达系统布站研究[J].电子与信息学报,2012,34(2):333-337.
    [93]仇永斌,张宁,李杨.双基地高频雷达一阶海杂波多普勒频移展宽效应[J].系统工程与电子技术,2010,32(11):2336-2340.
    [94]位寅生,刘媛,冀振元.双/多基地高频地波雷达飞行目标回波仿真[J].系统工程与电子技术,2008,30(1):53-56.
    [95] Zhao Z, Wan X, Zhang D, et al. An Experimental Study of HF Passive BistaticRadar via Hybrid Sky-surface Wave Mode[J]. IEEE Transactions on Antennasand Propagation,2013,61(1):415-424.
    [96] Roarty H, Glenn S, Kohut J, et al. Operation and Application of a RegionalHigh-frequency Radar Network in the Mid-Atlantic Bight[J]. Society JournalMarine Technology,2010,44(6):133-145.
    [97] Valentin M, Helzel T, Mariette V, et al. Coastal Radar WERA, A Tool for Searchand Rescue and Oil Spill Management[C].//Proceedings of IEEE BalticInternational Symposium,2010:1-4.
    [98]钟耀照,李炎,吴雄斌.苏北浅滩波浪传播速度的高频地波雷达探测[J].科学通报,2014,59(4):412-418.
    [99] Guo X, Sun H, Yeo T S. Interference Cancellation for High-frequency SurfaceWave Radar[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(7):1879-1891.
    [100]田文龙,李高鹏,许荣庆.利用自动识别系统信息进行高频地波雷达天线阵校正[J].电子与信息学报,2012,34(5):1065-1069.
    [101]许斌,李博,袁业术.舰载高频地波雷达(OTHR)平台运动对回波信号调制机理的研究[J].电子学报,2008,36(z1):109-113.
    [102]刘爱军.基于极化信息的高频地波雷达干扰抑制方法研究[D].哈尔滨:哈尔滨工业大学,2011:65-89.
    [103]张鑫,毛滔,邓维波.基于STAP的电离层杂波抑制方法[J].系统工程与电子技术,2013,35(6):1177-1182.
    [104]刘爱军,宋立众,王季刚.斜投影三维极化滤波[J].哈尔滨工业大学学报,2012,44(3):75-80.
    [105]尚尚,张宁,李杨.高频地波雷达电离层杂波统计特性研究[J].电波科学学报,2011,26(3):521-527.
    [106]刘爱军,毛兴鹏,杨俊炜.基于FRFT的高频雷达信号极化状态估计方法[J].电波科学学报,2010,25(5):815-822.
    [107] Blanding W R, Willett P K, Bar-Shalom Y, et al. Multisensor TrackManagement for Targets with Fluctuating SNR[J]. IEEE Transactions onAerospace and Electronic Systems,2009,45(4):1275-1292.
    [108]何友,王国宏,陆大金.多传感器信息融合及应用(第二版)[M].北京:电子工业出版社,2007:238-249.
    [109]邱景辉,李在清,王宏.电磁场与电磁波[M].哈尔滨:哈尔滨工业大学出版社,2004:87-101.
    [110] Jangal F, Dorey P and Menelle. HF Radars and HF Propagation Simulations[C].//Proceedings of European Conference on Antennas and Propagation,2013:2692-2696.
    [111]谢俊好.舰载高频地波雷达目标检测与估计研究[D].哈尔滨:哈尔滨工业大学,2001:17-21.
    [112] Milsom J D. HF Groundwave Radar Equations[J]. HF Radio Systems andTechniques,1997:285-290.
    [113] Tian Y, Wen B, Zhou H. Measurement of High and Low Waves UsingDual-Frequency Broad-Beam HF Radar[J]. IEEE Geosciences and RemoteSensing Letters,2014,11(9):1599-1603.
    [114] Caillec J L, Mandridake L. Influence of the Waveform on Propagation and SeaRadar Cross Section of HF Radar Signals[J]. IEEE Transactions on Antennasand Propagation,2014,62(5):2721-2735.
    [115] Norton K A. The Calculation of Ground Wave Field Intensity over a FinitelyConducting Spherical Earth[J]. Proceedings of the IRE,1941,29(12):623-639.
    [116] Berry L A, Chrisman M E. A FORTRAN Program for the Calculation of GroundWave Propagation over a Homogenous Spherical Earth for Dipole[C]. Antennas.NBS Report,1966:732-748.
    [117] Ott R H. An Integral Equation Algorithm for HF/VHF Propagation overIrregular in Homogenous terrain[J]. Radio Science,2002,27(6):867~882.
    [118] Norton K A. Correction to "The Calculation of Ground-wave Field Intensityover A Finitely Conducting Spherical Earth"[J]. Proceedings of the IRE,1941,30(4):205.
    [119] Rotheram S. Ground-wave Propagation. Part1: Theory for Short Distances[C].//Proceedings of IEE Communications, Radar and Signal Processing,1981,128(5):275-284.
    [120] Rotheram S. Ground-wave propagation. Part2: Theory for Medium and LongDistances and Reference Propagation Curves[C].//Proceedings of IEECommunications, Radar and Signal Processing,1981,128(5):285-295.
    [121] Rossano R M, Sebastiani M S. Included in Your Digital SubscriptionMeasurements and propagation models of HF ground-wave propagation overirregular terrain and HF sky-wave propagation[C].//Proceedings ofInternational Conference on Antennas and Propagation,2001:388-392.
    [122] Zhou L, Xi X, Liu J. LF Ground-Wave Propagation over Irregular Terrain[J].IEEE Transactions on Antennas and Propagation,2011,59(4):1254-1260.
    [123]周文瑜,焦培楠.超视距雷达技术[M].北京:电子工业出版社,2004:39-43.
    [124] Peach N. Bearing-only Tracking Using a Set of Range-Parameterised ExtendedKalman Filters[J]. IEE Proc-Control Theory,2002,142(1):73-80.
    [125] Karlsson R and Gustafsson F. Recursive Bayesian Estimation: Bearings-OnlyApplication[J]. IET Radar, Sonar and Navigation,2005,152(5):305-313
    [126]何友,王国宏,修建娟.双/多基地雷达的组合估计及定位精度分析[J].电子学报,2000,28(3):17-10.
    [127] Mei W, Shan G L, Li X R. Simultaneous Tracking and Classification: AModularized Scheme[J]. IEEE Transactions on Aerospace and ElectronicSystems,2007,43(2):581-599.
    [128] Powell G, Marshall D, Smets P, et al. Joint Tracking and Classification ofAirbourne Objects Using Particle Filters and the Continuous TransferableBelief Model[C].//Proceedings of International Conference on InformationFusion,2006:1-8.
    [129] Li X R. Optimal Bayesian Joint Decision and Estimation[C].//Proceedings ofInternational Conference on Information Fusion,2007:1-8.
    [130] Liu Y, Li X R. Recursive Joint Decision and Estimation based on GeneralizedBayesian Risk[C].//Proceedings of International Conference on InformationFusion,2011:1-8.
    [131] Cao W, Lan J, Li X R. Extended Object Tracking and Classification based onRecursive Joint Decision and Estimation[C].//Proceedings of InternationalConference on Information Fusion,2013:1670-1677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700