长江口潮滩“干湿交替”模式下磷的迁移过程与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口滨岸潮滩是一个典型的海陆交互作用地带,是一个多功能的复杂生态系统,具有独特的生态价值和资源潜力。由于受海陆交互作用的影响,河口滨岸潮滩环境中的各种物理、化学和生物因子复杂多变,具有径流、波浪和潮流等水动力作用强烈、泥沙运移和物质交换频繁、理化要素梯度变化大、生物多样性丰富等独特的环境特征,其中,由潮汐作用引起的滩面周期性的淹没与暴露过程显得尤为特别。本文以长江口滨岸潮滩为典型对象,研究营养元素磷在上覆水体、沉积物及其孔隙水中的时空分布规律,分析不同形态磷在潮滩大型植物根际环境中富集、迁移的生物地球化学过程及主要控制因素,并采用野外采样与室内模拟相结合的方式,研究了“干湿交替”模式下,系统中磷的迁移过程与转移机理。
     对长江口潮滩沉积物中磷的赋存形态进行了深入研究,发现输入源差异和水动力条件是影响潮滩沉积物中TP时空变异的主要因素。在沉积物-水界面物理化学因子的控制下,各形态磷之间进行着一定的相互转化,然而,受沿岸各类污染源输入的复合影响,磷在沉积物中的分配平衡遭到破坏。沉积物中Fe-P的沿程分布与长江口近岸水体盐度的分布模式相吻合,认为长江口区确实存在“盐度效应”影响营养盐磷的环境地球化学行为;相反,由于潮滩周期性的淹没和暴露,沉积物的颗粒组成与晶体结构发生变化,使不同地貌单元中沉积物磷的分布受“粒径效应”的影响程度明显减弱;此外,还发现沉积物中活性铁的存在也对磷在界面间的迁移转化产生作用。引入生物有效性概念,在长江口潮滩表层沉积物各形态磷定量分析的基础上,估算出长江口潮滩潜在地能够被生物所利用的磷约占TP的32.75%。
     对长江口潮滩生长植物的表层沉积物(SP)与根际沉积物(S_R)中磷的赋存形态进行对比,发现S_R中各形态磷之间、不同物化因子之间的相互关系较S_P弱,表明了磷循环中植物根际效应的存在;同时,作为评价沉积物质量重要指标之一的Fe-P并未表现出在污染严重地区S_R中的富集,显示了植物根际对污染物的降解能力,同时也体现了植物根系的吸收作用。另一方面,以活性Fe~(3+)和活性Fe~(2+)之间比值的相对大小来表征潮滩植物根际环境的氧化还原状态,结果显示长江口
    
    潮滩大多数岸段根际沉积物的Fe3+用矛十值小于1,表明潮滩植物根际环境趋于
    还原一弱氧化状态,与实际测得的氧化还原电位基本吻合。在这个还原一弱氧化
    状态下,Fe一P所包含的磷酸盐与孔隙水中的磷酸盐发生交换,使沉积物(孔隙
    水)和上覆水体之间建立了一种联系,并因此影响了磷酸盐的生物有效性;而
    org一P在SP和SR间的分配则与磷的吸收和再矿化有关,且可通过食物链构成一
    套生物小循环。
     对长江口潮滩柱样沉积物的研究发现,沉积物形态磷、活性铁、有机质、含
    水量、粒度之间表现出相当复杂的相互关系,明显地反映了在潮滩干湿交替的物
    理格架下,沉积物组成、含水量等物化参数对磷、铁和有机质在沉积过程中的地
    球化学“活性”的重要性。通过对潮滩典型柱样沉积物不同磷形态沉积速率差的
    估算,发现存在两种机制使磷滞留于潮滩沉积物中:一为有氧一缺氧层边界,
    FeOOH与活性磷酸盐的多价态鳌合,二为沉积过程中,CFAP十Ca一P的形成。建
    立了早期成岩作用下沉积物孔隙水中磷酸盐的“扩散一平流一反应”模型,认为
    在长江口滨岸带有机磷分解、磷酸盐的吸附和沉淀都符合一级动力学特征,它们
    控制了孔隙水中磷酸盐的转移反应。
     利用实验模拟技术,以长江口崇明东滩自然状态下、经过不同程度暴露的沉
    积物为对象,研究了海水再浸没时,长江口滨岸潮滩环境系统内磷的迁移、转化
    过程,发现不同程度的暴露将使沉积物的物理、化学性质和微生物的活动习性发
    生改变,影响沉积物的释磷量,控制着系统内的长期磷平衡。在对暴露程度不同
    的沉积物磷的吸附动力学研究中发现,长时间暴露于空气中的沉积物,受氧
    化作用和铁的熟化过程的影响,表现出对磷的弱亲和力,反映在被潮水浸
    没的过程中吸附容量的减少。检验了不同化学物质对处于“干湿交替”模式下
    的沉积物释放磷酸盐的影响程度,推断出发生在沉积物中不同细菌过程的重要
    性,特别研究了不同沉积物在不同环境中释放磷酸盐的差异,认为厌氧环境下沉
    积物释放磷酸盐的能力要高于有氧环境。
The estuarine and coastal tidal flat, as a typical transitional zone between land and ocean, is a multifunctional and complex ecosystem with special ecological values and potential resources. Due to the interaction of land and ocean, the estuarine and coastal tidal flat is characterized by intense hydrodynamic conditions, frequent sediment transport and material exchange, steep physiochemical gradients and high biodiversity, especially the periodical change process of "exposure-immersion" in the tidal flat that is raised by tidal ebb and flood. Taking the Yangtze estuarine and coastal ecosystem as an example, the temporal and spatial distribution of phosphorus in the overlying water columns, sediments and its pore waters have been discussed, and the biogeochemical processes of phosphorus speciation in the rhizospheres of macrophytes involving accumulation and transfer, and its key effects have been analyzed. Meanwhile, the transfer processes and transformation mechanisms under the "exposure-immersion" patter
    n have also been discussed through the field sampling and the laboratory simulation.
