猪不同年龄段骨骼肌的差异甲基化组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物出生后骨骼肌的生长发育属于典型的数量性状,主要受到微效多基因网络所调控,其中大量关键的功能基因和调控元件的转录又受到DNA甲基化的调控。本研究分别采集了3头180天和7年(平均日龄为2475天)金华猪雌性猪的背最长肌组织样品,利用MeDIP-seq测序技术进行全基因组水平DNA甲基化分析,同时还利用基因芯片技术对样本的mRNA转录组进行测定,进而揭示了两个年龄段背最长肌的甲基化以及转录水平的差异。结果如下:
     1、肌纤维表型差异:7年猪骨骼肌肌纤维平均直径显著高于180天(7年:54.89±10.00μmVs.180天:44.85±8.60μm,P<0.01);7年猪骨骼肌平均肌纤维横截面面积显著高于180天(7年:2544.70±1035.85μm2vs.180天:1680.96±657.44μm2,P<0.01)
     2、血清指标差异:7年和180天的猪血清脂蛋白α分别为103.10mg/L和94.10mg/L,两者差异不显著(P>0.05);180天的胆固醇比7年高31.3%,达到极显著(P=0.004);180天的低密度脂蛋白比7年的高37.3%,达到显著水平(P=0.03)。表明180天和7年的代谢相关血.清指标存在显著差异。
     3、6个样品的MeDIP测序总共产生了46Gb原始序列数据(每个样品约为7.67Gb),通过筛选得到36.6Gb(75.24%)唯一匹配到基因组的非重复序列。
     (1)对基因组甲基化水平与染色体相关特征指标进行相关性分析,结果表明甲基化程度与染色体长度成极显著的负相关(r=-0.63,p=0.0036),与GC含量和CpGo/e率成极显著的正相关,相关系数分别为0.787(P<0.01)和0.931(P<0.01);与每kb的重复数、每Mb的基因数和每Mb的SNP数成正相关,相关系数分别为0.348(P>0.05)、0.516(P<0.05)和0.549(P>0.05)。各染色体的亚端粒区和非亚端粒区之间的甲基化水平存在显著性差异(P<0.05)。(2)24个基因元件之间的甲基化程度存在差异:两个年龄段在高CpG启动子(HCP)和中等CpG启动子(ICP)之间的甲基化程度呈现出极显著差异(P<0.01);两组在ICP和LCP之间的甲基化程度差异达到极显著(P<0.01)。180天在HCP和低CpG启动子(LCP)之间的甲基化程度则达到显著水平(P=0.0275),7年的则不存在显著(P=0.135)。表明ICPs更易被甲基化,这种甲基化状态的改变可能在调控相关基因表达和衰老等生物学过程中发挥着重要的作用。对不同基因组位置的CGI和CGI Shore的甲基化程度进行比较,发现甲基化差异主要体现在基因内和基因间的CGI和CGI Shore中。
     4、差异甲基化区域(DMR)分析:180天和7年的DMR有9,234个,占基因组长度的0.064%,所含CpG数目占基因组CpG总数目的28%。
     (1)DMR的分布差异:启动子区域内,HCP与LCP相比,DMR在ICP更富集;在D区、I区和P区富集的DMR个数分别是121个(占44%)、82个(占30%)和72个(占26%);DMR在基因间最为富集,占DMR总数的58.98%;其次为中间的内含子,有2378个,占DMR总数的25.19%。DMR在第一外显子中富集较少;有168个和875个DMR富集在CGI中和CGI Shore中,CGI Shore中DMR数目为CGI中DMR数目的5.21倍。
     (2)将启动子区域差异甲基化的基因进行功能富集分析,发现这些差异甲基化的基因富集在蛋白调控的丝裂原激活的蛋白激酶(MAPK)信号通路等52个GO和Pathway中(228个基因,P=0.05),所涉及的生物学功能可能影响肌肉组织的生长发育。从一定程度上揭示了两个年龄段的骨骼肌表型差异的分子基础。
     5、转录水平的差异:
     (1)芯片数据的可靠性:①芯片的检出率高且集中在61%~69%之间;②芯片的重复性探针变异系数(C.V)在3.5%-6.5%之间,均高于C.V<15%的成功实验标准;③箱图(Box plot)的结果也显示芯片数据具有很相似的离散度,说明标准化的效果比较理想。这些结果均表明本研究结果准确可靠,检测数据能够真实反映基因的表达变化规律。
     (2)本研究芯片共43,663个探针(以60mer的长度),检出23,283个探针(占53.32%)表达超过阈值,比对到猪参考基因组(猪10.2版本)对应22,043个基因,有4,184个基因表达量在两组间差异显著(P<0.05),其中,7年相对180天的上调基因和下调基因分别有2,012个和2,172个。
     (3)对差异基因进行功能富集分析,得到199个显著的GO和Pathway(3212个基因,P=0.05),如转化生长因子(TGF)调控的TGF-β受体结合通路、热应激因子(HSF)诱导的热应激蛋白结合通路和整合素、蛋白聚糖、CD36介导的细胞外基质(ECM)受体通路等,揭示了肌肉组织的生长发育及其增龄性的变化可能与这些过程和通路相关。
     6、甲基化介导的基因表达差异:在3,212个差异表达基因中,有46个启动子区域存在甲基化差异,其中16个基因的启动子甲基化程度与其基因表达量呈正相关(r=0.759,P=0.0007),如MYO5C、ALDOC和MYL12B等;其它30个基因的启动子甲基化程度与其基因表达量呈负相关(r=-0.647,P=0.0001),如GPR143、GRN和NTF32等。揭示本研究中发现的差异基因可能参与了肌肉的生长发育及其增龄性变化。比如,KCNB1基因、MyoZl基因和SEPN1基因等。
     7、为了验证试验的准确性,本试验还利用BSP技术验证了ALDOC和KCNB1基因的甲基化程度,发现两种技术的结果一致。对启动子区域的差异甲基化基因以及差异表达mRNA分别进行功能富集分析,发现甲基化和mRNA差异的基因均富集在生物学粘附、循环系统进程、血液循环、细胞增殖的调控和对内源性刺激的反应、铁离子结合和ATP酶活性6个生物学过程,表明这些过程对生物体的发育具有重要的作用。
     本研究筛选出了对于猪骨骼肌的生长发育可能具有重要影响和较大研究价值的功能基因,初步揭示了在肌肉生长发育及其增龄性变化中的基因表达调控及局部分子互作机制,以及造成猪肌肉宏观性状表型差异的表观调控模式。
The growth and development of skeletal muscle postnatal belongs to the typical quantitative character, and it is regulated by the regulation net that mainly consists of related minorgene. The DNA methylation plays a key role in regulation of these functional genes and the transcription of regulatory element.
