实时PCR在结核分枝杆菌异烟肼耐药突变分子诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是全球范围内危害最为严重的慢性传染病之一,在众多结核治疗药物中,异烟肼作为一线药物广泛使用,导致耐异烟肼结核发生率高,危害面广。本论文着重建立异烟肼耐药突变检测体系,并评价其应用,为最终建立起适合临床应用的异烟肼耐药突变检测、指导其正确使用提供合适手段。论文内容包括:耐药结核病的流行和诊治现状评述(第一章)、实时PCR探针熔解曲线法检测异烟肼耐药突变体系的建立和分析性能评价(第二章)、上述体系的多中心临床评价(第三章)、应用上述技术进行的异烟肼耐药突变流行病学调查(第四章)以及针对最常见katG S315T突变所建立的一种稀有突变定量体系(第五章),分述如下:
     第一章绪论
     首先概述了结核病的流行现状、临床诊断和治疗方案,描述了结核菌的生物学背景,针对性地阐述了异烟肼的作用原理和结核异烟肼耐药机制,总结了结核耐药检测尤其是耐异烟肼检测的现状及最新进展,并介绍了本实验室新近建立的探针熔解曲线分析(PMA)技术检测突变的原理,最后提出了本论文的目的、内容及意义。
     第二章异烟肼耐药突变PMA检测体系的建立和性能评价
     已有研究证实的异烟肼耐药突变相关区域包括katG315密码子、inhA启动子区、ahpC启动子区和inhA94密码子等四个区域,据此,我们建立了双管双色PMA检测体系,采用自行建立的核酸提取方法,按照优化的反应条件,该体系的检测限为3拷贝/反应。所有突变位点的熔点值(Tm)与对应的野生型相差在2℃以上,均可实现有效检出,标准盘的检测特异性达100%。检测5种常见突变的Tm值标准偏差SD<1℃(n=6),最低不均一耐药检测水平为30%(熔解速率设为1℃/步)。对中国食品药品检定研究院的非结核分枝杆菌(NTM)的检测结果表明,46株NTM在四个检测通道均未出现非特异信号。该体系可在三种不同机型的仪器上使用,结果无显著差异。
     第三章PMA体系的多中心验证
     利用北京、河南和深圳三家医院提供的1096株结核临床分离株,对PMA异烟肼耐药突变检测体系进行了多中心双盲验证。对照方法为比例法药敏试验,验证方法采用测序法。结果表明,与比例法药敏试验体系相比,PMA的临床灵敏度为90.8%(397/437),临床特异性为96.4%(635/659)。测序结果表明,PMA检出的所有突变型均发生了突变(涉及397株耐药株和24株敏感株);在40株PMA检测无突变的异烟肼耐药株中,测序结果表明,4株为不均一耐药突变,5株发生了PMA检测区外突变,而另外31株均未检测到突变。测序结果表明,在异烟肼耐药株中,PMA共检测出23种突变类型。最常见的四种突变是katG S315T AGC→ACC、inhA启动子-15C→T、katG S315N AGC→AAC和ahpC启动子-10C→T突变,占异烟肼耐药株的87.4%(382/437),未检出inhA94位点突变。PMA检出76.5%(13/17)的不均一耐药株。因此,PMA与培养法药敏试验一致性好,结果准确,适合临床应用。
     第四章厦门和漳州两地异烟肼耐药的流行病学分析
     2006年6月至2009年12月,从厦门和漳州地区收集785份TB临床分离株,2008年10月至2009年12月收集146份涂阳痰标本,利用PMA对上述标本进行异烟肼耐药突变检测,突变阳性的标本测序验证以确定具体突变类型。对最终纳入分析的833例病人的910份标本的检测结果表明,厦门和漳州两地的异烟肼耐药突变率合计为19.4%(162/833),与我国18.96%的异烟肼耐药率接近,而高于全球13.9%的异烟肼耐药率;在所检出的14种异烟肼耐药突变中,katG S315T (AGC→ACC)突变占48%(77/162,含72份单独突变和5份合并突变),inhA启动子-15C→T突变占30%(48/162,含41份单独突变和7份合并突变),katG S315N (AGC→AAC)突变占8%(13/162,含11份单独突变和2份合并突变),三种类型突变合计占85%(138/162),是典型的优势突变,与国内外报道一致。其中排在第一位的katG S315T突变与高水平耐药、耐多药和广泛耐药密切相关,提示厦漳两地有9.2%(77/833)患者可能需要采用二线药物治疗,而处于第二位的inhA启动子-15C→T突变与低水平耐异烟肼相关,且同时耐受乙硫异烟胺和丙硫异烟胺,这部分患者(5.8%,48/833)可采用高剂量异烟肼治疗,但不适用含二线药乙硫异烟胺和丙硫异烟胺的治疗方案。因此,上述流行病学研究结果不仅有助于了解本地结核耐药情况,以便采取相应的防控措施,而且还为临床医生的合理用药提供了参考依据。
     第五章实时PAP定量检测结核异烟肼耐药突变
     实时追踪耐药突变的发生与变化对于指导临床治疗无疑具有重要意义,耐药突变的发生起初含量极低,而其不断累积的过程又必须通过定量检测才能实现,为此,需要发展一种能够选择性定量检测突变的技术。焦磷酸水解激活的聚合反应(Pyrophosphorolysis-activated polymerization, PAP)是一种特异检测稀有突变的方法。我们借鉴实时PCR模式,将其发展为实时PAP,用之于定量检测耐异烟肼TB中最常见的katG S315T (AGC→ACC)突变。利用染料法,分别建立了野生型和突变型两个实时PAP检测体系。采用质粒模板,两个实时PAP体系的检测限均为10拷贝/反应,特异性分别为5×105拷贝/反应和5×104拷贝/反应,选择性均为105:1。对71份临床涂阳痰标本进行实时PAP检测,并以测序和实时PCR检测为对照。结果表明,其中的64份标本,3种方法检测结果完全一致。在7份不一致的标本中,6份的实时PAP检出结果是存在不同含量的突变,即发生不同程度的不均一耐药(0.07%-94.2%),其中5份被实时PCR检出,2份突变含量高的标本被测序检出。另一份实时PAP和实时PCR均未检出突变的标本,测序结果表明突变类型为katG S315N (AGC→AAC),非上述两种方法的检测对象。上述结果证实,实时PAP具有检测低水平突变的能力,且结果准确,并可定量检测突变的多少,因此,有望用于追踪耐药突变的发生、发展过程,对监测耐药的发生、及时调整治疗方案有重要意义。
The high prevalence rate of drug-resistant Mycobacterium tuberculosis (MTB) is the major challenge in control and prevention of tuberculosis. As one of the mostly often used first-line drug for TB treatment, isoniazide (INH)-resistant TB has high morbidity and mortality. The aim of this thesis is to establish new systems for detection of the INH-resistant mutations and explore their applications in clinical settings. The thesis is composed of five parts:a review on drug-resistant TB, its diagnosis and treatment (Chapter1), establishment of a real-time PCR-based melting curve analysis method for detection of INH-resistant mutations (Chapter2), a multicenter validation study on the newly established method (Chapter3), an epidemiology study on INH-resistant TB in two local cities (Chapter4) and finally, development of a quantitative method for the katG S315T mutation (Chapter5).
