天津市耐药结核病危险因素及结核分枝杆菌耐药分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:了解天津市耐药结核病的流行现状及其危险因素,北京基因型结核分枝杆菌在人群中的流行现状及其在耐药结核病传播中的作用,揭示天津地区耐药结核分枝杆菌四种一线抗结核药物耐药相关基因的突变类型、突变频率及其与耐药表型和北京基因型的关系,结核分枝杆菌药物外排泵基因的表达与耐药表型、耐药相关基因突变型的关系。
     对象和方法:
     1.耐药结核病流行情况:研究对象为2008年1月至2009年6月,在天津市结核病控制中心、天津市10个区县结防机构就诊的结核分枝杆菌分离培养阳性肺结核患者。采用“世界卫生组织/国际防痨与肺部疾病联合会”推荐的比例法,对研究对象初次分离培养获得的菌株进行利福平、异烟肼、链霉素和乙胺丁醇的药物敏感实验。运用横断面调查的方法描述耐药结核病的流行情况。
     2耐药结核病危险因素分析:对以上研究对象,采用单因素非条件和多因素非条件logistic回归分析从社会人口学、菌株相关实验室信息、临床信息和结核病管理信息四个方面分析耐多药结核病和其他耐药结核病的危险因素。
     3北京基因型菌株的流行情况:对从以上研究对象初次分离的结核分枝杆菌菌株,采用多重PCR方法鉴定北京基因型菌株,并分析北京基因型菌株的分布特征及其与耐药表型的关系。
     4耐药相关基因突变的研究:对从以上研究对象初次分离的全部耐药结核分枝杆菌菌株采用直接测序法检测以下耐药相关基因的突变情况并分析耐药相关基因突变型与耐药表型和北京基因型的关系:异烟肼耐药株:katG、inhA、 oxyR-ahpC、ndh;利福平耐药株:rpoB;链霉素耐药株:rpsL和rrs;乙胺丁醇耐药株:embB、embC和embA。
     5药物外排泵表达量的研究:研究对象为2007年天津市结核病控制中心参比室库存的71株菌株。采用real-time RT-PCR方法检测药物外排泵基因Rv1258c、 Rv1410c、Rv2136c、Rv0783c和Rv1819c的表达与耐药表型、耐药相关基因突变型的关系。
     结果:
     1.耐药结核病流行现状:共纳入肺结核患者656例,其中初治568例,复治88例。药物敏感试验结果显示:总耐药率为26.98%(177/656),初治病人耐药率为24.47%(139/568),复治病人耐药率为43.18%(38/88);总耐多药率为6.25%(41/656),初治病人耐多药率为3.70%(21/568),复治病人耐多药率为22.73%(20/88)。
     2耐药结核病危险因素分析:耐多药结核病与以下因素有关:年龄组(30-49岁/≥50岁,OR=3.000,95%CI:1.121-8.024)、胸片受累肺野数(6个/1-5个,OR=3.153,95%CI:1.187-8.378)、结核病治疗史(复治/初治,OR=6.984,95%CI:3.250-15.009)和督导员(其他督导员/医务人员,OR=2.935,95%CI:1.204-7.152)。未发现有关因素与其他耐药结核病有关。
     3北京基因型菌株的流行情况:分离到的656株结核分枝杆菌中,北京基因型菌株占91.46%(600/656),其分布与天津市户籍(χ2=4.26,p=0.039)和年龄≥55岁(χ2=4.03,p=0.045)有关,未发现北京基因型菌株的特殊耐药型。
     4耐药相关基因突变的研究:异烟肼耐药株katG突变率为49.09%(54/110),其中47株(42.73%)为katG315ACC(Thr), inhA-15C→T突变率为24.55%(27/110), oxyR-ahpC突变率为11.82%(13/110),未检测到ndh突变,异烟肼耐药株总突变率为85.45%(94/110),katG315位突变与异烟肼耐药株同时对其他药物耐药有关。利福平耐药株rpoB基因突变率为88.46%(46/52),以利福平耐药决定区内突变为主,531、526和516位密码子的突变率分别为50.00%(26/52)、23.08%(12/52)和5.77%(3/52),rpoB突变与利福平耐药株联合链霉素、链霉素和异烟肼有关。链霉素耐药株rpsL突变率为73.27%(85/116),rrs突变率为14.66%(17/116),总突变率为87.07%(102/116),rpsL基因突变与北京基因型菌株有关。乙胺丁醇耐药株embB基因突变率为27.27%(9/33),embC突变率为3.03%(1/33),未见embA突变。embB突变与多药耐药有关。
     5.药物外排泵基因表达量的研究:Rv1258c表达阴性。与全敏菌株相比,Rv1410c表达量在以下耐药菌株中表达量升高:链霉素(t=2.18,p=0.034),异烟肼(t=2.20,p=0.032),异烟肼+链霉素(t=2.43,p=0.021),≥2种抗结核药(F=3.60,p=0.018);Rv2136c:异烟肼(t=2.03,p=0.047),耐多药(t=2.22,p=0.037),异烟肼+链霉素(t=2.28,p=0.029)。Rv0783c的表达量:利福平耐药株rpoB531位密码子突变菌株高于该位点未突变的利福平耐药株(t=2.84,p=0.016)。
     结论:
     1年龄在30-49岁、胸片受累6个肺野、结核病治疗史、受非医务人员及非家庭成员(其他督导员)督导,是耐多药结核病的危险因素。因此在结核病防控工作中应对肺结核病人群的此类特征加以关注并采取相应措施。
     2未发现北京基因菌株具有特殊的耐药型。北京基因型菌株是天津市的主要流行株,在年龄≥55岁的人群中传播较广。
     3耐药相关基因突变是天津市结核分枝杆菌耐药的主要分子机制,rpsL基因突变与北京基因型有关。本研究结果将为研发结核分枝杆菌药物敏感性检测的新方法提供依据。
     4Rv0783c的高表达与利福平耐药株rpoB531位密码子突变有关。Rv1410c和Rv2136c表达量可做为鉴定结核分枝杆菌多药耐药性的指标。
To investigate the prevalence and the risk factors of drug-resistant tuberculosis in Tianjin; to identify the Beijing genotype Mycobacterium tuberculosis and describe the association of Beijing genotype Mycobacterium tuberculosis and drug resistance and other characters; to research the drug-resistance genotype of four anti-tuberculosis drugs and the mutated codons and their association with the corresponding drug resistance phenotype, drug resistance level and Beijing genotype; to detect the expression of drug efflux pump genes and analyze their association with drug resistant phenotype and drug resistance related mutated patterns.