     A total of six healthy Jinhua pigs of two age groups were used in this study.3pigs in180days old and3pigs in seven years old (the average age in2,475days). The longissimus dorsi muscles were sampled rapidly from each carcass and were analyzed for the DNA methylation by using the MeDlP-Seq approach. Moreover, we also investigated the differences of mRNA transcriptomes between these two age stages. This study preliminarily revealed the methylation and transcriptional differences of the Longissimus dorsi in two age stages.
     I The average diameter of the Longissimus dorsi muscle were significantly (P<0.01) different between the180days and7years groups, the values were (44.85±8.60) μm and (54.89±10.00) μm, respectively; and cross sectional area of180days-aged and7years-aged also were significantly(P<0.01), the values were (1680.96+657.44) μm2and (2544.70+1035.85) μm2, respectively.
     II The lipoprotein α content of180days aged pigs (103.10mg/L) were higher than that of the7years-aged pigs (94.10mg/L)(P>0.05); the cholesterol of180days aged pigs was31.3%higher than that of7years-aged pigs (P=0.004); the low density lipoprotein of180days aged pigs was37.3%higher than that of the years aged pigs (P=0.03).
     III A total of46Gb methylated DNA immunoprecipitation sequencing (MeDIP-seq) data were generated from six samples (about7.64Gb data for each sample), of which75%unique reads (-36.56Gb) were uniquely mapped to the pig genome.
     (i) We found that methylation level across the choromosome negatively correlated with chromosomal length (Pearson's r=0.633, P=0.0036) and positively correlated with GC content (Pearson's r=0.787, P=6.49×10-5), SNP density (Pearson's r=0.549, P=0.0149), gene density (Pearson's r=0.516, P=0.0236),density of repeat region (Pearson'r=0.0348, P=0.145). and especially with CpGo/e ratio (Pearson's r=0.931, P=7.41×10-9).We also found the different methylation level presented in the subtelomeric region of each chromasome.
     (ii) ICP in both young and middle-aged pigs exhibited relativley higher methylation level than HCP and LCP (P<0.01). The majority of methylated CpG Island located in intragenic and intergenic regions, whereas the CpG Island in promoter showed hypomethylated. It demonstrated that ICPs were more susceptible to methylation and this kind of alteration of methylation status in ICP may play important role in modulating relevant gene expression and involved in some biological process such as aging.
     IV In total9,234DMR were identified which accounted for6.41%of genomic length and28%of genomic CpG number..
     (i) For promoters, more DMRs were enriched in ICPs when compared with HCPs and LCPs. Distal(D), intermediate (Ⅰ) and proximal (P) regions of promoters contained121(occupied44%),82(occupied30%) and72(occupied26%), respectively. This result reveals the D regions of promoters contained14%more of DMRs than I regions, and18%more of DMRs than P regions. The vast majority of DMRs (5,567DMRs which occupied58.98%of gene bodies) located in intergenic followed by the medial intron (2,378DMRs, occupied25.19%of gene bodies). The first exon contained relatively low DMRs within the gene body. DMRs enriched in CGI (168) and CGI Shore (875).Then, in CGI Shore, there were287(occupied27.52%of all CGI Shore),224(occupied21.47%of all CGI Shore) and270(occupied25.98%of all CGI Shore)
     (ii) In order to know the change of expression, functional enrichment analysis of differential methylated genes (228genes, P<0.05)was employed. The results revealed a total of52GO and pathways including the pathway of mitogen-activated protein kinase (MAPK), which may have an effect on skeletal muscle development. Based on the results, we can speculate the molecular basis of muscle phenotypic variation between the180days-aged and the7years-aged pigs.
     V(i) Reliability of chip data:It is revealed that the chip data is reliable and accurate. Repeatability analysis indicated that average coefficient of variation (C. V) within arrays were between3.5%~6.5%for expression profilingof longissimus dorsi muscle. The Box Plot also showed the similar dispersion. These resultes demonstrate that the microarray technique used in this study is accurate and reproducible.