    The results had shown that the different input sources and the hydrodynamic conditions were the main factors controlling the spatio-temporal variations of total phosphorus. By the controls of physico-chemical parameters, there were inter-transformations among the different forms of phosphorous near the sediment-water interface. However, there was an unbalance of sedimentary phosphorus distribution due to the impact of various pollutants input. The coastal distribution of Fe-P in the sediments was similar to the distributional pattern of salinity in the overlying waters, which indicated that salinity could influence the biogeochemical behaviors of phosphorus. On the contrary, the influence of grain size was relatively weak because the particle compositions and crystal structures of sediments had been changed by periodical "exposure-immersion" in the tidal flat. In addition, the reactive iron also affected the transfer and transformation of phosphorus in the sediment-water interface. Based on the quantitative
    analysis for the contents of
    
    
    
    phosphorus species, the potentially bioavailable phosphorus was assessed by introducing the notion of bioavailability. The assessed results showed that about 32.75% of total phosphorus could be utilized by organisms.
    By comparison of phosphorus species in the sediments where had plats(Sp) with them in the rhizospheric sediments(SR), the relationships among different forms of phosphorus in SR was weaker than that in Sp, which demonstrated the rhizospheric effects on phosphorus cycle, as well as the relationships among physico-chemical parameters. Moreover, Fe-P in SR, as one of indicators for sediment quality, could not accumulate in the severe polluted areas, maybe indicating that the root system was able to degrade the pollutants and had uptake ability. On the other hand, Fe3+ to Fe2+ ratios which was used to represent the redox status suggested that the rhizosphere of tidal flat was under the reduction-less oxidation status, which was almost equal to the measured redox potentials. In this redox status, the phosphate adsorbed by iron oxyhydroxides could exchange with anther phosphate in the pore waters, which built a good relationship between sediments (pore waters) and overlying waters, and influence the bioavailability of phosphate. As for Org-P, the distribution between Sp and SR was controlled by phosphorus assimilation and remineralization, which constructed a biological cycle through food chain.
    There were quite intricate relationships among sedimentary phosphorus, reactive iron, organic matters, water contents and grain sizes of core sediments, which indicated that the physico-chemical parameters were important for phosphorus, iron and organic matters to enhance their activities in the process of sedimentation. Through the assessment of difference in accumulation rates between surficial and deep sediments, two retention mechanisms of phosphorus were discovered. One was the sequestr
引文
Aigars, J., 2001. Seasonal variations in phosphorus species in the surface sediments of the Gulf of Riga, Baltic Sea. Chemosphere, 45:827-834.