     Methods:
     1A cross-sectional study was conducted to describe the drug-resistant tuberculosis prevalence in Tianjin:The subjects were all culture-positive pulmonary tuberculosis patients newly diagnosed or retreated in Tianjin Tuberculosis Control Center and10districs or county tuberculosis dispensaries from January2008to June2009. The proportion method recommended by WHO/IUATLD was used for testing the strains' susceptibility to rifampicin, isoniazid, streptomicin and ethambutol.
     2Bivariate and multiple unconditional logistic regression were performed to identified factors associated with multidrug-resistant tuberculosis and other drug-resistant tuberculosis.
     3Multiplex PCR was performed to identify Beijing genotype of the above subjects' first isolated strains.
     4DNA sequencing the genes of the above subjects'first isolated strains was applied to investigate the drug-resistance genotype, the most common mutated codons and their association with the corresponding drug resistance phenotype, drug resistance level and Beijing genotype. The genes sequenced were katG, inhA, oxyR-ahpC and ndh associated with isoniazid resistance, rpoB associated with rifampicin resistance, rpsL and rrs associated with streptomycin resistance, embB, embC and embA associated with ethambutol resistance.
     5Real-time RT-PCR was used to assess the expressions of putative drug efflux pump genes Rv1258c, Rv1410c, Rv2136c, Rv0783c and Rv2136c in71mycobacterium tuberculosis strains from Tianjin Tuberculosis Control center in2007.
     Results:
     1656subjects were included,568were new tuberculosis cases and88were previously treated. The prevalence of overall resistance among all cases was26.98%(177),24.47%(139) among new cases,43.18%(38) among previously treated cases. The prevalence of MDR-TB among all cases was6.25%(41),3.70%(21) in new cases,22.73%(20) among previously treated cases.
     2The independent predictors of multidrug-resistant tuberculosis were age group (30-49years old/≥50years old, OR=3.000,95%CI:1.121-8.024), the numbers of abnormal lung fields (6/1-5, OR=3.153,95%CI:1.187-8.378), previous treatment history (OR=6.984,95%CI:3.250-15.009), supervisors except doctors and family members (OR=2.787,95%CI:1.152-6.741). No associations were found between any factors and the other drug-resistant tuberculosis.
     3Six hundreds of656strains were Beijing genotype, and Beijing genotype strains were more prevalent in population from Tianjin (χ2=4.26, p=0.039) and age≤55years old (χ=4.03,p=0.045). No association was found between Beijing genotype and drug resistance.
     4Of110isoniazid resistant isolates,54(49.09%) had mutations in the katG with315ACC(Thr) for responsible for42.73%of isoniazid resistance,27(24.55%) had mutation of inhA-15C→T, and13(11.82%) had mutations in the oxyR-ahpC, no mutation was found in ndh. In all,94of110isoniazid resistant isolates carried mutations. Mutations in katG315were related to combination resistance of isoniazid and other drugs. Forty six out of51rifampicin resistant isolates carried the mutations within the81-bp rifampicin resistance determining region (RRDR) of the rpoB gene, and the most frequent mutations were at codon531(50.00%),526(23.08%), and516(5.77%), respectively. Mutations of rpoB were related to combination resistance of rifampicin and streptomycin and/or isoniazid. Of116streptomycin resistant isolates,85(73.27%) had mutations in rpsL,17(14.66%) had mutations in rrs. Mutations in rpsL were related to Beijing genotype. Of33ethambutol resistant isolates,9(27.27%) had mutations in embB,1(3.03%) had mutations in embC, no mutations was found in embA.
     5The expression of drug efflux pump gene Rv1258c of all isolates was negative. Compared to pan-sensitive isolates, Rv1410c showed higher expression in streptomycin (t=2.18, p=0.034), isoniazid (t=2.20,p=0.032), isoniazid+streptomycin (t=2.43, p=0.021),≥2any of four drugs (F=3.60,p=0.018) resistant isolates; Rv2136c showed higher expression in isoniazid resistant isolates (t=2.03,p=0.047) and multidrug-resistant isolates (t=2.22, p=0.037). The expression of Rv0783c in rifampicin resistant isolates with rpoB531mutations was higher than those with wild type of rpoB531(t=2.84,p=0.016).
     Conclusions:
     1Age and clinic characters (abnormal lung fields, previous treatment history) and supervisors were related to drug resistance, more interventions should be taken on such characters of tuberculosis patients.
     2Beijing genotype mycobacterium tuberculosis was prevalent in Tianjin China and population with age≥55years old. No association was found between Beijing genotype and drug resistance.
     3Mutations in drug related genes were the major mechanism leading to drug resistance. And this study will provide clues for choosing a suitable molecular biology method based on gene mutations testing for diagnosing drug susceptibility of mycobacterium tuberculosis strains in Tianjin, China. Mutations in rpsL were more frequent in Beijing genotype stains.
     4It was concluded that the expressions of Rv1410c and Rv2136c could be targets of molecular methods for diagnosing drug resistance. The expression of Rv0783c in rifampicin resistant isolates was associated with mutation rpoB531.
引文
[1]WHO. Global Tuberculosis Control:A short update to the 2009 report[R]. Geneva, WHO/HTM/TB/2009.426. World Health Organization,2009.
    [2]WHO. Global Tuberculosis Control:epidemiology, strategy, financing. WHO report 2009[R]. World Health Organization,2009.
    [3]World health organization. Anti-tuberculosis drug resistance in the world report No.4 (WHO/HTM/TB/2008.394) [R]. Geneva:WHO,2008.
    [4]王黎霞.中国耐多药结核病的控制亟待加强[J].中华结核和呼吸杂志,2009,32(8):561-563.
    [5]40 Harkin, T.J., H.W.Harris. Treatment of multidrug resistant tuberculosis[M].In N.W.Rom and S.Garay (ed.),Tuberculosis. Little, Brown & Company, Boston, Mass.1995:843-850.
    [6]吴雪琼.结核病分子生物学诊断.见:张敦熔.现代结核病学[M].北京:人民卫生出版社,2000:132.
    [7]王撷秀.耐多药结核病的预防[J].中华结核和呼吸杂志,2006,29(8):511-513.