     (ii) A total of43,663probes (size in60mer) were generated from six samples, of which23,283unique probes were aligned to the pig genome and were mapped to22043genes. There were total4,184differently expressed genes (P<0.05), of which2,012were up-regulated and2,172were down-regulated in the comparision of7yeras vs.180days. And among them3,212(7.36%) genes was unigene.
     (iii) The top ten Go and pathways like as heat shock fator, transforming growth factor and extracellular matrix,which may regulate growth and development of muscle between180days-aged and7years-aged pigs.
     VI Of the888differently expressed genes, pomoter region of46genes showed different methylation level, of which16genes showed positively correlation (r=0.759, P=0.0007) between the promoter methylation and mRNA expression level, eg. MYO5C、ALDOC and MYL12B et al.; and30genes showed negtively correlation (r=-0.647, P=0.0001), eg. GPR143、 GRN and NTF32et al. The genes of ALDOC and KCNB1result by BSP also verfied the same trends in the DMR.
     VII The same GO or pathway was mapped of the difference genes in DMRs and mRNA revealed that there have5GO or pathway, including the circulatory system process, iron ion binding and ATPase activity,etc.
     These results highlight some possible candidate functional genes that have great influence and more research value for the growth and development of skeletal muscle of porcine, and preliminary revealed the partial molecular interaction mechanism of the gene exprssion and regulation during the growth and development of skeletal muscle with aging, and also reaveld the epigenetic regulation pattern in the formation of macroscopical phenotypic difference in porcine skeletal muscle.
引文
[1]樊福好.我国猪群健康管理体系的构建[J].养猪.2011,(3):57-60.
    [2]金访中,黄瑞华,下松均等长白猪胴体组成与瘦肉率的关系[J].南京农业大学学报.2000,23(1):55-57.
    [3]陈谊.电子枪改变胴体分等的方法[J].国外畜牧学.猪与禽.1984,4:039.
    [4]Rehfeldt C, Fiedler I, Dietl G et al. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection[J]. Livestock Production Science.2000,66(2):177-188.
    [5]Wegner J, Albrecht E, Fiedler I et al. Growth-and breed-related changes of muscle fiber characteristics in cattle[J]. Journal of Animal Science.2000,78(6):1485-1496.
    [6]Seideman S, Crouse J. The effects of sex condition, genotype and diet on bovine muscle fiber characteristics[J]. Meat Science.1986,17(1):55-72.
    [7]Petersen J, Henckel P, Oksbjerg N et al. Adaptations in muscle fibre characteristics induced by physical activity in pigs[J]. Animal Science.1998,66(03):733-740.
    [8]Spencer G. Hormonal systems regulating growth. A review[J]. Livestock Production Science.1985,12(1): 31-46.
    [9]Fiedler J, Rehfeldt C, Ender K. Muskelfasermerkmale:Neue Selektionskriterien? Kann man von der Mikrostruktur des Muskelgewebes auf die Merkmale Fleischansatz, Fleischbeschaffenheit und Belastbarkeit schliessen?[J]. Tierzuechter.1991,43.
    [10]Penney R, Prentis P, Marshall P et al. Differentiation of muscle and the determination of ultimate tissue size[J]. Cell and tissue research.1983,228(2):375-388.
    [11]沈元新,徐继初.金华猪及其杂种肌肉组织学特性与肉质的关系[J].浙江大学学报(农业与生命科学版).1984,3.
    [12]武艳群,吴旧生,赵晓枫等.猪CAST基因多态性与肌纤维组织学特性及屠宰性状的相关性分析[J].遗传.2007,29(1):65-69.
    [13]吴德,杨风,周安国等 含不同比例梅山猪血缘杂交肉猪肉质及肌纤维组织学特性研究[J].养猪.2003,1:24-27.
    [14]Wigmore P, Stickland N. Muscle development in large and small pig fetuses[J]. Journal of Anatomy. 1983,137(Pt2):235.
    [15]Dwyer C, Fletcher J, Stickland N. Muscle cellularity and postnatal growth in the pig[J]. Journal of Animal Science.1993,71(12):3339-3343.
    [16]Staun H. The nutritional and genetic influence on number and size of muscle fibres and their response to carcass quality in pigs[J]. World Rev. Anim. Prod.1972,3:18-26.
    [17]Szentkuti L, Schlegel O. Genetic and functional influences on fibre type proportions and fibre diameter in M. longissimus dorsi and M. semitendinosus of pigs. Studies on trained domestic pigs and immobile kept wild type pigs[J]. Deutsche Tierarztliche Wochenschrift.1985,92:93-97.
    [18]Rehfeldt C, Fiedler I, Stickland NC. Number and size of muscle fibres in relation to meat production[J]. Muscle development of livestock animals:physiology, genetics, and meat quality.2004:1-37.
    [19]Rehfeldt C, Ender K. Somatotropin action on skeletal muscle and backfat cellularity in pigs of different breed and halothane sensitivity[J]. Archiv fur Tierzucht.1995,38:405-416.
    [20]常秉文,刘永志.盐酸克伦特罗及其危害[J][J].内蒙古畜牧科学.2002,2:38-39.
    [21]Claus R, Weiler U. Endocrine regulation of growth and metabolism in the pig:a review[J]. Livestock Production Science.1994,37(3):245-260.
    [22]Ryu Y, Kim B. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle[J]. Meat Science.2005,71(2):351-357.
    [23]Carmeli E, Reznick AZ. The physiology and biochemistry of skeletal muscle atrophy as a function of age. In:Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, NY); 1994:Royal Society of Medicine; 1994. p.103-113.