    Andsem, J. M., 1982. Effect of nitrate concentration in lake water on phosphate release from the sediment. Water resource, 16:1119-1126.
    Anderson, L. D. and M. L. Delaney, 2000. Sequential extraction and analysis of phosphorus in marine sediments: Streamlining of the SEDEX procedure. Limnol. Oceanogr., 45(2):509-515.
    ANDRIEUX F., A. A., 1997. A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Continental Shelf Research, 17(10): 1229-1245.
    Babu, K. N., P.P. Ouseph. D. Padmalal, 2000. Interstitial water-sediment geochemistry of N,P and Fe and its response to overlying waters of tropical estuaries: a case from the southwest coast of India. Environmental Geology, 39(6):633-640.
    Baldwin, D. S., A. M. Mitchell and G. N. Rees, 2000. The effects of in situ drying on sediment-phosphate interactions in sediments from an old wetland. Hydrobiologia, 431: 3-12.
    Baldwin, D. S., 1996. Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnol. Oceanogr., 41 (8): 1725-1732.
    Balzer W.., 1986. Forms of phosphorus and its accumulation in coastal sediments of Kieler Bucht.Ophelia, 26:19-35
    Bemer, R. A., Ruttenberg, K. C. and Rao, Ji-L, 1993. The nature of phosphorus burial in modem marine sediments. In Interactions of C, N, P and S Biogeochemical Cycles and Global Changes, eds. R. Wollast, F. T. Mackenzie and L. Chou, NATO ASI Series, Series I: Global Environmental Change, Vol. 4. Springer, Berlin.
    Barrow, N., and T. C. Shaw, 1980. Effect of drying on the measurement of phosphate adsorption.Commun Soil Sci. Plant Anal., 11:347-353.
    Bolalek J., 1992. Phosphate at the water-sediment interface in Puck Bay. Oceanologia, 33:159-182.
    Bolalek, J., Graca, B., 1996. Ammonium nitrogen at the water-sediment interface in Puck Bay(Baltic Sea). Estuarine Coastal and Shelf Science, 43: 767-779.
    Bostr(?)m B., Andersen J. M., Fleischer S. and Jansson M., 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia, 170: 229-244.
    Bottn(?)r, P., 1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with C and N-labelled plant material. Soil Biol. Biochem, 17:329-337.
    Burton, E.,D., PhiIlips, I.,R., Hawker, D. W., 2004. Trace metals and nutrients in bottom sediments of the Southport Broadwater, Australia. Marine Pollution Bulletin, 48, 378-402.
    Carman, R. and Wulff, F., 1989. Adsorption capacity of phosphorus in Baltic Sea sediments.
    
    Estuarine, Coastal and Shelf Science, 29:447-456.
    Carman, R. and Jonsson, P., 1991. Distribution patterns of phosphorus in some surfacial sediments of the Baltic Sea. Chemical Geology, 90: 91-106.
    Carman, R. and Rahm, L.,1997. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. Journal of Sea Research, 37: 25-47.
    Chambers, R. M., Fourqurean, J. W., Hollibaugh J. T. and Vink, S., 1995. Importance of terrestrially derived particulate phosphorus to phosphorus dynamics in a west coast estuary.Estuaries, 18(3): 518-526.
    Dalsgaard, T., 2003. Benthic primary production and nutrient cycling in sediments with benthic microalga and transient accumulation of macroalgae. Limnol. Oceanogr., 48, 2138-2150.
    Davelaar, D., 1993. Ecologival signigicance of bacterial poly-phosphate metabolism in sediments.Hydrobiology, 253: 179-152.
    De Groot, C. and C. Van Wijck, 1993. The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interaction. Part 1: The sediment chemistry. Hydrobiology, 252: 83-94.
    De Jonge, V. N., Engelkes, M. M. and Bakker, J. F, 1993. Bio-availablility of phosphorus in sediments of the western Dutch Wadden Sea. Hydrobiologia, 253:151-163.
    De Jonge, V. N., Van Beusekom, J. E. E., 1995. Wind tide-induced resuspended of sediment and microphytobenthos from tidal flats of the Ems estuary. Limnol., Oceanogr., 40, 766-778.
    Edlund, Gunnar and Carman, R.,2001. Distribution and diagenesis of organic and inorganic phosphorus in sediments of the Baltic proper. Chemosphere, 45:1053-1061.