    [8]陈诚,孙谨芳,么鸿雁.2000年结核病流行病学抽样调查中耐药病例影响因素分析[J].疾病检测,2009,24(12):945-947.
    [9]杨本付,徐彪,蒋伟利,等.苏北农村耐药结核病现状及影响因素的研究[J].中华流行病学杂志,2004,7(25):582-585.
    [10]张弘,张爱洁,赵平,等.北京市朝阳区肺结核患者耐药状况及相关因素分析[J].中国防痨杂志,2009,31(4):218-222.
    [11]朱建福,王伟炳,王学才,等.德清县耐药肺结核流行情况及危险因素研究[J].浙江预防医学,2009,21(9):6-8.
    [12]陈建,李宁秀,万康林,et al.四川和安徽两省结核耐药危险因素分析[J].四川大学学报(医学版),2007,38(1):135-137.
    [13]van Soolingen D, Qian L, de Haas PE, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia[J]. J Clin Microbiol, 1995,33(12):3234-3238.
    [14]Kruuner A, Hoffner SE, Sillastu H, et al. Spread of drug-resistant pulmonary tuberculosis in Estonia[J]. J Clin Microbiol,2001,39(9):3339-3345.
    [15]李卫民,端木宏谨,王黎霞,et al.2000年中国结核病流行病学抽样调查菌株分子流行病学特征[J].中华医学杂志,2003,(83):1210-1213.
    [16]钟球,高翠南.广东省结核病流行菌株研究[J].广东医学,2003,24(3):309-310.
    [17]Jiao WW, Mokrousov I, Sun GZ, et al. Molecular characteristics of rifampin and isoniazid resistant Mycobacterium tuberculosis strains from Beijing, China[J]. Chin Med J (Engl),2007,120(9):814-819.
    [18]Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature,1998,393(6685): 537-544.
    [19]Wade MM, Zhang Y. Mechanisms of drug resistance in Mycobacterium tuberculosis[J]. Front Biosci,2004,9:975-994.
    [20]Cavusoglu C, Hilmioglu S, Guneri S, et al. Characterization of rpoB mutations in rifampin-resistant clinical isolates of Mycobacterium tuberculosis from Turkey by DNA sequencing and line probe assay[J]. J Clin Microbiol,2002, 40(12):4435-4438.
    [21]Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kopec E, et al. Detection of multidrug resistance in Mycobacterium tuberculosis[J]. J Clin Microbiol,2007, 45(1):179-192.
    [22]Taniguchi H. Molecular mechanisms of multidrug resistance in Mycobacterium tuberculosis[J]. J UOEH,2000,22(3):269-282.
    [23]Herrera L, Jimenez S, Valverde A, et al. Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996-2001). Description of new mutations in the rpoB gene and review of the literature[J]. Int J Antimicrob Agents,2003,21(5):403-408.
    [24]Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis:1998 update[J]. Tuber Lung Dis, 1998,79(1):3-29.
    [25]Van Der Zanden AG, Te Koppele-Vije EM, Vijaya Bhanu N, et al. Use of DNA extracts from Ziehl-Neelsen-stained slides for molecular detection of rifampin resistance and spoligotyping of Mycobacterium tuberculosis[J]. J Clin Microbiol,2003,41(3):1101-1108.
    [26]McCammon MT, Gillette JS, Thomas DP, et al. Detection of rpoB mutations associated with rifampin resistance in Mycobacterium tuberculosis using denaturing gradient gel electrophoresis[J]. Antimicrob Agents Chemother,2005, 49(6):2200-2209.
    [27]Ma X, Wang H, Deng Y, et al. rpoB Gene mutations and molecular characterization of rifampin-resistant Mycobacterium tuberculosis isolates from Shandong Province, China[J]. J Clin Microbiol,2006,44(9):3409-3412.
    [28]Williams DL, Waguespack C, Eisenach K, et al. Characterization of rifampin-resistance in pathogenic mycobacteria[J]. Antimicrob Agents Chemother,1994,38(10):2380-2386.
    [29]Bartfai Z, Somoskovi A, Kodmon C, et al. Molecular characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay[J]. J Clin Microbiol,2001,39(10): 3736-3739.
    [30]Tracevska T, Jansone I, Broka L, et al. Mutations in the rpoB and katG genes leading to drug resistance in Mycobacterium tuberculosis in Latvia[J]. J Clin Microbiol,2002,40(10):3789-3792.
    [31]Siddiqi N, Shamim M, Hussain S, et al. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India[J]. Antimicrob Agents Chemother,2002,46(2):443-450.
    [32]Heep M, Brandstatter B, Rieger U, et al. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates[J]. J Clin Microbiol,2001,39(1):107-110.
    [33]Kiepiela P, Bishop K, Kormuth E, et al. Comparison of PCR-heteroduplex characterization by automated DNA sequencing and line probe assay for the detection of rifampicin resistance in Mycobacterium tuberculosis isolates from KwaZulu-Natal, South Africa[J]. Microb Drug Resist,1998,4(4):263-269.
    [34]Jenkins C. Rifampicin resistance in tuberculosis outbreak, London, England[J]. Emerg Infect Dis,2005,11(6):931-934.
    [35]Kiepiela P, Bishop KS, Smith AN, et al. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa[J]. Tuber Lung Dis,2000,80(1):47-56.
    [36]Banerjee A, Sugantino M, Sacchettini JC, et al. The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance[J]. Microbiology,1998,144 (Pt 10):2697-2704.
    [37]Mokrousov I, Narvskaya O, Otten T, et al. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia,1996 to 2001 [J]. Antimicrob Agents Chemother,2002,46(5):1417-1424.
    [38]Doustdar F, Khosravi AD, Farnia P, et al. Molecular analysis of isoniazid resistance in different genotypes of Mycobacterium tuberculosis isolates from Iran[J]. Microb Drug Resist,2008,14(4):273-279.
    [39]Mukaigawa J, Endoh M, Yanagawa Y, et al. Anti-drug pattern of drug-resistant Mycobacterium tuberculosis and analysis of mutation in drug-target genes[J]. Kansenshogaku Zasshi,2005,79(6):388-396.
    [40]Lee AS, Teo AS, Wong SY. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates[J]. Antimicrob Agents Chemother,2001, 45(7):2157-2159.