    [24]Lee C-K, Klopp RG, Weindruch R et al. Gene expression profile of aging and its retardation by caloric restriction [J]. Science.1999,285(5432):1390-1393.
    [25]黄艳娜.超表达瘦素和脂联素对肌纤维类型和肌肉中脂肪分解关键功能基因影响的研究:浙江 大学;2011.
    [26]郭佳.金华猪和长白猪肌纤维组成差异及ERK基因对肌纤维转化的影响研究:浙江大学;2011.
    [27]赵微,曾瑞霞,苏玉虹等 猪CFL2b基因在成肌细胞中的表达及对肌球蛋白重链基因表达的影响[J].动物学报.2009,54(6):1014-1019.
    [28]王恒.肌肉中Calsarcin基因的差异表达和转录调控研究:武汉:华中农业大学;2007.
    [29]郭云雁.猪c-fos和MyoG基因与肌纤维性状的关联性研究:中国农业科学院;2007.
    [30]冯政.猪骨骼肌发育相关新基因家族BTG/TOB的克隆及功能研究:华中农业大学;2007.
    [31]闵小红.猪PPARGC1A基因在不同组织和生长发育阶段中的差异表达:四川农业大学;2008.
    [32]Bird A. DNA methylation patterns and epigenetic memory[J]. Genes & development.2002,16(1): 6-21.
    [33]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science.2001, 293(5532):1068-1070.
    [34]Richardson B. Impact of aging on DNA methylation[J]. Ageing research reviews.2003,2(3):245-261.
    [35]Okano M, Bell DW, Haber DA et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell.1999,99(3):247-257.
    [36]Liang G, Chan MF, Tomigahara Y et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements[J]. Molecular and cellular biology.2002,22(2): 480-491.
    [37]Avner P, Heard E. X-chromosome inactivation:counting, choice and initiation[J]. Nature Reviews Genetics.2001,2(1):59-66.
    [38]Sheardown SA, Duthie SM, Johnston CM et al. Stabilization of Xist RNA Mediates Initiation of X Chromosome lnactivation[J]. Cell.1997,91(1):99-107.
    [39]Keohane AM, O'neill LP, Belyaev ND et al. X-lnactivation and histone H4 acetylation in embryonic stem cells[J]. Developmental biology.1996,180(2):618.
    [40]Mermoud JE, Popova B, Peters AH et al. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation[J]. Current biology.2002,12(3):247-251.
    [41]Rasmussen TP, Wutz A, Pehrson JR et al. Expression of Xist RNA is sufficient to initiate macrochromatin body formation[J]. Chromosoma.2001,110(6):411-420.
    [42]Rasmussen TP, Mastrangelo M-A, Eden A et al. Dynamic relocalization of histone MacroH2Al from centrosomes to inactive X chromosomes during X inactivation[J]. The Journal of cell biology.2000, 150(5):1189-1198.
    [43]Csankovszki G, Nagy A, Jaenisch R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation[J]. The Journal of cell biology.2001, 153(4):773-784.
    [44]Heller G, Zielinski CC, Zochbauer-Muller S. Lung cancer:from single-gene methylation to methylome profiling[J]. Cancer and Metastasis Reviews.2010,29(1):95-107.
    [45]Meissner A, Gnirke A, Bell GW et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis[J]. Nucleic acids research.2005,33(18):5868-5877.
    [46]Laird PW. Principles and challenges of genome-wide DNA methylation analysis[J]. Nature Reviews Genetics.2010,11(3):191-203.
    [47]Pelizzola M, Ecker J R. The DNA methylome[J]. FEBS letters.2010.
    [48]Weber M, Davies JJ, Wittig D et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nature genetics.2005, 37(8):853-862.
    [49]Frommer M, McDonald LE, Millar DS et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J]. Proceedings of the National Academy of Sciences.1992,89(5):1827-1831.
    [50]Clark SJ, Statham A, Stirzaker C et al. DNA methylation:bisulphite modification and analysis[J]. Nature protocols.2006,1(5):2353-2364.
    [51]Laird PW. The power and the promise of DNA methylation markers[J]. Nature Reviews Cancer.2003,3: 253-266.
    [52]Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science.2009,324(5929):930-935.
    [53]Klose RJ, Bird AP. Genomic DNA methylation:the mark and its mediators[J]. Trends in biochemical sciences.2006,31(2):89-97.
    [54]Ono T, Takahashi N, Okada S. Age-associated changes in DNA methylation and mRNA level of the c-myc gene in spleen and liver of mice[J]. Mutation research.1989,219(1):39.
    [55]Maegawa S, Hinkal G, Kim HS et al. Widespread and tissue specific age-related DNA methylation changes in mice[J]. Genome research.2010,20(3):332-340.
    [56]Mays-Hoopes LL. Age-related changes in DNA methylation:do they represent continued developmental changes[J]. Int. Rev. Cytol.1989,114:181-220.
    [57]Issa J-P. CpG island methylator phenotype in cancer[J]. Nature Reviews Cancer.2004,4(12):988-993.
    [58]Braunschweig MH, Owczarek-Lipska M, Stahlberger-Saitbekova N. Relationship of porcine IGF2 imprinting status to DNA methylation at the H19 DMD and the IGF2 DMRs 1 and 2[J]. BMC genetics. 2011,12(1):47.