    Fisher, T. R., P. R. Carlson and R. T. Barber, 1982. Sediment nutrient regeneration in three North Carolina estuarine. Estuarine Coastal Shelf Sci., 14:101-116.
    Forster, S., Graf, G., 1992. Continuously measured changes in redox potential influenced by oxygen penetrating from burrows of Callianassa subterranean. Hydrobiology, 235/236:527-532.
    Fourqurean et al., 1992. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Mar. Biol., 114: 57-65.
    Frankowski, L., J. Bolalek, A. Szostek, 2002. Phosphorus in bottom sediments of Pomeranian Bay (Southern Baltic-Poland). Estuarine, Coastal and Shelf Science, 54: 1027-1038.
    G(?)chter, R., et al., 1988. Contribution of bacteria to the release and fixation of phosphorus in lake sediments. Limnol. Oceanogr., 33:1542-2558.
    G(?)chter, R., et al. 1993. The role of micro-organisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia, 253:103-121.
    
    
    Golterman, H. L., 1995. The role of the iron hydroxide-phosphate-sulphide system in the phoephate exchange between sediments and water. Hydrobiologia, 297: 43-54.
    Gomez, E., Durillon, C., Rofes, G. et al., 1999. Phosphate adsorption and release from sediments of brachish lagoons: pH, O_2 and loading influence. Water Research, 33: 2437-2447.
    Gunnar Edlund, Rolf Carman, 2001. Distribution and diagenesis of organic and inorganic phosphorus in sediments of the Baltic proper. Chemosphere, (45): 1053-1061.
    Haese, R. R., H. Petermann, L. Dittert, et al., 1998. The early diagenesis of iron in pelagic sediments: a multidisciplinary approach. Earth Planet Sci. Lett., 157: 233-248.
    Haynes, R. J., and R. S. Swift, 1985. Effects of liming and air-drying on adsorption of phosphate by some acid soils. J. Soil Sci., 36:513-521.
    Hemminga, M. A., Koutstaal,B.P, et al., 1994a..The nitrogen supply to intertidal eelgrass(Zostera marina). Mar. Biol., 118:223-227.
    Hemminga, M. A., 1998. The root/rhizome system of seagrasses: an asset and a burden. Journal of Sea Research, 39: 183-196.
    Huettel, M., Gust, G., 1992. Impact of bioroughness on interfacial solute exchange in permeable sediments. Marine Ecology Progress Series, 89:253-267.
    Kuwae, T., Kibe, E., Nakamura, Y., 2003. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuarine, Coastal and Shelf Science,57, 929-940.
    Jackson, G. A., et al., 1985. Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea., 34(21): 223-235.
    Jacoby, J. M., D. D. Lynch, E.B. Welch, and M. A. Perkins, 1982. Internal loading of a shallow eutrophic lake. Water Res., 16:911-919.
    Jensen, H.S. and Andersen E.φ., 1992. Importance of temperature, nitrate and pH for phosphate releasr from aerobic sediments of four shallow, eutrophic lakes. Limnol. Oceanogr 37/3:577-589.
    Jorgensen, B. B., 1977. The sulphur cycle of a coastal marine sediment(Limfjorden, Denmark).Limnol. Oceanogr., 22:814-832.
    Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol., 73:218-237.
    Krom, M. D. and R. A. Berner, 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta, 45:207-216.
    Laima, M., Brossard, Sauriau, R, D., Girard, M., Richard, R, Gouleau, D.,Joassard, L., 2002. The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Ol(?)ron Bay, France. Marine Environmental Research, 53: 381-402.
    
    
    Lebuhn, M., B. Heilmann and A. Hartmarm, 1994. Effects of drying/re-wetting stress on microbial auxin production and Ltryptophan catabolism in soils. Biol. Fert. Soils, 18:302-310.
    Lerman, A., 1979. Geochenical Processes: Water and sediment environments. John Wiley & Sons Inc.: 73-120.
    LIU M, BAUGH P J, SIMON S M et al., 2000. Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary. Environmental pollution, 110(2): 357-365.
    Lopez, R., Lluch, X., Vidal, M.,et al., 1996. Adsorption of Phosphorus on sediments of the Balearic (Spain) related to their composition. Estuarine, Coastal and Shelf Science,42:185-195.