    [41]Mdluli K, Slayden RA, Zhu Y, et al. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid[J]. Science,1998, 280(5369):1607-1610.
    [42]Musser JM. Antimicrobial agent resistance in mycobacteria:molecular genetic insights[J]. Clin Microbiol Rev,1995,8(4):496-514.
    [43]Shi R, Zhang J, Li C, et al. Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by denaturing HPLC analysis and DNA sequencing[J]. Microbes Infect,2007, 9(14-15):1538-1544.
    [44]Ramaswamy SV, Amin AG, Goksel S, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2000,44(2):326-336.
    [45]Jadaun GP, Das R, Upadhyay P, et al. Role of embCAB gene mutations in ethambutol resistance in Mycobacterium tuberculosis isolates from India[J]. Int J Antimicrob Agents,2009,33(5):483-486.
    [46]De Rossi E, Arrigo P, Bellinzoni M, et al. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis[J]. Mol Med, 2002,8(11):714-724.
    [47]De Rossi E, Ainsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance:an unresolved question[J]. FEMS Microbiol Rev,2006,30(1): 36-52.
    [48]Doran JL, Pang Y, Mdluli KE, et al. Mycobacterium tuberculosis efpA encodes an efflux protein of the Qac A transporter family [J]. Clin Diagn Lab Immunol, 1997,4(1):23-32.
    [49]Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis[J]. Antimicrob Agents Chemother,2004,48(7): 2415-2423.
    [50]Wilson M, DeRisi J, Kristensen HH, et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization[J]. Proc Natl Acad Sci U S A,1999,96(22):12833-12838.
    [51]Bigi F, Alito A, Romano MI, et al. The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis[J]. Microbiology,2000,146 (Pt 4): 1011-1018.
    [52]Jiang X, Zhang W, Zhang Y, et al. Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR[J]. Microb Drug Resist,2008,14(1):7-11.
    [53]Siddiqi N, Das R, Pathak N, et al. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump[J]. Infection, 2004,32(2):109-111.
    [54]Kaur P, Russell J. Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius[J]. J Biol Chem, 1998,273(28):17933-17939.
    [55]Choudhuri BS, Bhakta S, Barik R, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis[J]. Biochem J,2002, 367(Pt 1):279-285.
    [56]Pasca MR, Guglierame P, Arcesi F, et al. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2004,48(8):3175-3178.
    [57]Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2008,52(7):2503-2511.
    [58]Domenech P, Kobayashi H, LeVier K, et al. BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis[J]. J Bacteriol,2009,191(2):477-485.
    [59]中国防痨协会基础专业委员会.结核病诊断实验室检验规程[M].北京:中国教育文化出版社.2006:52.
    [60]Wright A, Zignol M, Van Deun A, et al. Epidemiology of antituberculosis drug resistance 2002-07:an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance[J]. Lancet,2009,373(9678): 1861-1873.
    [61]王甦民,刘宇红,姜广路,等.世界卫生组织中国结核病耐药检测的结果评价[J].中华检验医学杂志,2007,30(8):863-866.
    [62]罗萍,屠德华,贺晓新,等.原发耐药对初治涂阳肺结核控制影响评价的探讨[J].中国防痨杂志,2003,25(5):299-301.
    [63]胡屹.中国华东农村地区耐药结核病流行和传播的分子流行病学研究[J].复旦大学博士学位论文,2008.
    [64]He GX, Zhao YL, Jiang GL, et al. Prevalence of tuberculosis drug resistance in 10 provinces of China[J]. BMC Infect Dis,2008,8:166.
    [65]Migliori GB, Centis R, Lange C, et al. Emerging epidemic of drug-resistant tuberculosis in Europe, Russia, China, South America and Asia:current status and global perspectives[J]. Curr Opin Pulm Med,2010.
    [66]Vernon A, Burman W, Benator D, et al. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium[J]. Lancet,1999,353(9167): 1843-1847.
    [67]罗文海,万巧云,高永.主成分回归分析与多元线性回归的对比研究[J].数理医药学杂志,2003,20(4):140-143.
    [68]陈雄飞,董晓梅,汪宁,et al.多因子共线性的主成分Logistic回归分析[J].中国卫生统计,2003,20(4):212-215.
    [69]Djuretic T, Herbert J, Drobniewsk F, et al. Antibiotic resistant tuberculosis in the United Kingdom:1993-1999[J]. Thorax,2002, (57):477-482.
    [70]Faustini A, Hall AJ, Perucci CA. Risk factors for multidrug resistant tuberculosis in Europe:a systematic review[J]. Thorax,2006,61(2):158-163.
    [71]孙波,胡屹,朱凤东,et al.苏北农村地区耐药结核病流行和影响因素分析[J].中国初级卫生保健,2008,22(11):66-68.
    [72]Moniruzzaman A, Elwood RK, Schulzer M, et al. A population-based study of risk factors for drug-resistant TB in British Columbia[J]. Int J Tuberc Lung Dis, 2006,10(6):631-638.
    [73]Suarez-Garcia I, Rodriguez-Blanco A, Vidal-Perez JL, et al. Risk factors for multidrug-resistant tuberculosis in a tuberculosis unit in Madrid, Spain[J]. Eur J Clin Microbiol Infect Dis,2009,28(4):325-330.
    [74]Espinal MA, Laszlo A, Simonsen L, et al. Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance[J]. N Engl J Med,2001,344(17):1294-1303.
    [75]Farzad E, Holton D, Long R, et al. Drug resistance study of Mycobacterium tuberculosis in Canada, February 1,1993 to january 31,1994.[J]. Can J Pubilc Health,2000, (91):366-370.
    [76]陈建.结核患者社会行为因素和结核分枝杆菌基因分型的初步研究[D].四川大学,2007.[J].
    [77]Tatar D, Senol G, Alptekin S, et al. Tuberculosis in diabetics:features in an endemic area[J]. Jpn J Infect Dis,2009,62(6):423-427.
    [78]Ponce-De-Leon A, Garcia-Garcia Md Mde L, Garcia-Sancho MC, et al. Tuberculosis and diabetes in southern Mexico[J]. Diabetes Care,2004,27(7): 1584-1590.
    [79]Bashar M, Alcabes P, Rom WN, et al. Increased incidence of multidrug-resistant tuberculosis in diabetic patients on the Bellevue Chest Service,1987 to 1997[J]. Chest,2001,120(5):1514-1519.