     Chapter1. Introduction
     Firstly, the epidemiology of TB and drug-resistant TB were described, the biological background of tubercle bacillus and TB diagnostic methods were reviewed. Secondly, the mechanisms of INH action and resistance were discussed. Existing methods and their future trend in the detection of drug-resistant mutations were described. The working principle of probe melting analysis (PMA) and its use in mutation detection was illustrated. Finally, the aim, contents and meaningfulness of this thesis were given.
     Chapter2. Establishment and evaluation of PMA for INH-resistant mutation detection.
     INH resistance associated genes are katG315, inhA promoter, ahpC promoter and inhA94. A2-tube,2-color PMA was established targeting these four gene loci. By using our own extraction method and under the optimal experimental conditions, the limit of detection of the assay was3genome copies per reaction. The melting temperature (Tm) between wild type and the mutant types were larger than2℃and the SD were smaller than1℃(n=6). Consequently, all mutations could be efficiently detected regardless of the loci. The specificity was100%in the detection of reference panel and the detection ability for the heteroresistance was30%. The results with a panel of non-tuberculosis mycobacteria (NTM) from NIFDC showed that none NTM could display signal in all the four detection windows. The established assay could be used on three different modes of machines and the results showed no significant difference.
     Chapter3. A multicenter validation of the PMA method
     Clinical isolates (1096) collected from hospitals of Beijing, Henan and Shenzhen were used to validate the above described PMA in a double blind format. The comparison method was proportional method for drug susceptibility testing (culture method) and confirmation method was sequencing. The results showed that the clinical sensitivity of PMA was90.8%(397/437) and the specificity was96.4%(635/659) according to the culture method. The sequencing results confirmed the rightness of all the mutations detected by PMA including397INH-resistant isolates and24susceptible isolates. Forty INH-resistant isolates were detected as wild type by PMA. Sequencing analysis displayed that4of them were heteroresistance,5had mutations uncovered by PMA and31had no mutation in the four loci. Of the23types of mutation detected by PMA and identified by sequencing in INH-resistant isolates, the most common mutation types were katG S315T AGC→ACC, inhA promoter-15C→T, katG S315N AGC→AAC, and ahpC promoter-10C→T which accounted for87.4%(382/437) in INH-resistant isolates. No mutations were detected in inhA94loci. PMA successfully detected76.5%(13/17) heteroresistant samples. In conclusion, PMA could accurately detect the mutations, had good concordance with the culture method, and therefore would be suitable for clinical use.
     Chapter4. Epidemiological study on INH-resistant TB in Xiamen and Zhangzhou
     In this study,785clinical isolates were collected in Xiamen and Zhangzhou from June2006to December2009and146smear positive sputum samples were collected in Xiamen from October2008and December2009. All the samples were subjected to PMA for detection of INH-resistant mutations. The mutant samples were confirmed by sequencing analysis. Totally,910valid samples from833patients were successfully analyzed. The results showed that the overall mutation rate in the population was19.4%(162/833), which was close to the mutation rate of18.9%in China and higher than that of13.9%worldwide. Of the14mutation types detected, katG S315T (AGC→ACC) accounted for48%(77/162,72patients had single mutation while5patients had compound mutations), inhA promoter-15C→T accounted for30%(48/162,41patients had single mutation while7patients had compound mutations), and katG S315N (AGC→AAC) accounted for8%(13/162,11patients had single mutation and2patients had compound mutations), and altogether they contributed to85%(138/162) and were typically predominant mutations, which was in concordance with both domestic and international report. The katG S315T (AGC→ACC) was reported to be associated with high-level drug resistance, multidrug resistance and extensively drug resistance, indicating that9.2%(77/833) of the patients might need treatment with second line drugs. inhA promoter-15C→T was associated with low-level drug resistance, this portion of patients (5.8%,48/833) could be treated with high dose INH but not with either ethionamide or protionamide. Consequently, this epidemiological study was helpful not only for understanding the situation of drug-resistant TB in these regions but also for choosing suitable treatment strategy for the patients and, in the end, benefiting prevention of drug-resistant TB.
     Chapter5. Quantification of mutations in INH-resistant M.tuberculosis by real-time PAP
     Real-time tracking of the occurrence and accumulation of drug-resistant mutation in TB was valuable in guiding treatment. In the early beginning the mutant occurs at extremely low abundance, and the process of continuous accumulation can be only followed by a quantitative measurement. For this purpose, we developed a method that could selectively quantify rare mutations. Pyrophosphorolysis-activated polymerization (PAP) is an extremely specific method for rare mutation detection. By borrowing the concept of real-time PCR detection, we developed a real-time PAP method to quantify katG S315T (AGC→ACC) mutation, which is the most common mutation in INH-resistant MTB. Two real-time PAP systems were established for both the wild type and the mutant by using the fluorogenic dye. With plasmid DNA, the limit of detection of the two systems was10copies per reaction, specificity was5×105and5×104copies, respectively, and the selectivity was1:105. The real-time PAP systems were used to analyze71smear-positive sputum samples, and the results were compared with both sequencing and a probe-based real-time PCR method. The results showed that fully concordant results were obtained in64samples with three methods. Of the7discrepant samples,6samples were found to have mixed wild-type and mutant MTB of different level (0.07%-94.2%), and5of them were detected as mutant by real-time PCR and2were detected as mutant by sequencing. One sample missed by both real-time PAP and real-time PCR was found to harbor a different mutation, i.e., katG S315N (AGC→AAC). The above results demonstrated that real-time PAP could detect and quantify rare mutation, and thus has great potential to track the process of the mutation accumulation and help to choose an optimal treatment strategy.
引文
[1]彭卫生,王英年,肖成志.新编结核病学[M].北京:中国医药科技出版社,2003.
    [2]World Health Organization (WHO). Global Tuberculosis Report 2012 [R/OL]. http://apps. who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf. Geneva, Switzerland. WHO, 2012.
    [3]康万里,端木宏谨,郑素华.出生队列研究在中国结核病分布中的应用[J].中国防痨杂志,2011,33(9):531-534.
    [4]Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China [J]. N Engl J Med,2012,366(23):2161-2170.
    [5]王宇.全国第五次结核病流行病学抽样调查资料汇编[M].北京:军事医学科学出版社,2011.