    Louchouam, P., Lucotte, M., Duchemin, E. and A. de Vernal, 1997. Early diagenetic processed in recent sediments of the Gulf of St-Lawrence: phosphorus, carbon and iron burial rates.Marine Geology, 139: 181-200.
    Lucotte, M., 1989. Carbon isotope ratios and implication for the maximum turbidity zone in the St-Lawrence Upper Estuary. Estuarine Coastal Shelf Sci., 29: 293-304.
    Mackin, J. E., Aller, R. C., 1984. Ammonium adsorption in marine sediment. Limnology and Oceanography, 29: 250-257.
    MAHMUT (?)ZACAR, 2003. Equilibrium and Kinetic Modelling of Adsorption of Phosphorus on Calcined Alunite. Adsorption, 9: 125-132.
    McComb, A. J., S. Qiu, R. J. Lukatelich and T. F. McAuliffe, 1998. Spatial and temporal heterogeneity of sediment phosphorus in the Peel-Harvey Estuarine System. Estuarine, Coastal and Shelf Science, 47:561-577.
    McLaughlin J. R., Ryden J. C., Syers J. L., 1981. Sorption of inorganic phosphates by iron-and aluminium-components. J. Soil Sci., 32: 365-377.
    Mitchell, A. and D. S. Baldwin, 1998. Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments. Limnol. Oceanogr., 43(3): 481-487.
    Nedwell, D.B., Jickells T.D., 1999. Trimmer M. et al.. Nutrients in Estuaries. Advances in ecological research, 29: 43-92.
    Nienhuis, P. H., 1992. Eutrophication, water management, and functioning og Dutch estuaries and coastal lagoons. Estuaries, 15: 538-548.
    Paludan, C. and Morris, J.,T., 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry, 45, 197-221.
    Pant, H. K., Reddy, K. R., 2001. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Environmental Quality, 30:1474-1480.
    Pennock, J. R. and Sharp, J. H., 1994. Temporal alternation between light-and nutrient-limitation
    
    of phytoplankton production in a coastal plain estuary. Marine Ecology Progress Series Ⅲ,275-288.
    Peter, M. Chapman and Feiyue Wang, 2001. Assessing sediment contamination in estuaries.Environmental Toxicology and Chemistry, 20(1): 3-22.
    Petersoen, O, Borum, J., Duarte, C. M., Forte, M. D., 1998. Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar. Ecol. Prog. Ser, 169: 283-288.
    Purell, R. J., Taplin, B. K., McGovern, D. G., McKinney, R., Norton, S. B., 2000. Orgnic contaminant distributions in sediments, polychaetes (Nereis virens) and American lbster (Homarus americanus) from a laboratory food chain experiment. Marine Environmental Research, 49:19-36.
    Qiu, S. and A. J. McComb, 1994. Effects of oxygen concerntration on phosphorus release from reflooded air-dried wetland sediments. Freshwater Res., 45:1319-1328.
    Qiu, S. and A. J. McComb, 1995. P;anktonic and microbial contributions to phosphorus release from fresh and air-dried sediments. Mar. Freshwater Res., 46:1039-1045.
    Richardson, C. J., 1985. Mechanisms controlling phosphate retention capacity in a fresh water wetland. Science, 228: 1425-1427.
    Roberta Azzoni, Gianmarco, Giordani., 2001. Iron, sulphur and phosphorus cycling in the rhizosphere sediments of a eutrophic Ruppia cirrhosa meadow (Valle Smarlacca, Italy).Journal of Sea Research, 45: 15-26.
    Roden, E. E., Edmonds, J. W., 1997. Phosphate mobilization in iron-rich anaerobic sediments:microbial Fe (Ⅲ) oxides reduction versus iron-sulfide formation. Arch. Hydrobiol., 139: 347-378.
    Rolf Carman, Lars Rahm, 1997. Early diagenesis and chemical characteristic of interstitial water and sediment in the deep deposition bottoms of the Baltic proper. Journal of sea research,37:25-47.
    Ruttenberg, K. C., 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr., 37: 1460-1482.
    Ruttenberg, K. C., Berner, R. A., 1993. Authigenic apatite formation and burial in sediments from non-upwelling, continential margin environments. Geochim. Cosmochim. Acta, 57:991-1007.
    Sanger, D. M., Holl, A. F., Scott, G. I., 1999. Tidal creek and salt marsh sediments in south Carolina coastal estuaries: I. Distribution of trace metals. Environmental Contamination and Toxicology, 7, 445-457.