    [59]邢婉丽,程京.生物芯片技术:清华大学出版社有限公司;2004.
    [60]王升启.基因芯片技术及应用研究进展[J].生物工程进展.1999,19(4):45-51.
    [61]田振军,张志琪.应用cDNA微矩阵基因芯片筛选运动性心肌肥大相关基因的初步研究[J].中国运动医学杂志.2002,21(2):122-126.
    [62]陆祖宏,何农跃.基因芯片技术在药物研究和开发中的应用[J].中国药科大学学报.2001,32(2):81-86.
    [63]吴雪琼,张琼,张俊仙等.应用基因芯片分析结核分枝杆菌常见耐药基因型的研究[J].中国防痨杂志.2006,28(1):4-10.
    [64]许拉,黄健,杨冰.病原检测基因芯片应用及在水产病害检测的前景[J].海洋水产研究.2008,29(1):109-114.
    [65]Dubiley S, Kirillov E, Lysov Y et al. Fractionation, phosphorylation and ligation on oligonucleotide microchips to enhance sequencing by hybridization[J]. Nucleic acids research.1997,25(12): 2259-2265.
    [66]Lizardi PM, Huang X, Zhu Z et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nature genetics.1998,19(3):225-232.
    [67]Welle S, Brooks Al, Delehanty JM et al. Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women[J]. Experimental gerontology.2004,39(3):369-377.
    [68]Stevenson EJ, Giresi PG, Koncarevic A et al. Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle[J]. The Journal of physiology.2003,551(1):33-48.
    [69]Kayo T, Allison DB, Weindruch R et al. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys[J]. Proceedings of the national academy of sciences. 2001,98(9):5093-5098.
    [70]刘红林,陈杰.猪肉品质及其影响因素——影响猪肉品质的遗传因素[J].畜牧与兽医.2000,32(6):38-40.
    [71]朱砺,李学伟,李芳琼等.肌纤维生长的影响因素分析[J].四川农业大学学报.2002,20(1):29-31.
    [72]Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy?:Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men[J]. Journal of the neurological sciences.1988,84(2):275-294.
    [73]Short KR, Vittone JL, Bigelow ML et al. Age and aerobic exercise training effects on whole body and muscle protein metabolism[J]. American Journal of Physiology-Endocrinology And Metabolism. 2004,286(1):E92-E101.
    [74]Lindle R, Metter E, Lynch N et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr[J]. Journal of Applied Physiology.1997,83(5):1581-1587.
    [75]Lexell J, Henriksson-Larsen K, Winblad B et al. Distribution of different fiber types in human skeletal muscles:effects of aging studied in whole muscle cross sections[J]. Muscle & nerve.1983,6(8): 588-595.
    [76]Short KR, Vittone JL, Bigelow ML et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity[J]. Diabetes.2003,52(8):1888-1896.
    [77]杨漠,李卉芬.中老年血清胆固醇,甘油三酯与性别,年龄关系的探讨[J].中国慢性病预防与控制.1997,5(5):2-2.
    [78]顾东风.心血.管病预防的现状和展望[J].中华预防医学杂志.2003,37(2):75-76.
    [79]王劲松,余金明,胡大一et al.北京城乡社区20~44岁居民高血压患病率及其危险因素[J].中华高血压杂志.2009,17(9):811-816.
    [80]Palmke N, Santacruz D, Walter J. Comprehensive analysis of DNA-methylation in mammalian tissues using MeDIP-chip[J]. Methods.2011,53(2):175-184.
    [81]Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22[J]. Proceedings of the National Academy of Sciences.2002,99(6):3740-3745.
    [82]Numata S, Ye T, Hyde TM et al. DNA methylation signatures in development and aging of the human prefrontal cortex[J]. The American Journal of Human Genetics.2012.
    [83]Hughes T, Webb R, Fei Y et al. DNA methylome in human CD4+ T cells identifies transcriptionally repressive and non-repressive methylation peaks[J]. Genes and immunity.2010,11(7):554-560.
    [84]Elango N, Kim S-H, Vigoda E et al. Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation[J]. PLoS computational biology.2008,4(2): e1000015.
    [85]Bird AP. DNA methylation and the frequency of CpG in animal DNA[J]. Nucleic acids research.1980, 8(7):1499-1504.
    [86]Suzuki MM, Kerr AR, De Sousa D et al. CpG methylation is targeted to transcription units in an invertebrate genome[J]. Genome research.2007,17(5):625-631.
    [87]Feinberg AP. Phenotypic plasticity and the epigenetics of human disease[J]. Nature.2007,447(7143): 433-440.
    [88]Duret L, Galtier N. The covariation between TpA deficiency, CpG deficiency, and G+C content of human isochores is due to a mathematical artifact[J]. Molecular biology and evolution.2000, 17(11):1620-1625.
    [89]Zhang D, Cheng L, Badner JA et al. Genetic control of individual differences in gene-specific methylation in human brain[J]. The American Journal of Human Genetics.2010,86(3):411-419.
    [90]Smith ZD, Chan MM, Mikkelsen TS et al. A unique regulatory phase of DNA methylation in the early mammalian embryo[J]. Nature.2012,484(7394):339-344.
    [91]Brookes AJ. The essence of SNPs[J]. Gene.1999,234(2):177-186.
    [92]Syvanen A. Accessing genetic variation:genotyping single nucleotide polymorphisms[J]. Nature Reviews Genetics.2001,2(12):930-942.