    [6]World Health Organization (WHO).2011/2012 Tuberculosis global facts [Z/OL]. http://www. who.int/tb/publications/2011/factsheet_tb_2011.pdf. Geneva, Switzerland. WHO,2012.
    [7]World Health Organization (WHO). Guidelines for the programmatic management of drug-resistant tuberculosis:emergency update 2008 [Z/OL]. http://whqlibdoc.who.int/
    publications/2008/9789241547581_eng.pdf. Geneva, Switzerland. WHO,2008.
    [8]唐神洁,高义.结核病的分子生物学诊断[M].北京:人民卫生出版社,2011.
    [9]Zignol M, van Gemert W, Falzon D, et al. Surveillance of anti-tuberculosis drug resistance in the world:an updated analysis,2007-2010 [J]. Bull World Health Organ,2012,90(2):111-119D.
    [10]World Health Organization (WHO). Anti-tuberculosis drug resistance in the world. Report no.4 [R/OL]. http://www.who.int/tb/publications/2008/drs_report4_26feb08.pdf. Geneva, Switzerland. WHO,2008.
    [11]吴雪琼.新型结核病疫苗的研究现状与发展趋势[J].中国防痨杂志,2012,34(3):133-137.
    [12]da Silva PE, Von Groll A, Martin A, et al. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis [J]. FEMS Immunol Med Microbiol,2011,63(1):1-9.
    [13]吴雪琼,张宗德,乐军.分枝杆菌分子生物学[M].北京:人民军医出版社,2010.
    [14]U.S. Food and Drug Administration (FDA). FDA approves first drug to treat multi-drug resistant tuberculosis. [2012-12-31]. [Z/OL]. http://www.fda.gov/NewsEvents/Newsroom/ PressAnnouncements/ucm333695.htm. Silver Spring, USA.FDA.2012
    [15]Daley CL and Griffith DE. Pulmonary non-tuberculous mycobacterial infections [J]. Int J Tuberc Lung Dis,2010,14(6):665-671.
    [16]Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection [J]. Clin Dev Immunol,2011,2011:814943.
    [17]Kirschner P, Springer B, Vogel U, et at. Genotypic identification of mycobacteria by nucleic acid sequence determination:report of a 2-year experience in a clinical laboratory [J]. J Clin Microbiol,1993,31(11):2882-2889.
    [18]李国利,庄玉辉,赵铭,等.16S-23SrDNA内转录间隔区序列分析及其在分支杆菌鉴定中的应用价值[J].中华结核和呼吸杂志,2002,25(3):166-170.
    [19]Beste DJ, Espasa M, Bonde B, et al. The genetic requirements for fast and slow growth in mycobacteria [J]. PLoS One,2009,4(4):e5349.
    [20]Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J]. Nature,1998,393(6685):537-544.
    [21]Chatterjee D and Khoo KH. Mycobacterial lipoarabinomannan:an extraordinary lipoheteroglycan with profound physiological effects [J]. Glycobiology,1998,8(2):113-120.
    [22]Hett EC and Rubin EJ. Bacterial growth and cell division:a mycobacterial perspective [J]. Microbiol Mol Biol Rev,2008,72(1):126-156.
    [23]Shui G, Bendt AK, Jappar IA, et al. Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice [J]. EMBO Mol Med,2012,4(l):27-37.
    [24]Torrelles JB and Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host [J]. Tuberculosis (Edinb),2010,90(2):84-93.
    [25]Riley LW. Of mice, men, and elephants:Mycobacterium tuberculosis cell envelope lipids and pathogenesis [J]. J Clin Invest,2006,116(6):1475-1478.
    [26]World Health Organization (WHO). Treatment of Tuberculosis:guidelines for national Programmes [Z/OL]. http://whqlibdoc.who.int/hq/2003/who_cds_tb_2003.313_eng.pdf. Geneva, Switzerland. WHO,2003.
    [27]Vilcheze C and Jacobs WR, Jr. The mechanism of isoniazid killing:clarity through the scope of genetics [J]. Annu Rev Microbiol,2007,6135-6150.
    [28]Almeida Da Silva PE and Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis:classical and new drugs [J]. J Antimicrob Chemother,2011, 66(7):1417-1430.
    [29]Zainuddin ZF and Dale JW. Does Mycobacterium tuberculosis have plasmids? [J]. Tubercle, 1990,71(1):43-49.
    [30]Louw GE, Warren RM, Gey van Pittius NC, et al. A balancing act:efflux/influx in mycobacterial drug resistance [J]. Antimicrob Agents Chemother,2009,53(8):3181-3189.
    [31]Gupta AK, Katoch VM, Chauhan DS, et al. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs [J]. Microb Drug Resist,2010,16(1):21-28.
    [32]Machado D, Couto I, Perdigao J, et al. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis [J]. PLoS One,2012,7(4):e34538.
    [33]Sandgren A, Strong M, Muthukrishnan P, et al. Tuberculosis drug resistance mutation database [J]. PLoS Med,2009,6(2):e2.
    [34]Cardoso RF, Cooksey RC, Morlock GP, et al. Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil [J]. Antimicrob Agents Chemother,2004,48(9):3373-3381.
    [35]Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China [J]. J Clin Microbiol,2005,43(11):5477-5482.
    [36]Valvatne H, Syre H, Kross M, et al. Isoniazid and rifampicin resistance-associated mutations in Mycobacterium tuberculosis isolates from Yangon, Myanmar:implications for rapid molecular testing [J]. J Antimicrob Chemother,2009,64(4):694-701.
    [37]Luo T, Zhao M, Li X, et al. Selection of mutations to detect multidrug-resistant Mycobacterium tuberculosis strains in Shanghai, China [J]. Antimicrob Agents Chemother,2010, 54(3):1075-1081.
    [38]Kiepiela P, Bishop KS, Smith AN, et al. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa [J]. Tuber Lung Dis,2000,80(1):47-56.
    [39]Silva MS, Senna SG, Ribeiro MO, et al. Mutations in katG, inhA, and ahpC genes of Brazilian isoniazid-resistant isolates of Mycobacterium tuberculosis [J]. J Clin Microbiol,2003, 41(9):4471-4474.
    [40]Kim SY, Park YJ, Kim WI, et al. Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea [J]. Diagn Microbiol Infect Dis, 2003,47(3):497-502.
    [41]Hazbon MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2006,50(8):2640-2649.
    [42]Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence [J]. Clin Microbiol Rev,2003,16(3):463-496.
    [43]Bartos P, Falkinham JO and Pavlik I. Mycobacterial catalases, peroxidases, and superoxide dismutases and their effects on virulence and isoniazid-susceptibility in mycobacteria-a review [J]. Veterinarni Medicina-UZPI 2004,49(5):161-170.