    Short, F. T. et al., 1990. Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar. Ecol. Prog. Ser., 62:169-174.
    
    
    Slomp, C. R, Malschaert, J. E R, Van Raaphorst W., 1998. The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediment, Limnol.Oceanogr., 43(5): 832-846.
    Sondergaard, M., 1988. Seasonal variations in the loosely sorbed phosphorus fraction of the sediment of a shallow and hyper-eutrophic lake. Environmental Geology and Water Science,11(1): 115-121.
    Stapel, J., Aarts, T. L., Van Duynhoven,B. H. M., De Groot, J. D., Van den Hoogen, P. H. W.,
    Hemminga, M.A., 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar. Eco. Prog. Ser., 134: 195-206.
    Sonzogni, W. C., Chapra, S. C.,Armstrong, D. E. and Logan, T. J., 1982. Bioavailability of phosphorus inputs to lakes. Journal of Environmental Quality, 11(4):555-563.
    Su Jilan,Wang Kangshan, 1989. Changjiang River plume and suspended sediment transport in in Hangzhou Bay. Continental Shelf Research, 9(1): 93-111.
    Sundby B., Gobeil C. and Silverberg N., 1992. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography, 37(6): 1129-1145.
    Sundareshwar, P.V. and Morris, J.T. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnol. Oceanogr. 44/7:1693-1701.
    Tanaka, K. 1988. Phosphate adsorption and desorption by the sediment in the Chikugo River estuary, Japan. Bull Seikai Fish Res Lab 66:1-12.
    Taburinif, F., Sylvain, H., Philipp, S., Francis, E. G., Thierry A., Karl B F., 2002. Dysaerobic conditions during Heinrich events 4 and 5: Evidence from phosphorus distribution in a North Atlantic deep-sea core. Geochimica et Cosmochimica Acta, 66(23): 4069-4083.
    Tuominen, L., T. Kairesalo, and H. Hartikainen, 1994. Comparison of methods for inhibiting bacterial activity in sediment. Appl. Environ. Microbiol., 60:3454-3457.
    Twinch, A. J., 1987. Phosphate exchange characteristics of wet and dried sediments samples from a hypertrophic reservoir: implications for the measurements of sediment phosphorus status.Wat. Res., 21: 1225-1230.
    Vink, S., R. M. Chambers and S. V. Smith, 1997. Distribution of phosphorus in sediments from Tomales Bay, California. Marine Geology, 139: 157-179.
    Vitousek, P. M., Mooney H. A., Lubchenco, H.A., et al., 1997. Human domination of earth's ecosystem. Science, 25,494-499.
    Watts, C. J., 2000. The effect of organic matter on sedimentary phosphorus release in an Australian reservoir. Hydrobiologia, 431: 12-25.
    Watts, C. J., 2000. Seasonal phosphorus release from exposed, re-inundated littoral sediments of two Australian reservoirs. Hydrobiologia, 431:27-39.
    
    
    Williams, J. K. Syers, S. S. Shukla, R. H. Harris, D. F., 1971. Amstrong. Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Environ. Sci.Technol., 5: 1113-1120.
    Williams, T. P., J. M. Bubb, J. N. Lester, 1994. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin, 28(5): 277-290.
    白军红,邓伟,朱颜明,2002.湿地生物地球化学过程研究进展.生态学杂志,21(1):53-57.
    鲍士旦主编,2000.土壤农化分析手册.北京:中国农业出版社,74-76.
    毕春娟,陈振楼,许世远,等,2003.上海滨岸潮滩根际重金属含量季节变化及形态分布.海洋与湖沼,34(2):194-200.
    陈吉余,陈沈良,丁平兴,杨世伦,2001.长江口南汇咀近岸水域泥沙输移途径.长江流域资源境,10(2):166-172.
    陈吉余主编,1988.上海市海岸带和海涂资源综合调查报告,上海科学技术出版社.
    陈静生,等,1998.长江干流近三十年来水质变化探析,环境化学,17(1):8-13.
    陈淑珠,钱红,张经,1997.沉积物对磷酸盐的吸附与释放.青岛海洋大学学报,27(3):413-418.
    陈田耕,1988.关于磷自沉积物的释放.环境科学丛刊,9(1):36-41.