    [80]罗茂红.2型糖尿病并发肺结核病流行病学特征和危险因素研究[D].天津,天津医科大学,2005.
    [81]Subhash HS, Ashwin I, Mukundan U, et al. Drug resistant tuberculosis in diabetes mellitus:a retrospective study from south India[J]. Trop Doct,2003, 33(3):154-156.
    [82]徐群,金水高,张立兴.初治涂阳肺结核病人DOTS及非DOTS干预的成本-效果分析[J].中国防痨杂志,2000,22(2):60-62.
    [83]王撷秀.肺结核病例的发现[J].中华结核和呼吸杂志,1995,18(3):140-141.
    [84]李尚伦,巨韩芳,李桂莲.天津市三甲医院肺结核可疑者转诊未到位的相关因素分析[J].中国防痨杂志,2009,31(8):446-448.
    [85]徐旭卿,陈坤,李群.复治病人中影响耐药产生因素的分析[J][J].中国防痨杂志,2006,28(1):28-30.
    [86]Warren RM, Victor TC, Streicher EM, et al. Patients with active tuberculosis often have different strains in the same sputum specimen[J]. Am J Respir Crit Care Med,2004,169(5):610-614.
    [87]Centers for Disease Control and Prevention (CDC) of America. Outbreak of multidrug-resistant tuberculosis at a hospital--New York City,1991 [J]. MMWR Morb Mortal Wkly Rep,1993,42(22):427,433-424.
    [88]Van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections:main methodologies and achievements[J]. J Intern Med,2001,249(1):1-26.
    [89]Kurepina NE, Sreevatsan S, Plikaytis BB, et al. Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis:non-random integration in the dnaA-dnaN region[J]. Tuber Lung Dis,1998,79(1):31-42.
    [90]Kremer K, Glynn JR, Lillebaek T, et al. Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers[J]. J Clin Microbiol,2004,42(9):4040-4049.
    [91]Brosch R, Gordon SV, Marmiesse M, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex[J]. Proc Natl Acad Sci U S A,2002, 99(6):3684-3689.
    [92]Hirsh AE, Tsolaki AG, DeRiemer K, et al. Stable association between strains of Mycobacterium tuberculosis and their human host populations [J]. Proc Natl Acad Sci U S A,2004,101(14):4871-4876.
    [93]Chen J, Tsolaki AG, Shen X, et al. Deletion-targeted multiplex PCR (DTM-PCR) for identification of Beijing/W genotypes of Mycobacterium tuberculosis[J]. Tuberculosis (Edinb),2007,87(5):446-449.
    [94]Mokrousov I. Genetic geography of Mycobacterium tuberculosis Beijing genotype:a multifacet mirror of human history?[J]. Infect Genet Evol,2008, 8(6):777-785.
    [95]刘飞鹰,刘志广,王喜文,et al. Spoligotyping对广西地区208株结核分枝杆菌临床分离株的基因分型[J].中国人寿共患病学报,2007,23(12):1226-1230.
    [96]陈建.结核患者社会行为因素和结核分枝杆菌基因分型的初步研究[D].四川大学博士论文,2007.
    [97]李卫民,王甦民,裴秀英,et al.北京、广东、宁夏三地结核分支杆菌DNA指纹的应用研究[J].中华流行病学杂志,2003,24(5):381-384.
    [98]Kam KM, Yip CW, Tse LW, et al. Utility of mycobacterial interspersed repetitive unit typing for differentiating multidrug-resistant Mycobacterium tuberculosis isolates of the Beijing family[J]. J Clin Microbiol,2005,43(1): 306-313.
    [99]王晓萌,吕冰,流正卫,et al. Spoligotyping和MLVA用于71株浙江省结核分枝杆菌临床分离株基因分型的初步研究[J].中国人寿共患病学报,2008,24(12):1090-1094.
    [100]刘志广,张选民,张媛媛,et al.结核分枝杆菌西安分离株北京家族基因型 检测及其耐药相关性研究[J].中国人寿共患病学报,2008,24(5):435-438.
    [101]梅建,沈鑫,查佳,et al.上海市2000—2002年91株结核分枝杆菌分子流行病学分析[J].中华流行病学杂志,2005,26(9):707-710.
    [102]杨修军,万康林,王艳华,et al.应用Spoligotyping技术对吉林省结核分枝杆菌基因分型的研究[J].中国卫生工程学,2008,7(6):326-328.
    [103]石荔,杨敏,Pourcel C, et al. MLVA和Spoligotyping用于西藏地区216株结核分枝杆菌临床分离株的基因分型研究[J].中华微生物学和免疫学杂志,2007,(8):711-718.
    [104]李卫民,柴利泉,李丽.天津地区临床分离株结核分枝杆菌分子流行病学研究[J].结核病与胸部肿瘤,2007,(1):18-25.
    [105]Li WM, Wang SM, Li CY, et al. Molecular epidemiology of Mycobacterium tuberculosis in China:a nationwide random survey in 2000[J]. Int J Tuberc Lung Dis,2005,9(12):1314-1319.
    [106]van Soolingen D, Kremer K, Borgdorff M. Mycobacterium tuberculosis Beijing genotype, Thailand--reply to Dr. Prodinger[J]. Emerg Infect Dis,2001,7(4): 763-764.
    [107]Anh DD, Borgdorff MW, Van LN, et al. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam[J]. Emerg Infect Dis,2000,6(3):302-305.
    [108]Sun YJ, Lee AS, Wong SY, et al. Association of Mycobacterium tuberculosis Beijing genotype with tuberculosis relapse in Singapore[J]. Epidemiol Infect, 2006,134(2):329-332.
    [109]Mokrousov I, Otten T, Vyazovaya A, et al. PCR-based methodology for detecting multidrug-resistant strains of Mycobacterium tuberculosis Beijing family circulating in Russia[J], Eur J Clin Microbiol Infect Dis,2003,22(6): 342-348.
    [110]Millet J, Miyagi-Shiohira C, Yamane N, et al. Assessment of mycobacterial interspersed repetitive unit-QUB markers to further discriminate the Beijing genotype in a population-based study of the genetic diversity of Mycobacterium tuberculosis clinical isolates from Okinawa, Ryukyu Islands, Japan[J]. J Clin Microbiol,2007,45(11):3606-3615.
    [111]Park YK, Shin S, Ryu S, et al. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea[J]. J Microbiol Methods,2005,63(2):165-172.