    [44]Metcalfe C, Macdonald IK, Murphy EJ, et al. The tuberculosis prodrug isoniazid bound to activating peroxidases [J]. J Biol Chem,2008,283(10):6193-6200.
    [45]Zhao X, Yu H, Yu S, et al. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant [J]. Biochemistry, 2006,45(13):4131-4140.
    [46]Wengenack NL, Jensen MP, Rusnak F, et al. Mycobacterium tuberculosis KatG is a peroxynitritase [J]. Biochem Biophys Res Commun,1999,256(3):485-487.
    [47]Ghiladi RA, Cabelli DE and Ortiz de Montellano PR. Superoxide reactivity of KatG:insights into isoniazid resistance pathways in TB [J]. J Am Chem Soc,2004,126(15):4772-4773.
    [48]Caminero JA, Sotgiu G, Zumla A, et al. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis [J]. Lancet Infect Dis,2010,10(9):621-629.
    [49]Wang F, Langley R, Gulten G, et al. Mechanism of thioamide drug action against tuberculosis and leprosy [J]. J Exp Med,2007,204(1):73-78.
    [50]Vilcheze C, Wang F, Arai M, et al. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid [J]. Nat Med,2006,12(9):1027-1029.
    [51]Brossier F, Veziris N, Truffot-Pernot C, et al. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2011,55(1):355-360.
    [52]Abe C, Kobayashi I, Mitarai S, et al. Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan [J]. J Clin Microbiol,2008,46(7):2263-2268.
    [53]Brossier F, Veziris N, Truffot-Pernot C, et al. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low- and high-level resistance [J]. J Clin Microbiol,2006,44(10):3659-3664.
    [54]Deretic V, Philipp W, Dhandayuthapani S, et al. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene:implications for sensitivity to isoniazid [J]. Mol Microbiol,1995,17(5):889-900.
    [55]Sherman DR, Mdluli K, Hickey MJ, et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis [J]. Science,1996,272(5268):1641-1643.
    [56]Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence [J]. Clin Microbiol Rev,2003,16(3):463-496.
    [57]Parsons LM, Somoskovi A, Urbanczik R, et al. Laboratory diagnostic aspects of drug resistant tuberculosis [J]. Front Biosci,2004,9:2086-2105.
    [58]Gegia M, Mdivani N, Mendes RE, et al. Prevalence of and molecular basis for tuberculosis drug resistance in the Republic of Georgia:validation of a QIAplex system for detection of drug resistance-related mutations [J]. Antimicrob Agents Chemother,2008,52(2):725-729.
    [59]Bergval IL, Vijzelaar RN, Dalla Costa ER, et al. Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis [J]. J Clin Microbiol,2008,46(2):689-699.
    [60]Bergval I, Kwok B, Schuitema A, et al. Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro [J]. PLoS One,2012,7(l):e29108.
    [61]Jureen P, Engstrand L, Eriksson S, et al. Rapid detection of rifampin resistance in Mycobacterium tuberculosis by Pyrosequencing technology [J]. J Clin Microbiol,2006, 44(6):1925-1929.
    [62]Garcia-Sierra N, Lacoma A, Prat C, et al. Pyrosequencing for rapid molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical specimens [J]. J Clin Microbiol,2011,49(10):3683-3686.
    [63]Massire C, Ivy CA, Lovari R, et al. Simultaneous identification of mycobacterial isolates to the species level and determination of tuberculosis drug resistance by PCR followed by electrospray ionization mass spectrometry [J]. J Clin Microbiol,2011,49(3):908-917.
    [64]Wang F, Massire C, Li H, et al. Molecular characterization of drug-resistant Mycobacterium tuberculosis isolates circulating in China by multilocus PCR and electrospray ionization mass spectrometry [J]. J Clin Microbiol,2011,49(7):2719-2721.
    [65]Anek-Vorapong R, Sinthuwattanawibool C, Podewils LJ, et al. Validation of the GenoType MTBDRplus assay for detection of MDR-TB in a public health laboratory in Thailand [J]. BMC Infect Dis,2010,10:123.
    [66]Hillemann D, Rusch-Gerdes S and Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens [J]. J Clin Microbiol,2007,45(8):2635-2640.
    [67]Miotto P, Piana F, Penati V, et al. Use of genotype MTBDR assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical strains isolated in Italy [J]. J Clin Microbiol,2006,44(7):2485-2491.
    [68]Crudu V, Stratan E, Romancenco E, et al. First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances [J]. J Clin Microbiol, 2012,50(4):1264-1269.
    [69]Piatek AS, Tyagi S, Pol AC, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis [J]. Nat Biotechnol,1998,16(4):359-363.
    [70]El-Hajj HH, Marras SA, Tyagi S, et al. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons [J]. J Clin Microbiol,2001,39 (11): 4131-4137.
    [71]Varma-Basil M, El-Hajj H, Colangeli R, et al. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates from India and Mexico by a molecular beacon assay [J]. J Clin Microbiol,2004,42(12):5512-5516.
    [72]Raja S, Ching J, Xi L, et al. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing [J]. Clin Chem,2005,51(5):882-890.
    [73]Helb D, Jones M, Story E, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology [J]. J Clin Microbiol,2010,48(1):229-237.
    [74]Blakemore R, Story E, Helb D, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay [J]. J Clin Microbiol,2010,48(7):2495-2501.
    [75]Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance [J]. N Engl J Med,2010,363(11):1005-1015.
    [76]World Health Organization (WHO). WHO monitoring of Xpert MTB/RIF roll-out [Z/OL]. http://who.int/tb/laboratory/mtbrifrollout/en/. Geneva, Switzerland. WHO,2012.
    [77]Gotuzzo E. Xpert MTB/RIF for diagnosis of pulmonary tuberculosis [J]. Lancet Infect Dis, 2011,11(11):802-803.
    [78]Vadwai V, Boehme C, Nabeta P, et al. Xpert MTB/RIF:a new pillar in diagnosis of extrapulmonary tuberculosis? [J]. J Clin Microbiol,2011,49(7):2540-2545.
    [79]Nicol MP, Workman L, Isaacs W, et al. Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa:a descriptive study [J]. Lancet Infect Dis,2011, 11(11):819-824.
    [80]Lawn SD, Kerkhoff AD, Vogt M, et al. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy:a descriptive study [J]. Lancet Infect Dis,2012,12(3):201-209.
    [81]Blakemore R, Nabeta P, Davidow AL, et al. A multi-site assessment of the quantitative capabilities of the Xpert(R) MTB/RIF assay [J]. Am J Respir Crit Care Med,2011,184(9):1076-1084.
    [82]Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study [J]. Lancet,2011,377(9776):1495-1505.
    [83]Dorman SE, Chihota VN, Lewis JJ, et al. Performance characteristics of the Cepheid Xpert MTB/RIF test in a tuberculosis prevalence survey [J]. PLoS One,2012,7(8):e43307.