    段水旺,等,2000.长江下游氮、磷含量变化及其输送量的估算.环境科学,21(1):53-56.
    范成新,1995.滆湖沉积物理化特征及磷释放模拟.湖泊科学,7(4):341-350.
    高效江,陈振楼,许世远,刘绿叶,2003.长江口滨岸潮滩沉积物中磷的环境地球化学特征.环境科学学报,23(6):711-715.
    顾德宇,等,1989.一个还原性沉积物的间隙水化学特征.海洋学报,11(2):170-175.
    顾德宇,汤荣坤,余群,1995.大亚湾沉积物间隙水的无机磷硅氮营养盐化学.海洋学报,15(5):73-80.
    郭育延,等,1992.台湾海峡西部海域表层沉积物氧化—还原环境探讨.海洋与湖沼,23(4):396-405.
    韩舞鹰,容荣贵,黄西能,等,1986,海水化学要素调查手册,北京:海洋出版社,33,121-148.
    韩晓非,2002.潮滩植物根际环境的生物地球化学效应及沉积物磁性表征.华东师范大学博士学位论文.
    韩伟明,1992.杭州西湖底泥释磷及对富营养化的影响.环境科学,13(3):25-29.
    韩伟明,1993.底泥释磷及对杭州西湖富营养化的影响.湖泊科学,5(1):71-77.
    何清溪,1990.大亚湾沉积物中磷的化学形态分布特征.海洋环境科学,9(4):6-10.
    侯立军,刘敏,许世远,等,2001.长江口岸带柱状沉积物中磷的存在形态及其环境意义.海洋环境科学,20(2):7-12.
    胡明辉,杨逸萍等,1989.长江口浮游植物生长的磷酸盐限制.海洋学报,11(4):439-443.
    扈传昱,潘建明,刘小涯,2001.珠江口沉积物中磷的赋存形态,海洋环境科学,20(4):21-25.
    
    
    黄自强,暨卫东,等,1994.长江口水样中总磷,有机磷,磷酸盐的变化特征及相互关系.海洋学报,16(1):51-60.
    暨卫东,等,1990.台湾海峡西部营养盐变化特征Ⅰ.水系混合及浮游植物摄取转移对磷酸盐含量变化影响的统计分析.海洋学报,12(4):447-454.
    焦志念,1989.关于沉积物释磷问题的研究.海洋湖沼通报,2:80-84.
    金相灿,等,1990.中国湖泊富营养化.北京:中国环境科学出版社,31-470.
    李克让,张豪禧,尹思明,1995.中国沿海地区灾害发生的环境和社会经济背景.地理研究,14(4):23-31.
    李敏,韦鹤平,王光谦,倪晋仁,2004.长江口、杭州湾水域沉积物对磷吸附行为的研究.海洋学报,26(1):132-136.
    李学刚,吕晓霞,等,2003.渤海沉积物中的“活性铁”与其氧化还原环境的关系.海洋环境科学,22(1):20-24.
    李延,胡兆彬,朱校斌,1983.长江口邻近海域沉积物间隙水的地球化学.海洋与湖沼,14(5):460-469.
    李悦,乌大年,薛永先,1998.沉积物中不同形态磷提取方法的改进及其环境地球化学意义.海洋环境科学,17(1):15-20.
    林荣根,吴景阳.1992.黄河口沉积物中无机磷酸盐的存在形态.海洋与湖沼,23(4):387-395.
    林荣根,吴景阳,1994.黄河口沉积物对磷酸盐的吸附与释放.海洋学报,16(4):82-90.
    刘敏,陆敏,许世远,等,2000.长江口及其上海岸带水体沉积物中磷的存在形态.地学前缘,7(增刊):94-98.
    刘敏,侯立军,许世远,张斌亮,欧冬妮,2001.河口滨岸潮滩沉积物-水界面N、P的扩散通量.海洋环境科学,20(3):19-23.
    刘敏,侯立军,等,2002.长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,57(4):397-406.
    刘敏,侯立军,等,2003.底栖穴居动物对潮滩沉积物营养盐早期成岩作用的影响.上海环境科学,22(3):180-185.
    刘敏,侯立军,等,2004.长江口潮滩“干湿过程”模式下营养盐循环实验模拟研究.海洋学报(已接受).