    [112]Kubica T, Rusch-Gerdes S, Niemann S. The Beijing genotype is emerging among multidrug-resistant Mycobacterium tuberculosis strains from Germany[J]. Int J Tuberc Lung Dis,2004,8(9):1107-1113.
    [113]Qian L, Van Embden JD, Van Der Zanden AG, et al. Retrospective analysis of the Beijing family of Mycobacterium tuberculosis in preserved lung tissues[J]. J Clin Microbiol,1999,37(2):471-474.
    [114]Gutierrez MC, Vincent V, Aubert D, et al. Molecular fingerprinting of Mycobacterium tuberculosis and risk factors for tuberculosis transmission in Paris, France, and surrounding area[J]. J Clin Microbiol,1998,36(2):486-492.
    [115]Pineda-Garcia L, Ferrera A, Hoffner SE. DNA fingerprinting of Mycobacterium tuberculosis strains from patients with pulmonary tuberculosis in Honduras[J]. J Clin Microbiol,1997,35(9):2393-2397.
    [116]Wu X Q Zj, Yu W, Zhang J, Zhuang Y, Jia S.. Analysis of katG gene mutations in M.tuberculosis isolates by direct sequencing[J]. Lin Chuang Jian Yan Za Zhi, 2000,18(1):9-11.
    [117]Aslan G, Tezcan S, Serin MS, et al. Genotypic analysis of isoniazid and rifampin resistance in drug-resistant clinical Mycobacterium tuberculosis complex isolates in southern Turkey[J]. Jpn J Infect Dis,2008,61(4):255-260.
    [118]Sreevatsan S, Pan X, Stockbauer KE, et al. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities[J]. Antimicrob Agents Chemother,1996,40(4): 1024-1026.
    [119]Honore N, Cole ST. Streptomycin resistance in mycobacteria[J]. Antimicrob Agents Chemother,1994,38(2):238-242.
    [120]Hazbon MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2006,50(8): 2640-2649.
    [121]Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China[J].J Clin Microbiol,2005,43(11):5477-5482.
    [122]Nikolayevsky V, Brown T, Balabanova Y, et al. Detection of mutations associated with isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates from Samara Region, Russian Federation[J]. J Clin Microbiol,2004,42(10):4498-4502.
    [123]Dalla Costa ER, Ribeiro MO, Silva MS, et al. Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America[J]. BMC Microbiol,2009,9: 39.
    [124]Khadka DK, Eampokalap B, Panitchakorn J, et al. Multiple mutations in katG and inhA identified in Thai isoniazid-resistant Mycobacterium tuberculosis isolates[J]. Southeast Asian J Trop Med Public Health,2007,38(2):376-382.
    [125]Lipin MY, Stepanshina VN, Shemyakin IG, et al. Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia[J]. Clin Microbiol Infect,2007,13(6):620-626.
    [126]van Soolingen D, de Haas PE, van Doom HR, et al. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands[J]. J Infect Dis,2000,182(6):1788-1790.
    [127]Bakonyte D, Baranauskaite A, Cicenaite J, et al. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical isolates in Lithuania[J]. Antimicrob Agents Chemother,2003,47(6):2009-2011.
    [128]Abate G, Hoffner SE, Thomsen VO, et al. Characterization of isoniazid-resistant strains of Mycobacterium tuberculosis on the basis of phenotypic properties and mutations in katG[J]. Eur J Clin Microbiol Infect Dis, 2001,20(5):329-333.
    [129]Sherman DR, Mdluli K, Hickey MJ, et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis[J]. Science,1996,272(5268): 1641-1643.
    [130]Kim SY, Park YJ, Kim WI, et al. Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea[J]. Diagn Microbiol Infect Dis,2003,47(3):497-502.
    [131]Cardoso RF, Cardoso MA, Leite CQ, et al. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil[J]. Mem Inst Oswaldo Cruz,2007,102(1):59-61.
    [132]Ahmad S, Mokaddas E, Fares E. Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Kuwait and Dubai[J]. Diagn Microbiol Infect Dis,2002,44(3):245-252.
    [133]Cooksey RC, Morlock GP, Glickman S, et al. Evaluation of a line probe assay kit for characterization of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis isolates from New York City[J]. J Clin Microbiol,1997,35(5): 1281-1283.
    [134]Chan RC, Hui M, Chan EW, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong[J]. J Antimicrob Chemother,2007,59(5):866-873.
    [135]Qian L, Abe C, Lin TP, et al. rpoB genotypes of Mycobacterium tuberculosis Beijing family isolates from East Asian countries[J]. J Clin Microbiol,2002, 40(3):1091-1094.
    [136]Zaczek A, Brzostek A, Augustynowicz-Kopec E, et al. Genetic evaluation of relationship between mutations in rpoB and resistance of Mycobacterium tuberculosis to rifampin[J]. BMC Microbiol,2009,9:10.
    [137]Douglass J, Steyn LM. A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates[J]. J Infect Dis,1993,167(6):1505-1506.
    [138]Finken M, Kirschner P, Meier A, et al. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis:alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot[J].Mol Microbiol,1993,9(6):1239-1246.
    [139]Fukuda M, Koga H, Ohno H, et al. Relationship between genetic alteration of the rpsL gene and streptomycin susceptibility of Mycobacterium tuberculosis in Japan[J]. J Antimicrob Chemother,1999,43(2):281-284.
    [140]Gegia M, Mdivani N, Mendes RE, et al. Prevalence of and molecular basis for tuberculosis drug resistance in the Republic of Georgia:validation of a QIAplex system for detection of drug resistance-related mutations[J]. Antimicrob Agents Chemother,2008,52(2):725-729.
    [141]Tracevska T, Jansone I, Nodieva A, et al. Characterisation of rpsL, rrs and embB mutations associated with streptomycin and ethambutol resistance in Mycobacterium tuberculosis[J]. Res Microbiol,2004,155(10):830-834.
    [142]Sun YJ, Luo JT, Wong SY, et al. Analysis of rpsL and rrs mutations in Beijing and non-Beijing streptomycin-resistant Mycobacterium tuberculosis isolates from Singapore[J]. Clin Microbiol Infect,2009,16(3):287-289.
    [143]Meier A, Sander P, Schaper KJ, et al. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,1996,40(11): 2452-2454.