    [84]尹青琴,焦伟伟,孙琳,等.Xpert结核分枝杆菌/利福平试验对结核病及耐多药结核病诊断价值的Meta分析[J].中国循症儿科杂志,2012,7(5):341-348.
    [85]Parsons LM, Somoskovi A, Gutierrez C, et al. Laboratory diagnosis of tuberculosis in resource-poor countries:challenges and opportunities [J]. Clin Microbiol Rev,2011, 24(2):314-350.
    [86]Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis [J]. Lancet,1993,341(8846):647-650.
    [87]World Health Organization (WHO). Guidelines for the programmatic management of drug-resistant tuberculosis-2011 update [Z/OL]. http://whqlibdoc.who.int/publications/2011/ 9789241501583_eng.pdf. Geneva, Switzerland. WHO,2011
    [88]Jacobson KR, Theron D, Victor TC, et al. Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa [J]. Clin Infect Dis,2011, 53(4):369-372.
    [89]Bang D, Andersen PH, Andersen AB, et al. Isoniazid-resistant tuberculosis in Denmark: mutations, transmission and treatment outcome [J]. J Infect,2010,60(6):452-457.
    [90]Cattamanchi A, Dantes RB, Metcalfe JZ, et al. Clinical characteristics and treatment outcomes of patients with isoniazid-monoresistant tuberculosis [J]. Clin Infect Dis,2009, 48(2):179-185.
    [91]Wittwer, C. T., J. S. Farrar. Magic in solution:an introduction and rrief history of PCR. [A].PCR troubleshooting and optimization:The essential guide. Caister Academic Press, Norfolk, UK.2011:1-22.
    [92]Chen X, Kong F, Wang Q, et al. Rapid detection of isoniazid, rifampin, and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high-resolution melting analysis [J]. J Clin Microbiol,2011,49(10):3450-3457.
    [93]Choi GE, Lee SM, Yi J, et al. High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates [J]. J Clin Microbiol,2010,48(11):3893-3898.
    [94]Ong DC, Yam WC, Siu GK, et al. Rapid detection of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis [J]. J Clin Microbiol,2010, 48(4):1047-1054.
    [95]Pietzka AT, Indra A, Stoger A, et al. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis [J]. J Antimicrob Chemother,2009,63(6):1121-1127.
    [96]Ramirez MV, Cowart KC, Campbell PJ, et al. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis [J]. J Clin. Microbiol,2010,48(11):4003-4009.
    [97]Torres MJ, Criado A, Palomares JC, et al. Use of real-time PCR and fluorimetry for rapid detection of rifampin and isoniazid resistance-associated mutations in Mycobacterium tuberculosis [J]. J Clin Microbiol,2000,38(9):3194-3199.
    [98]Torres MJ, Criado A, Ruiz M, et al. Improved real-time PCR for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates [J]. Diagn Microbiol Infect Dis,2003,45(3):207-212.
    [99]Garcia de Viedma D, del Sol Diaz Infantes M, Lasala F, et al. New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis [J]. J Clin Microbiol,2002,40(3):988-995.
    [100]Marin M, Garcia de Viedma D, Ruiz-Serrano MJ, et al. Rapid direct detection of multiple rifampin and isoniazid resistance mutations in Mycobacterium tuberculosis in respiratory samples by real-time PCR [J]. Antimicrob Agents Chemother,2004,48(11):4293-4300.
    [101]Saribas Z, Yurdakul P, Alp A, et al. Use of fluorescence resonance energy transfer for rapid detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates [J]. Int J Tuberc Lung Dis,2005,9(2):181-187.
    [102]Kocagoz T, Saribas Z and Alp A. Rapid determination of rifampin resistance in clinical isolates of Mycobacterium tuberculosis by real-time PCR [J]. J Clin Microbiol,2005, 43(12):6015-6019.
    [103]Edwards KJ, Metherell LA, Yates M, et al. Detection of rpoB mutations in Mycobacterium tuberculosis by biprobe analysis [J]. J Clin Microbiol,2001,39(9):3350-3352.
    [104]Chakravorty S, Aladegbami B, Thoms K, et al. Rapid detection of fluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis by use of sloppy molecular beacons and dual melting-temperature codes in a real-time PCR assay [J]. J Clin Microbiol,2011, 49(3):932-940.
    [105]Chakravorty S, Kothari H, Aladegbami B, et al. Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding [J]. J Clin Microbiol,2012,50(7):2194-2202.
    [106]Huang Q, Liu Z, Liao Y, et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes [J]. PLoS One,2011,6(4):e 19206.
    [107]Luo T, Jiang L, Sun W, et al. Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis [J]. J Clin Microbiol,2011, 49(9):3132-3138.
    [108]Liu Q, Luo T, Li J, et al. Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction [J]. J Antimicrob Chemother,2013,68 (5):1097-1103.
    [109]Rice JE, Reis AH, Jr., Rice LM, et al. Fluorescent signatures for variable DNA sequences [J]. Nucleic Acids Res,2012,40(21):e164.
    [110]Zhou L, Myers AN, Vandersteen JG, et al. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye [J]. Clin Chem,2004,50(8):1328-1335.
    [111]Haugland RP, Yguerabide J and Stryer L. Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap [J]. Proc Natl Acad Sci U S A,1969,63(1):23-30.
    [112]Marras SA, Tyagi S and Kramer FR. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes [J]. Clin China Acta,2006,363(1-2):48-60.
    [113]Marras SA. Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes [J]. Methods Mol Biol,2006,335:3-16.
    [114]Tyagi S and Kramer FR. Molecular beacons:probes that fluoresce upon hybridization [J].Nat Biotechnol,1996,14(3):303-308.
    [115]El-Hajj HH, Marras SA, Tyagi S, et al. Use of sloppy molecular beacon probes for identification of mycobacterial species [J]. J Clin Microbiol,2009,47(4):1190-1198.
    [116]Chakravorty S, Aladegbami B, Burday M, et al. Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique [J]. J Clin Microbiol,2010,48(1):258-267.
    [117]Helb D, Jones M, Story E, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology [J]. J Clin Microbiol,2010, 48(1):229-237.
    [118]Li Q, Liang J, Luan G, Zhang Y, Wang K. Molecular beacon-based homogeneous fluorescence PCR assay for the diagnosis of infectious diseases [J]. Anal Sci,2000,16245-16248.
    [119]Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes [J]. Proc Natl Acad Sci U S A,1999,96(11):6171-6176.
    [1]唐神洁,高义.结核病的分子生物学诊断[M].北京:人民卫生出版社,2011.
    [2]彭卫生,王英年,肖成志.新编结核病学[M].北京:中国医药科技出版社,2003.
    [3]Hazbon MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2006,50(8):2640-2649.