    [93]Heijmans BT, Kremer D, Tobi EW et al. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus[J]. Human molecular genetics.2007,16(5):547-554.
    [94]Boissonnas CC, El Abdalaoui H, Haelewyn V et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men[J]. European Journal of Human Genetics.2009,18(1):73-80.
    [95]Counter CM, Avilion AA, LeFeuvre CE et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity[J]. The EMBO journal. 1992,11(5):1921.
    [96]Hastie ND, Dempster M, Dunlop MG et al. Telomere reduction in human colorectal carcinoma and with ageing[J]. Nature.1990,346(6287):866-868.
    [97]Allsopp RC, Vaziri H, Patterson C et al. Telomere length predicts replicative capacity of human fibroblasts[J]. Proceedings of the National Academy of Sciences.1992,89(21):10114-10118.
    [98]Devereux TR, Horikawa I, Anna CH et al. DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene[J]. Cancer research.1999,59(24): 6087-6090.
    [99]Bolsheva N, Gokhman V, Muravenko O et al. Comparative cytogenetic study on two species of the genus Entedon Dalman,1820 (Hymenoptera, Eulophidae) using DNA-binding fluorochromes and molecular and immunofluorescent markers[J]. Comparative Cytogenetics.2012,6(1):79-92.
    [100]Blasco MA. The epigenetic regulation of mammalian telomeres[J]. Nature Reviews Genetics.2007, 8(4):299-309.
    [101]Liu L, Bailey SM, Okuka M et al. Telomere lengthening early in development[J]. Nature cell biology. 2007,9(12):1436-1441.
    [102]Li M, Wu H, Luo Z et al. An atlas of DNA methylomes in porcine adipose and muscle tissues[J]. Nature Communications.2012,3:850.
    [103]Busslinger M, Hurst J, Flavell R. DNA methylation and the regulation of globin gene expression[J]. Cell.1983,34(1):197-206.
    [104]Irizarry RA, Ladd-Acosta C, Wen B et al. The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores[J]. Nature genetics.2009,41(2): 178-186.
    [105]潘炜松PRMT1通过对MyoD精氨酸甲基化修饰调控成肌细胞分化:北京协和医学院;2010.
    [106]Eckhardt F, Lewin J, Cortese R et al. DNA methylation profiling of human chromosomes 6,20 and 22[J]. Nature genetics.2006,38(12):1378-1385.
    [107]Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression[J]. Biochemical and biophysical research communications.2009,383(4):421-425.
    [108]Davies M, Volta M, Pidsley R et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood[J]. Genome Biology.2012,13(6):R43.
    [109]Bell M, Hirst M, Nakahori Y et al. Physical mapping across the fragile X:hypermethylation and clinical expression of the fragile X syndrome[J]. Cell.1991,64(4):861-866.
    [110]Sutcliffe JS, Nelson DL, Zhang F et al. DNA methylation represses FMR-1 transcription in fragile X syndrome[J]. Human molecular genetics.1992,1(6):397-400.
    [111]李明桂,徐洪涛,李隐侠等b-Boule基因5'调控序列的克隆与睾丸组织DMR甲基化分析[J].中国农业科学.2011,44(18):3859-3867.
    [112]Long J-E, Cai X. lgf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle[J]. Gene.2007,388(1):125-134.
    [113]Antequera F. Structure, function and evolution of CpG island promoters[J]. Cellular and Molecular Life Sciences.2003,60(8):1647-1658.
    [114]Takai D, Jones PA. The CpG island searcher:a new WWW resource[J]. In silico biology.2003,3(3): 235-240.
    [115]Bibikova M, Le J, Barnes B et al. Genome-wide DNA methylation profiling using Infinium assay[J]. Epigenomics.2009,1(1):177-200.
    [116]Shen L, Kondo Y, Guo Y et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters[J]. PLoS genetics.2007,3(10):e181.
    [117]Manning G, Whyte DB, Martinez R et al. The protein kinase complement of the human genome[J]. Science.2002,298(5600):1912-1934.
    [118]Pearson G, Robinson F, Gibson TB et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions[J]. Endocrine reviews.2001,22(2):153-183.
    [119]Li Y, Xu Z, Li H et al. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs[J]. International journal of biological sciences.2010,6(4):350.
    [120]Williamson D, Gallagher P, Harber M et al. Mitogen-activated protein kinase (MAPK) pathway activation:effects of age and acute exercise on human skeletal muscle[J]. The Journal of physiology. 2003,547(3):977-987.
    [121]Beiβbarth T, Speed TP. GOstat:find statistically overrepresented Gene Ontologies within a group of genes[J]. Bioinformatics.2004,20(9):1464-1465.
    [122]A1-Shahrour F, Di'az-Uriarte R, Dopazo J. FatiGO:a web tool for finding significant associations of Gene Ontology terms with groups of genes[J]. Bioinformatics.2004,20(4):578-580.
    [123]Zeeberg BR, Feng W, Wang G et al. GoMiner:a resource for biological interpretation of genomic and proteomic data[J]. Genome Biol.2003,4(4):R28.
    [124]Ogata H, Goto S, Sato K et al. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic acids research.1999,27(1):29-34.
    [125]Howe E, Holton K, Nair S et al. MeV:multiExperiment viewer. In:Biomedical Informatics for Cancer Research:Springer; 2010:267-277.
    [126]Sherman BT, Tan Q, Kir J et al. DAVID Bioinformatics Resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic acids research.2007, 35(suppl 2):W169-W175.