    刘培芳,陈振楼,刘杰,等,2002.环境因子对长江口潮滩沉积物中NH_4~+-N的释放影响.环境科学研究,15,28-32.
    刘巧梅,刘敏,许世远,等,2002.上海滨岸潮滩不同粒径沉积物中无机形态磷的分布特征.海洋环境科学,21(3):29-33.
    刘素美,张经,2001.沉积物中磷的化学提取分析方法.海洋科学,25(1):22-25.
    刘燕华,李钜章,赵跃龙,1995.中国近代自然灾害程度的区域特征.地理研究,14(3):14-24.
    
    
    刘志光,1993.根际的氧化还原状况与可溶性有机物和氧化物作用的关系.土壤,5,234-237.
    欧冬妮,刘敏,侯立军,等,2004.长江口潮滩根际沉积物磷的累积及其生物有效性.土壤通报(待刊).
    任振球,1996.当代气候变化若干问题商榷.地球科学进展,11(1):504-507.
    沈焕庭,等,2001.长江河口物质通量,北京:海洋出版社:30-31.
    施玉麒,王寒梅,李金柱.上海市海岸带资源现状与未来趋势.上海地质,2003:8-1.
    石晓勇,史致丽,余恒,等,1999.黄河口磷酸盐缓冲机制的探讨Ⅰ.黄河口悬浮物对磷酸盐的吸附-解吸研究.海洋与湖沼,30(2):192-197.
    宋金明,1997.中国近海沉积物-海水界面化学.北京:海洋出版社.
    宋金明,李鹏程,1997.渤海南部沉积物中的活性铁及其氧化还原环境.海洋科学,2:38-4.
    宋金明,2000a.黄河口邻近海域沉积物中可转化的磷.海洋科学,24(7),42-45.
    王春雨,马梅,万国江,刘从强,尹澄清,2004.贵州红枫湖沉积物磷赋存形态及沉积历史.湖泊科学,16(1):21-27.
    王东启,陈振楼,钱嫦萍,等,2002.盐度对崇明东滩沉积物-水界面NH_4~+-N交换行为的影响.海洋环境科学,2002,21(3),5-9.
    王建林,刘芷宇,1992.水稻根际中铁的形态转化.土壤学报,29(4),358-363.
    王庭健,苏睿,金相灿,等,1994.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响.环境科学研究,7(4):12-19.
    翁焕新,刘云峰,1997.滨海沉积物和间隙水中的磷研究-以美国墨西哥湾为例.环境科学学报,17(2):148-153.
    翁焕新,1999.海陆边缘沉积磷在全球变化研究中的意义.环境科学研究,14(5):524-528.
    吴根福,吴雪昌,金承淘等,1998.杭州西湖底泥释磷的初步研究.中国环境科学,18(2):107-110.
    吴志峰,胡伟平,1999.海岸带与地球系统科学研究.地理科学进展,18(4):346-351.
    许金树,李亮歌,1990.台湾海峡中、北部沉积物中磷的存在形态.海洋与湖泊,21(1):62-69.
    许曼丽,范晓晖,1997.营养胁迫下不同植物根系的反应和根际效应.土壤,3:137-141.
    许世远,1997.长江三角洲地区风暴潮沉积研究.北京:科学出版社.
    许世远,陶静,陈振楼,等,1997.上海潮滩沉积物重金属的动力学累积特征.海洋与湖沼,28(9):509-515.
    
    
    徐星凯,张素君,吴龙华,等,1998.有机物料对滨海盐渍土重金属根际效应的影响Ⅰ.土壤内源Fe形态分布.应用生态学报,10(4):430-432.
    杨世伦,陈吉余,1994.试论植物在潮滩发育演变中的作用.海洋与湖沼,25(6):631-635.
    杨荫凯,1998.地球系统科学现行研究的最佳切入点——试论海岸带研究框架的创立.地理科学进展,17(1):73-79.
    尹大强,覃秋荣,阎航,1994.环境因子对五里湖沉积物磷释放的影响.湖泊科学,6(3):240-244.
    张秀梅,梁涛,耿元波,2001.河口、海湾沉积磷在全球变化区域响应研究中的意义.地理科学进展,20(2):161-168.
    郑丽波,叶瑛,周怀阳,王怀照,2003.东海特定海区表层沉积物中磷的形态、分布及其环境意义,海洋与湖沼,34(3):274-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700