    [4]Huang Q, Liu Z, Liao Y, et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes [J]. PLoS One,2011,6(4):e19206.
    [5]中国防痨协会基础专业委员会.结核病诊断实验室检验规程[M].北京:中国教育文化出版社,2006.
    [6]胡良平.医学统计学:运用三型理论分析定量与定性资料[M].北京:人民军医出版社,2009.
    [7]David HL. Bacteriology of the mycobacteriosis [M]. U.S. Dept. of Health, Education, and Welfare, Public Health Service, Center for Disease Control, Bureau of Laboratories, Bacteriology Division, Mycobacteriology Branch,1976.
    [8]Bustin SA, Benes V, Nolan T, et al. Quantitative real-time RT-PCR--a perspective [J]. J Mol Endocrinol,2005,34(3):597-601.
    [9]Karrer EE, Lincoln JE, Hogenhout S, et al. In situ isolation of mRNA from individual plant cells:creation of cell-specific cDNA libraries [J]. Proc Natl Acad Sci U S A,1995, 92(9):3814-3818.
    [10]Peccoud, J., C.Jacob. Statistical Estimations of PCR Amplification Rates [A],In F. Ferre (ed.), Gene Quantification. Birkhauser, Boston, MA.1998:111-128.
    [11]El-Hajj HH, Marras SA, Tyagi S, et al. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons [J]. J Clin Microbiol,2001, 39(11):4131-4137.
    [12]金嘉琳,张文宏,翁心华,等.华东地区耐药结核分枝杆菌katG基因的变异[J].中华传染病杂志.2006,24(5):301-305.
    [13]Mokrousov I, Narvskaya O, Otten T, et al. High prevalence of katG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001 [J]. Antimicrob Agents Chemother,2002,46(5):1417-1424.
    [14]Chakravorty S, Kothari H, Aladegbami B, et al. Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding [J]. J Clin Microbiol,2012,50(7):2194-2202.
    [15]Chakravorty S, Aladegbami B, Thoms K, et al. Rapid detection of fluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis by use of sloppy molecular beacons and dual melting-temperature codes in a real-time PCR assay [J]. J Clin Microbiol,2011,49(3):932-940.
    [16]Rinder H, Mieskes KT and Loscher T. Heteroresistance in Mycobacterium tuberculosis [J]. Int J Tuberc Lung Dis,2001,5(4):339-345.
    [17]Kristensen LS, Andersen GB, Hager H, et al. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis [J]. Hum Mutat,2012,33(1):264-271.
    [18]Li J, Wang L, Mamon H, et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing [J]. Nat Med,2008,14(5):579-584.
    [1]Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis [J]. Lancet,1993,341(8846):647-650.
    [2]Pang Y, Xia H, Zhang Z, et al. Multicenter evaluation of genechip for detection of multidrug resistant Mycobacterium tuberculosis [J]. J Clin Microbiol,2013,51(6):1707-1713.
    [3]World Health Organization (WHO). Anti-tuberculosis drug resistance in the world. Report no.4 [R/OL]. http://www.who.int/tb/publications/2008/drs_report4_26feb08.pdf. Geneva, Switzerland. WHO,2008.
    [4]中华人民共和国卫生部.全国结核病耐药性基线调查报告(2007-2008)[M].北京:人民卫生出版社,2010.
    [5]World Health Organization (WHO). Guidelines for the programmatic management of drug-resistant tuberculosis-2011 update [Z/OL]. http://whqlibdoc.who.int/publications/2011/ 9789241501583_eng.pdf. Geneva, Switzerland. WHO,2011
    [6]Tukvadze N, Kempker RR, Kalandadze I, et al. Use of a molecular diagnostic test in AFB smear positive tuberculosis suspects greatly reduces time to detection of multidrug resistant tuberculosis [J]. PLoS One,2012,7(2):e31563.
    [7]Jin J, Zhang Y, Fan X, et al. Evaluation of the GenoType(R) MTBDRplus assay and identification of a rare mutation for improving MDR-TB detection [J]. Int J Tuberc Lung Dis, 2012,16(4):521-526.
    [8]Evans J, Stead MC, Nicol MP, et al. Rapid genotypic assays to identify drug-resistant Mycobacterium tuberculosis in South Africa [J]. J Antimicrob Chemother,2009,63(1):11-16.
    [9]Massire C, Ivy CA, Lovari R, et al. Simultaneous identification of mycobacterial isolates to the species level and determination of tuberculosis drug resistance by PCR followed by electrospray ionization mass spectrometry [J]. J Clin Microbiol,2011,49(3):908-917.
    [10]Gegia M, Mdivani N, Mendes RE, et al. Prevalence of and molecular basis for tuberculosis drug resistance in the Republic of Georgia:validation of a QIAplex system for detection of drug resistance-related mutations [J]. Antimicrob Agents Chemother,2008,52(2):725-729.
    [11]Bergval IL, Vijzelaar RN, Dalla Costa ER, et al. Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis [J]. J Clin Microbiol,2008,46(2):689-699.
    [12]Jureen P, Engstrand L, Eriksson S, et al. Rapid detection of rifampin resistance in Mycobacterium tuberculosis by Pyrosequencing technology [J]. J Clin Microbiol,2006, 44(6):1925-1929.
    [13]Chen X, Kong F, Wang Q, et al. Rapid detection of isoniazid, rifampin, and ofloxacin resistance in Mycobacterium tuberculosis clinical isolates using high-resolution melting analysis [J]. J Clin Microbiol,2011,49(10):3450-3457.
    [14]Choi GE, Lee SM, Yi J, et al. High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates [J]. J Clin Microbiol,2010,48(11):3893-3898.
    [15]Lin SY, Probert W, Lo M, et al. Rapid detection of isoniazid and rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures or smear-positive sputa by use of molecular beacons [J]. J Clin Microbiol,2004,42(9):4204-4208.
    [16]Piatek AS, Telenti A, Murray MR, et al. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons:implications for rapid susceptibility testing [J]. Antimicrob Agents Chemother,2000,44(1):103-110.
    [17]Ramirez MV, Cowart KC, Campbell PJ, et al. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis [J]. J Clin Microbiol,2010,48(11):4003-4009.
    [18]Ruiz M, Torres MJ, Llanos AC, et al. Direct detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis in auramine-rhodamine-positive sputum specimens by real-time PCR
    [J]. J Clin Microbiol,2004,42(4):1585-1589. [19] Saribas Z, Yurdakul P, Alp A, et al. Use of fluorescence resonance energy transfer for rapid detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates [J]. Int J Tuberc Lung Dis,2005,9(2):181-187.
    [20]Ong DC, Yam WC, Siu GK, et al. Rapid detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis [J]. J Clin Microbiol,2010, 48(4):1047-1054.