    [127]王兴仁,张录达,王华方.正交试验设置重复的必要性和统计分析方法[J].土壤通报.2000,31(3):135-139.
    [128]Simmons PT, Portier CJ. Toxicogenomics:the new frontier in risk analysis[J]. Carcinogenesis.2002, 23(6):903-905.
    [129]Beiβbarth T, Fellenberg K, Brors B et al. Processing and quality control of DNA array hybridization dadata[J]. Bioinformatics.2000,16(11):1014-1022.
    [130]Durbin BP, Hardin JS, Hawkins DM et al. A variance-stabilizing transformation for gene-expression microarray data[J]. Bioinformatics.2002,18(suppl 1):S105-S110.
    [131]De Maio A. Heat shock proteins:facts, thoughts, and dreams[J]. Shock.1999,11(1):1-12.
    [132]Wu C. Heat shock transcription factors:structure and regulation[J]. Annual review of cell and developmental biology.1995,11(1):441-469.
    [133]Morley JF, Morimoto Rl. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones[J]. Molecular biology of the cell.2004,15(2):657-664.
    [134]Wolkow CA, Kimura KD, Lee M-S et al. Regulation of C. elegans life-span by insulinlike signaling in the nervous system[J]. Science Signaling.2000,290(5489):147.
    [135]Anders RA, Arline SL, Dore JJ et al. Distinct endocytic responses of heteromeric and homomeric transforming growth factor β receptors[J]. Molecular biology of the cell.1997,8(11):2133-2143.
    [136]Davidson JM, Zoia O, Liu JM. Modulation of transforming growth factor-beta 1 stimulated elastin and collagen production and proliferation in porcine vascular smooth muscle cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-a, and insulin-like growth factor-I[J]. Journal of cellular physiology.1993,155(1):149-156.
    [137]McCaffrey T, Falcone D. Evidence for an age-related dysfunction in the antiproliferative response to transforming growth factor-beta in vascular smooth muscle cells[J]. Molecular biology of the cell. 1993,4(3):315.
    [138]Reddy K, Mangale SS. Integrin receptors:the dynamic modulators of endometrial function[J]. Tissue & cell.2003,35(4):260-273.
    [139]Martin PT. Dystroglycan glycosylation and its role in matrix binding in skeletal muscle[J]. Glycobiology. 2003,13(8):55R-66R.
    [140]Nielsen M, Hansen J, Hedegaard J et al. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing[J]. Animal Genetics.2010,41(2):159-168.
    [141]Jiang C, Shi P, Li S et al. Gene expression profiling of skeletal muscle of nursing piglets[J]. International journal of biological sciences.2010,6(7):627.
    [142]Danen EH, Yamada KM. Fibronectin, integrins, and growth control[J]. Journal of cellular physiology. 2001,189(1):1-13.
    [143]Guo W, Giancotti FG. Integrin signalling during tumour progression[J]. Nature reviews Molecular cell biology.2004,5(10):816-826.
    [144]Alnaqeeb M, Al Zaid N, Goldspink G. Connective tissue changes and physical properties of developing and ageing skeletal muscle[J]. Journal of Anatomy.1984,139(Pt 4):677.
    [145]Klossner S, Durieux A-C, Freyssenet D et al, Mechano-transduction to muscle protein synthesis is modulated by FAK[J]. European journal of applied physiology.2009,106(3):389-398.
    [146]Wu Y, Dowbenko D, Lasky LA. PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase[J]. Journal of Biological Chemistry. 1998,273(46):30487-30496.
    [147]Spencer S, Dowbenko D, Cheng J et al. PSTPIP:a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase[J]. The Journal of cell biology.1997,138(4):845-860.
    [148]Jurynec MJ, Xia R, Mackrill JJ et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle[J]. Proceedings of the national academy of sciences.2008,105(34):12485-12490.
    [149]Mackrill JJ. Ryanodine receptor calcium channels and their partners as drug targets[J]. Biochemical pharmacology.2010,79(11):1535-1543.
    [150]Cotella D, Hernandez-Enriquez B, Wu X et al. Toxic role of K+channel oxidation in Mammalian brain[J]. The Journal of Neuroscience.2012,32(12):4133-4144.
    [151]Homma K, Okamoto S, Mandai M et al. Developing Rods Transplanted into the Degenerating Retina of Crx-knockout Mice Exhibit Neural Activity Similar to Native Photoreceptors[J]. STEM CELLS. 2013.
    [152]Takada F, Woude DLV, Tong H-Q et al. Myozenin:an a-actinin-and γ-filamin-binding protein of skeletal muscle Z lines[J]. Proceedings of the national academy of sciences.2001,98(4):1595-1600.
    [153]Moriscot AS, Baptista IL, Bogomolovas J et al. MuRFl is a muscle fiber-type Ⅱ associated factor and together with MuRF2 regulates type-ll fiber trophicity and maintenance[J]. Journal of structural biology.2010,170(2):344-353.
    [154]Finch C, Huebers H. Perspectives in iron metabolism[J]. New England Journal of Medicine.1982,306.
    [155]Bian K, Gao Z, Weisbrodt N et al. The nature of heme/iron-induced protein tyrosine nitration[J]. Proceedings of the National Academy of Sciences.2003,100(10):5712-5717.