    [144]Das R, Gupta P, Singh P, et al. Association of mutations in rpsL gene with high degree of streptomycin resistance in clinical isolates of Mycobacterium tuberculosis in India[J]. Indian J Med Res,2009,129(1):108-110.
    [145]Ainsa JA, Blokpoel MC, Otal I, et al. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis[J]. J Bacteriol,1998,180(22):5836-5843.
    [146]Shi R, Zhang J, Otomo K, et al. Lack of correlation between embB mutation and ethambutol MIC in Mycobacterium tuberculosis clinical isolates from China[J]. Antimicrob Agents Chemother,2007,51(12):4515-4517.
    [147]Hazbon MH, Bobadilla del Valle M, Guerrero MI, et al. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited:a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance[J]. Antimicrob Agents Chemother,2005,49(9):3794-3802.
    [148]Starks AM, Gumusboga A, Plikaytis BB, et al. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2009,53(3): 1061-1066.
    [149]Safi H, Sayers B, Hazbon MH, et al. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin[J]. Antimicrob Agents Chemother,2008, 52(6):2027-2034.
    [150]Guo JH, Xiang WL, Zhao QR, et al. Molecular characterization of drug-resistant mycobacterium tuberculosis isolates from Sichuan Province in china[J]. Jpn J Infect Dis,2008,61(4):264-268.
    [151]Ahmad S, Jaber AA, Mokaddas E. Frequency of embB codon 306 mutations in ethambutol-susceptible and -resistant clinical Mycobacterium tuberculosis isolates in Kuwait[J]. Tuberculosis (Edinb),2007,87(2):123-129.
    [152]Mokrousov I, Otten T, Vyshnevskiy B, et al. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia:implications for genotypic resistance testing[J]. J Clin Microbiol,2002,40(10):3810-3813.
    [153]Van Rie A, Warren R, Mshanga I, et al. Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community[J]. J Clin Microbiol,2001,39(2):636-641.
    [154]Nikolayevskyy V, Balabanova Y, Simak T, et al. Performance of the Genotype MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation[J]. BMC Clin Pathol,2009,9:2.
    [1]De Rossi E, Ainsa JA, Riccardi G Role of mycobacterial efflux transporters in drug resistance:an unresolved question[J]. FEMS Microbiol Rev,2006,30(1): 36-52.
    [2]Lee AS, Tang LL, Lim IH, Wong SY. Characterization of pyrazinamide and ofloxacin resistance among drug resistant Mycobacterium tuberculosis isolates from Singapore[J]. Int J Infect Dis,2002,6(1):48-51.
    [3]Escribano I, Rodriguez JC, Llorca B, et al. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid[J]. Chemotherapy,2007,53(6):397-401.
    [4]Sander P, De Rossi E, Boddinghaus B, et al. Contribution of the multidrug efflux pump LfrA to innate mycohacterial drug resistance[J]. FEMS Microbiology Letters,2000,193:19-23.
    [5]http://www.membranetransport.org/.
    [6]De Rossi E, Arrigo P, Bellinzoni M, et al. The multidrug transporters belonging to major facilitator super family in mycobacterium tuberculosis[J]. Mol Med, 2002,8(11):714-724.
    [7]De Rossi E, Blokpoel MC. J, Cantoni R, et al. Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from mycobacterium smegmatis[J]. Antimicrobial Agents and Chemotherapy,1998, 42(8):1931-1937.
    [8]F. Bigi, A. Alito, M. I. Romano, et al. The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis[J]. Microbiology,2000,146:1011-1018.
    [9]Silva PE. A, Bigi F, Ainsa JA, et al. Characterization of P55, a multidrug efflux pump in mycobacterium bovis and mycobacterium tuberculosis[J]. Antimicrobial Agents and Chemotherapy,2001,45(3):800-804.
    [10]RG Santiago, Martin C, Ainsa JA, et al.Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum[J]. Antimicrobial Chemotherapy,2006,57(2):252-259.
    [11]Siddiqi N, Das R, Pathak N, et al. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump[J]. Infection,2004, 32(2):109-111.
    [12]Xin Jiang, Wenhong Zhang, Ying Zhang, et al. Assessment of Efflux Pump Gene Expression in a Clinical Isolate Mycobacterium tuberculosis by Real-Time Reverse Transcription PCR[J]. Microbial drug resistance,2008,14(1):7-111.
    [13]Santiago Ramo'n-Garci'a, Carlos Marti'n, Edda De Rossi, et al. Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG[J]. Journal of Antimicrobial Chemotherapy,2007,59:544-547.
    [14]Li XZ, Zhang L, Nikaido H. Efflux pump-medicated intrinsic drug resistance in mycobacterium smegmatis[J]. Antimicrobial Agents and Chemotherapy,2004, 48(7):2415-2423.
    [15]Wilson M, DeRisi J, Kristensen HH, et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization[J]. Proc Natl Acad Sci U S A,1999,96(22):12833-8.
    [16]Domenech P, Reed MB, Barry CE 3rd.. Barry Ⅲ. Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and Drug Resistance[J]. Infect Immun,2005,73(6):3492-501.
    [17]Pasca MR, Guglierame P, De RossiE, et al. mmpL 7 gene of mycobacterium tuberculosis is responsible for isoniazid efflux in mycobacterium smegmatis[J]. Antimicrobial Agents and Chemotherapy,2005,49(11): 4775-4777.
    [18]Camacho LR, Constant P, Raynaud C, et al. Analysis of the phihiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier[J]. J Biol Chem,2001,276(23): 19845-54.
    [19]Gilleron, M., S. Stenger, Z. Mazorra, et al. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD 1-restricted T cells during infection with Mycobacterium tuberculosis[J]. J Exp Med,2004,199:649-659.
    [20]Kaur P, Russell J. Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius[J]. J Biol Chem,1998, 273(28):17933-17939.
    [21]Choudhuri BS, Bhakta S, Barik R, et al. Overexpression and functional characterization of an ABC(ATP-binding cassette)transporter encoded by the genes drrA and drrB of mycobacterium tuberculosis[J]. Biochem J,2002,367: 279-285.
    [22]Banerjee SK, Bhatt K, Misra P, et al. Involvement of a natural transport system in the process of efflux-mediated drug resistance in Mycobacterium smegmatis[J]. Mol Gen Genet,2000,262(6):949-56.