    [21]中国防痨协会基础专业委员会.结核病诊断实验室检验规程[M].北京:中国教育文化出版社,2006.
    [22]Hazbon MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2006,50(8):2640-2649.
    [23]Luo T, Zhao M, Li X, et al. Selection of mutations to detect multidrug-resistant Mycobacterium tuberculosis strains in Shanghai, China [J]. Antimicrob Agents Chemother,2010, 54(3):1075-1081.
    [24]Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China [J]. J Clin Microbiol,2005,43(11):5477-5482.
    [25]桂晓虹,徐鹏,赵明,等.耐多药结核病快速诊断试剂盒检测耐药结核分枝杆菌的评价[J].中华结核和呼吸杂志,2010,33(1):43-45.
    [26]Ling DI, Zwerling AA and Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis:a meta-analysis [J]. Eur Respir J,2008,32(5):1165-1174.
    [27]Dalla Costa ER, Ribeiro MO, Silva MS, et al. Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America [J]. BMC Microbiol,2009,939.
    [28]Valvatne H, Syre H, Kross M, et al. Isoniazid and rifampicin resistance-associated mutations in Mycobacterium tuberculosis isolates from Yangon, Myanmar:implications for rapid molecular testing [J]. J Antimicrob Chemother,2009,64(4):694-701.
    [29]Abe C, Kobayashi I, Mitarai S, et al. Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan [J]. J Clin Microbiol,2008,46(7):2263-2268.
    [30]Brossier F, Veziris N, Truffot-Pernot C, et al. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2011,55(1):355-360.
    [31]Brossier F, Veziris N, Truffot-Pernot C, et al. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low-and high-level resistance [J]. J Clin Microbiol,2006,44(10):3659-3664.
    [32]Vilcheze C, Wang F, Arai M, et al. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid [J]. Nat Med,2006,12(9):1027-1029.
    [33]陈曦,马玙,金奇,等.耐异烟肼结核分枝杆菌临床分离株耐药相关基因突变研究[J]. 中华结核和呼吸杂志,2005,28(4):250-253.
    [34]van Doom HR, Claas EC, Templeton KE, et al. Detection of a point mutation associated with high-level isoniazid resistance in Mycobacterium tuberculosis by using real-time PCR technology with 3'-minor groove binder-DNA probes [J]. J Clin Microbiol,2003,41(10):4630-4635.
    [35]van Soolingen D, de Haas PE, van Doom HR, et al. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands [J]. J Infect Dis,2000, 182(6):1788-1790.
    [36]Chakravorty S, Aladegbami B, Thoms K, et al. Rapid detection of fluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis by use of sloppy molecular beacons and dual melting-temperature codes in a real-time PCR assay [J]. J Clin Microbiol,2011,49(3):932-940.
    [37]Chakravorty S, Kothari H, Aladegbami B, et al. Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding [J]. J Clin Microbiol,2012,50(7):2194-2202.
    [38]Hofmann-Thiel S, van Ingen J, Feldmann K, et al. Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan [J]. Eur Respir J, 2009,33(2):368-374.
    [39]Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology:applications for routine laboratory testing [J]. Clin Microbiol Rev,2006,19(1):165-256.
    [40]Wittwer, C. T., J. S. Farrar. Magic in solution:An introduction and brief history of PCR. [A].PCR troubleshooting and optimization:The essential guide. Caister Academic Press, Norfolk, Uk.2011:1-22.
    [41]Pietzka AT, Indra A, Stoger A, et al. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis [J]. J Antimicrob Chemother,2009,63(6):1121-1127.
    [42]Torres MJ, Criado A, Palomares JC, et al. Use of real-time PCR and fluorimetry for rapid detection of rifampin and isoniazid resistance-associated mutations in Mycobacterium tuberculosis [J]. J Clin Microbiol,2000,38(9):3194-3199.
    [43]Luo T, Jiang L, Sun W, et al. Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis [J]. J Clin Microbiol,2011, 49(9):3132-3138.
    [44]Liu Q, Luo T, Li J, et al. Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction [J]. J Antimicrob Chemother,2013,68 (5):1097-1103.
    [45]Huang Q, Liu Z, Liao Y, et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes [J]. PLoS One,2011,6(4):e19206.
    [1]Menzies D, Benedetti A, Paydar A, et al. Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid:a systematic review and meta-analysis [J]. PLoS Med,2009,6(9):e1000150.
    [2]Jenkins HE, Zignol M and Cohen T. Quantifying the burden and trends of isoniazid resistant tuberculosis,1994-2009 [J]. PLoS One,2011,6(7):e22927.
    [3]Zignol M, van Gemert W, Falzon D, et al. Surveillance of anti-tuberculosis drug resistance in the world:an updated analysis,2007-2010 [J]. Bull World Health Organ,2012,90(2):111-119D.
    [4]World Health Organization (WHO). Guidelines for surveillance of drug resistance in tuberculosis [Z/OL]. http://whqlibdoc.who.int/publications/2009/9789241598675_eng.pdf. Geneva, Switzerland. WHO,2009.
    [5]Massire C, Ivy CA, Lovari R, et al. Simultaneous identification of mycobacterial isolates to the species level and determination of tuberculosis drug resistance by PCR followed by electrospray ionization mass spectrometry [J]. J Clin Microbiol,2011,49(3):908-917.
    [6]中华人民共和国卫生部.全国结核病耐药性基线调查报告(2007-2008)[M].北京:人民卫生出版社,2010.
    [7]Zhao Y, Xu S, Wang L, et al. National survey of drug-resistant tuberculosis in China [J]. N Engl J Med,2012,366(23):2161-2170.
    [8]World Health Organization (WHO). Global Tuberculosis Report 2012 [R/OL]. http://apps. who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf. Geneva, Switzerland. WHO, 2012.
    [9]Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China [J]. J Clin Microbiol,2005,43(11):5477-5482.
    [10]姚春艳,张立群,府伟灵.应用基因芯片技术检测结核分枝杆菌耐药基因[J].中华医院感染学杂志,2010,20(11):1501-1504.
    [11]陈曦,马玛,金奇,等.耐异烟肼结核分枝杆菌临床分离株耐药相关基因突变研究[J].中华结核和呼吸杂志,2005,28(4):250-253.
    [12]Luo T, Zhao M, Li X, et al. Selection of mutations to detect multidrug-resistant Mycobacterium tuberculosis strains in Shanghai, China [J]. Antimicrob Agents Chemother,2010, 54(3):1075-1081.
    [13]Hazbon MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2006,50(8):2640-2649.
    [14]Brossier F, Veziris N, Truffot-Pernot C, et al. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low-and high-level resistance [J]. J Clin Microbiol,2006,44(10):3659-3664.