    [156]Sohal RS, Wennberg-Kirch E, Jaiswal K et al. Effect of age and caloric restriction on bleomycin-chelatable and nonheme iron in different tissues of C57BL/6 mice[J]. Free Radical Biology and Medicine.1999,27(3):287-293.
    [157]Cook Cl, Yu BP. Iron accumulation in aging:modulation by dietary restriction[J]. Mechanisms of ageing and development.1998,102(1):1-13.
    [158]Altun M, Edstrom E, Spooner E et al. Iron load and redox stress in skeletal muscle of aged rats[J]. Muscle & nerve.2007,36(2):223-233.
    [159]Jung SH, DeRuisseau LR, Kavazis AN et al. Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins[J]. Experimental physiology.2008, 93(3):407-414.
    [160]Lowe DA, Husom AD, Ferrington DA et al. Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats[J]. Mechanisms of ageing and development.2004,125(9):619-627.
    [161]Florini JR, Ewton DZ, Roof L et al. Skeletal muscle fiber types and myosin ATPase activity do not change with age or growth hormone administration[J]. Journal of Gerontology.1989,44(5): B110-B117.
    [162]Sivaramakrishnan M, Burke M. The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity[J]. Journal of Biological Chemistry.1982,257(2):1102-1105.
    [163]Nair KS. Aging muscle[J]. The American journal of clinical nutrition.2005,81(5):953-963.
    [164]Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness[J]. Biogerontology.2008,9(4):213-228.
    [165]Cheitlin MD. Cardiovascular physiology—changes with aging[J]. The American journal of geriatric cardiology.2003,12(1):9-13.
    [166]Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor l, and fibroblast growth factor[J]. Journal of cellular physiology.1989,138(2):311-315.
    [167]Taylor WE, Bhasin S, Artaza J et al. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells[J]. American Journal of Physiology-Endocrinology And Metabolism.2001,280(2): E221-E228.
    [168]Hengartner MO. The biochemistry of apoptosis[J]. Nature.2000,407(6805):770-776.
    [169]Wang X. The expanding role of mitochondria in apoptosis[J]. Genes & development.2001,15(22): 2922-2933.
    [170]Shavlakadze T, Chai J, Maley K et al. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo[J]. Journal of cell science.2010,123(6):960-971.
    [171]Sandri M, Carraro U. Apoptosis of skeletal muscles during development and disease[J]. The international journal of biochemistry & cell biology.1999,31(12):1373-1390.
    [172]Ho AT, Li QH, Okada H et al. XIAP activity dictates Apaf-1 dependency for caspase 9 activation[J]. Molecular and cellular biology.2007,27(16):5673-5685.
    [173]Ho AT, Li QH, Hakem R et al. Coupling of caspase-9 to Apafl in response to loss of pRb or cytotoxic drugs is cell-type-specific[J]. The EMBO journal.2004,23(2):460-472.
    [174]Chai J, Du C, Wu J-W et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO[J]. Nature.2000,406(6798):855-862.
    [175]Du C, Fang M, Li Y et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition[J]. Cell.2000,102(1):33-42.
    [176]Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins:why XIAP is the black sheep of the family[J]. EMBO reports.2006,7(10):988-994.
    [177]Smith Ml, Huang YY, Deshmukh M. Skeletal muscle differentiation evokes endogenous XIAP to restrict the apoptotic pathway[J]. PloS one.2009,4(3):e5097.
    [178]Lesage F, Attali B, Lazdunski M et al. Developmental expression of voltage-sensitive K+channels in mouse skeletal muscle and C2 C12 cells[J]. FEBS letters.1992,310(2):162-166.
    [179]Gontier Y, Taivainen A, Fontao L et al. The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins[J]. Journal of cell science. 2005,118(16):3739-3749.
    [180]Sjoblom B, Salmazo A, Djinovic-Carugo K. a-Actinin structure and regulation[J]. Cellular and Molecular Life Sciences.2008,65(17):2688-2701.
    [181]Linnemann A, van der Ven PF, Vakeel P et al. The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and a-actinin[J]. European journal of cell biology. 2010,89(9):681-692.
    [182]Liu Y, Zhou K, Li X-Y et al. Expression Profiling of M YOZ1 Gene in Porcine Tissue and C2C12 Cells[J]. Journal ofAnimal and Veterinary Advances.2011,10(15):1917-1921.
    [183]曹建华,李新云,朱猛进等miRNA与功能基因转录组联合分析探索猪肌肉生长发育新的调控通路[J].中国动物遗传育种研究进展——第十五次全国动物遗传育种学术讨论会论文集.2009.
    [184]Lescure A, Gautheret D, Carbon P et al. Novel Selenoproteins Identified in Silico andin Vivo by Using a Conserved RNA Structural Motif[J]. Journal of Biological Chemistry.1999,274(53):38147-38154.
    [185]D'Amico A, Benedetti S, Petrini S et al. Major myofibrillar changes in early onset myopathy due to de novo heterozygous missense mutation in lamin A/C gene[J]. Neuromuscular Disorders.2005,15(12): 847-850.
    [186]Ferreiro A, Ceuterick-de Groote C, Marks JJ et al. Desmin-related myopathy with mallory body-like inclusions is caused by mutations of the selenoprotein N gene[J]. Annals of neurology.2004, 55(5):676-686.
    [187]Clarke NF, Kidson W, Quijano-Roy S et al. SEPN1:Associated with congenital fiber-type disproportion and insulin resistance[J]. Annals of neurology.2006,59(3):546-552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700