    [23]Poole K. Efflux-mediated resistance to fluoroquinolones in Grampositive bacteria and the mycobacteria[J]. Antimicrob Agents Chemother,2000,44(10): 2595-2599.
    [24]Bhatt K, Banerjee SK, Chakraborti PK. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis[J]. Eur J Biochem,2000,267(13):4028-32.
    [25]Pasca MR, Guglierame P, Arcesi F, et al. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in mycobacterium tubercolusis[J]. Antimicrobial Agents and Chemotherapy,2004,48(8):3175-3178.
    [26]Domenech P, Kobayashi H, LeVier K, et al. BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis[J]. J Bacteriol,2009,191(2):477-85.
    [27]Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis[J].Antimicrob Agents Chemother, 2008,52(7):2503-11.
    [28]De Rossi E, Branzoni M, Cantoni R, et al.mmr, a mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors[J]. Journal of Bacteriology,1998,180(22):6068-6071.
    [29]Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria[J]. Drugs,2004, 64:159-204.
    [1]World Health Organization,International Union Against Tuberculosis and Lung Disease.Anti-tuberculosis drug resistance in the world:The WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance[M]. Geneva: WHO/IUATLD,1997:1-120.
    [2]Vareldzis BP, Grosset J, de Kantor I, Crofton J, Laszlo A,et al. Drug-resistant tuberculosis:laboratory issues. World Health Organization recommendations [J].Tuber Lung Dis.1994,75:1-7.
    [3]Kiepiela P, Bishop KS, Smith AN, et al. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa[J]. Tuber Lung Dis,2000,80:47-56.
    [4]Van Doom HR, Kuijper EJ. The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg->Leu mutation at codon 463 of katG are not associated[J]. J Clin Microbiol,2001,39:1591-1594.
    [5]Eric Tung-Yiu Leung, Kai-man Kam, Agatha Chiu, et al. Detection of katG Ser315Thr substitution in respiratory specimens from patients with isoniazid-resistant Mycobacterium tuberculosis using PCR-RFLP[J]. J Med Microbiol,2003,52:999-1003.
    [6]Wilson TM, De Lisle GW, Collins DM. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis[J]. Mol Microbiol,1995, 15:1009-1015.
    [7]Ramaswamy SV, Reich R, Dou SJ, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2003,47:1241-1250.
    [8]Wilson TM, Collins DM. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex[J]. Mol Microbiol,1996,19:1025-1034.
    [9]Mukaigawa J, Endoh M, Yanagawa Y. Anti-drug pattern of drug-resistant Mycobacterium tuberculosis and analysis of mutation in drug-target genes[J]. Kansenshogaku Zasshi,2005,79:388-396.
    [10]Viader-Salvado JM, Luna-Aguirre CM, Reyes-Ruiz JM, et al. Frequency of mutations in rpoB and codons 315 and 463 of katG in rifampin- and/or isoniazid-resistant Mycobacterium tuberculosis isolates from northeast Mexico[J]. Microb Drug Resist,2003,9:33-38.
    [11]Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998,393:537-544.
    [12]Cardoso RF, Cooksey RC, Morlock GP,et al.Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil[J]. Antimicrob Agents Chemother,2004,48:3373-3381.
    [13]Taniguchi H. Molecular mechanisms of multidrug resistance in Mycobacterium tuberculosis[J].J UOEH,2000,22:269-282.
    [14]Bartfai Z, Somoskovi A, Kodmon C,et al. Molecular characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay[J]. J Clin Microbiol, 2001,39:3736-3739.
    [15]Tracevska T, Jansone I, Broka L,et al. Mutations in the rpoB and katG genes leading to drug resistance in Mycobacterium tuberculosis in Latvia[J]. J Clin Microbiol,2002,40:3789-3792.
    [16]Siddiqi N, Shamim M, Hussain S, et al. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India[J]. Antimicrob Agents Chemother,2002,46:443-450.
    [17]Ramaswamy SV, Dou SJ, Rendon A, et al. Genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates from Monterrey, Mexico[J]. J Med Microbiol,2004,53:107-113.
    [18]Mariam DH, Mengistu Y, Hoffner SE, et al. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2004,48:1289-1294.
    [19]Riska PF, Jacobs WR Jr, Alland D. Molecular determinants of drug resistance in tuberculosis[J]. Int J Tuberc Lung Dis,2000,4:S4-10.
    [20]Bifani P, Mathema B, Campo M, et al. Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug-resistant W strain[J]. Emerg Infect Dis,2001,7:842-848.
    [21]Victor TC, van Rie A, Jordaan AM, et al. Sequence polymorphism in the rrs gene of Mycobacterium tuberculosis is deeply rooted within an evolutionary clade and is not associated with streptomycin resistance[J]. J Clin Microbiol, 2001,39:4184-4186.
    [22]Wade MM, Volokhov D, Peredelchuk M, et al. Accurate mapping of mutations of pyrazinamide-resistant Mycobacterium tuberculosis strains with a scanning-frame oligonucleotide microarray[J]. Diagn Microbiol Infect Dis, 2004,49(2):89-97.
    [23]Shao-Ji Cheng, Louise Thibert, Tracy Sanchez, et al. pncA Mutations as a Major Mechanism of Pyrazinamide Resistance in Mycobacterium tuberculosis:Spread of a Monoresistant Strain in Quebec, Canada[J]. Antimicrobial agents and chemotherapy,2000,44:528-532.
    [24]Morlock GP, Crawford JT, Butler WR, et al. Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2000,44:2291-2295.
    [25]Huang TS, Lee SS, Tu HZ, Huang WK, et al. Correlation between pyrazinamide activity and pncA mutations in Mycobacterium tuberculosis isolates in Taiwan[J].Antimicrob Agents Chemother,2003,47:3672-3673.
    [26]Rodrigues V de F, Telles MA, Ribeiro MO, et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis in Brazil[J]. Antimicrob Agents Chemother,2005,49:444-446.
    [27]Tracevska T, Jansone I, Baumanis V, et al. Spectrum of pncA mutations in multidrug-resistant Mycobacterium tuberculosis isolates obtained in Latvia[J]. Antimicrob Agents Chemother,2004,48:3209-3210.
    [28]Ramaswamy SV, Amin AQ Goksel S, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2000,44:326-336.
    [29]Parsons LM, Salfinger M, Clobridge A, et al. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol[J]. Antimicrob Agents Chemother,2005, 49:2218-2225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700