    [15]Dantes R, Metcalfe J, Kim E, et al. Impact of isoniazid resistance-conferring mutations on the clinical presentation of isoniazid monoresistant tuberculosis [J]. PLoS One,2012,7(5):e37956.
    [16]Ano H, Matsumoto T, Suetake T, et al. Relationship between the isoniazid-resistant mutation katGS315T and the prevalence of MDR-/XDR-TB in Osaka, Japan [J]. Int J Tuberc Lung Dis, 2008,12(11):1300-1305.
    [17]Caminero JA, Sotgiu G, Zumla A, et al. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis [J]. Lancet Infect Dis,2010,10(9):621-629.
    [18]Abe C, Kobayashi I, Mitarai S, et al. Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan [J]. J Clin Microbiol,2008,46(7):2263-2268.
    [19]Morlock GP, Metchock B, Sikes D, et al. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates [J]. Antimicrob Agents Chemother,2003, 47(12):3799-3805.
    [20]Pang Y, Xia H, Zhang Z, et al. Multicenter evaluation of genechip for detection of multidrug resistant Mycobacterium tuberculosis [J]. J Clin Microbiol,2013,51(6):1707-1713.
    [1]World Health Organization (WHO). Global Tuberculosis Report 2012 [R/OL]. http://apps. who.int/iri/bitstream/10665/75938/1/9789241564502_eng.pdf. Geneva, Switzerland. WHO, 2012.
    [2]de Steenwinkel JE, ten Kate MT, de Knegt GJ, et al. Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB [J]. Emerg Infect Dis,2012, 18(4):660-663.
    [3]Colijn C, Cohen T, Ganesh A, et al. Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy [J]. PLoS One,2011,6(3):e18327.
    [4]de Steenwinkel JE, de Knegt GJ, ten Kate MT, et al. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis [J]. J Antimicrob Chemother,2010,65(12):2582-2589.
    [5]Milbury CA, Li J and Makrigiorgos GM. PCR-based methods for the enrichment of minority alleles and mutations [J]. Clin Chem,2009,55(4):632-640.
    [6]Thompson JD, Shibahara G, Rajan S, et al. Winnowing DNA for rare sequences:highly specific sequence and methylation based enrichment [J]. PLoS One,2012,7(2):e31597.
    [7]Shah SP, Morin RD, Khattra J, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution [J]. Nature,2009,461(7265):809-813.
    [8]Parsons BL and Heflich RH. Genotypic selection methods for the direct analysis of point mutations [J]. Mutat Res,1997,387(2):97-121.
    [9]Kaur M, Zhang Y, Liu WH, et al. Ligation of a primer at a mutation:a method to detect low level mutations in DNA [J]. Mutagenesis,2002,17(5):365-374.
    [10]Knoll A, Ketterling RP and Sommer SS. Absence of somatic mosaicism in 17 families with hemophilia B:an analysis with a sensitivity 10- to 1000-fold greater than that of sequencing gels [J]. Hum Genet,1996,98(5):539-545.
    [11]Liu Q and Sommer SS. Pyrophosphorolysis-activated polymerization (PAP):application to allele-specific amplification [J]. Biotechniques,2000,29(5):1072-1076,1078,1080 passim.
    [12]Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS) [J]. Nucleic Acids Res,1989,17(7):2503-2516.
    [13]Sun X, Hung K, Wu L, et al. Detection of tumor mutations in the presence of excess amounts of normal DNA [J]. Nat Biotechnol,2002,20(2):186-189.
    [14]Dominguez PL and Kolodney MS. Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens [J]. Oncogene,2005, 24(45):6830-6834.
    [15]Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations [J]. Proc Natl Acad Sci U S A,2003,100(15):8817-8822.
    [16]Pholwat S, Stroup S, Foongladda S, et al. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis [J]. PLoS One,2013,8(2):e57238.
    [17]Li J, Wang L, Mamon H, et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing [J]. Nat Med,2008,14(5):579-584.
    [18]Liu Q and Sommer SS. PAP:detection of ultra rare mutations depends on P* oligonucleotides:"sleeping beauties" awakened by the kiss of pyrophosphorolysis [J]. Hum Mutat, 2004,23(5):426-436.
    [19]Liu Q and Sommer SS. Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures [J]. Nucleic Acids Res,2002,30(2):598-604.
    [20]Chen Z, Feng J, Buzin CH, et al. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay:monitoring of therapy or recurrence in non-metastatic breast cancer [J]. PLoS One,2009,4(9):e7220.
    [21]Ano H, Matsumoto T, Suetake T, et al. Relationship between the isoniazid-resistant mutation katGS315T and the prevalence of MDR-/XDR-TB in Osaka, Japan [J]. Int J Tuberc Lung Dis, 2008,12(11):1300-1305.
    [22]Hu Y, Hoffner S, Jiang W, et al. Extensive transmission of isoniazid resistant M. tuberculosis and its association with increased multidrug-resistant TB in two rural counties of eastern China:a molecular epidemiological study [J]. BMC Infect Dis,2010,1043.
    [23]Tukvadze N, Kempker RR, Kalandadze I, et al. Use of a molecular diagnostic test in AFB smear positive tuberculosis suspects greatly reduces time to detection of multidrug resistant tuberculosis [J]. PLoS One,2012,7(2):e31563.
    [24]温慧欣.置换探针实时PCR检测微生物耐药突变[D].厦门大学.2006.50-69.
    [25]Yeager H, Jr., Lacy J, Smith LR, et al. Quantitative studies of mycobacterial populations in sputum and saliva [J]. Am Rev Respir Dis,1967,95(6):998-1004.
    [26]唐神洁,高义.结核病的分子生物学诊断[M].北京:人民卫生出版社,2011.
    [27]Blakemore R, Nabeta P, Davidow AL, et al. A multi-site assessment of the quantitative capabilities of the Xpert(R) MTB/RIF assay [J]. Am J Respir Crit Care Med,2011,184(9):1076-1084.
    [28]Zhao X and Drlica K. Restricting the selection of antibiotic-resistant mutants:a general strategy derived from fluoroquinolone studies [J]. Clin Infect Dis,2001,33 Suppl 3:S147-156.
    [29]Drlica K and Zhao X. Mutant selection window hypothesis updated [J]. Clin Infect Dis,2007, 44(5):681-688.
    [30]Zhao X and Drlica K. A unified anti-mutant dosing strategy [J]. J Antimicrob Chemother, 2008,62(3):434-436.
    [31]Kennedy N, Gillespie SH, Saruni AO, et al. Polymerase chain reaction for assessing treatment response in patients with pulmonary tuberculosis [J]. J Infect Dis,1994,170(3):713-716.
    [32]Miotto P, Bigoni S, Migliori GB, et al. Early tuberculosis treatment monitoring by Xpert(R) MTB/RIF [J]. Eur Respir J,2012,39(5):1269-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700