CARASIL家系HTRA1突变基因与血管平滑肌细胞TGF-β信号通路的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴有皮质下梗死和白质病变的常染色体隐性遗传性脑动脉病(cerebral autosomalrecessive arteriopathy with subcortical infarcts and leucoencephalopathy,CARASIL)是一种隐性遗传性脑血管病,以青年早发的痴呆、卒中、腰痛、秃顶为主要临床表现;头颅影像学检查表现为皮质下白质广泛的脱髓鞘改变伴有多发腔隙性脑梗死;脑部尸检观察到脑部小动脉内膜增厚、内弹力层断裂、中膜平滑肌细胞减少、玻璃样变及管腔向心性狭窄等类似小动脉硬化的表现。半数以上病例有父母近亲结婚的家族史。整个病程平均10年。自1965年日本就有病例首报,但由于对疾病的认识不足以及诊断手段的不完善,此后仅有陆续报道,包括几个家系和一些散发病例。目前仅有50余例报道,大部分来自日本。2009年日本学者汇总了5个家系,通过基因连锁分析的方法将该病的致病基因定位于10号染色体的HTRA1基因。该基因有9个外显子,目前报道的突变位点包括4个错义突变,2个无义突变,它们分布在第3、4、6外显子上。这一区域位于HtrA1丝氨酸蛋白酶的活性区,所以往往会导致酶活性改变。但关于这方面的实验研究结论十分缺乏。HtrA1丝氨酸蛋白酶在体内广泛存在并且作用于多种靶蛋白,大部分为细胞外基质成分,与人类骨性关节炎、肿瘤等疾病有关。与HTRA1基因有关的信号通路为TGF-β/Smads,HtrA1丝氨酸蛋白酶能够抑制该信号通路,而基因突变则使蛋白酶活性减低,TGF-β/Smads信号通路表达上调,包括TGF-β1、BMP-2、BMP-4蛋白,从而通过不同途径导致CARASIL脑小动脉的病变和神经系统以外的症状。
     由于病理上能够见到比较明显的动脉中膜平滑肌细胞的大量丢失,所以研究血管平滑肌细胞的结构和功能变化对于进一步探讨CARASIL的发病机制尤为重要。目前国内外尚无HTRA1基因转染平滑肌细胞的相关研究。2007年我们在国内首次临床报道了一CARASIL家系,本课题旨在研究这一家系HTRA1基因突变方式,并建立一个HTRA1野生型及突变型基因的平滑肌细胞表达模型,检测TGF-β1/Smads信号通路分子的变化,有助于进一步理解CARASIL血管病变的病理机制。
     第一部分CARASIL一家系的临床、病理和基因分析
     研究目的:探讨一个CARASIL家系的临床病理特征,并对致病基因进行分析。
     研究方法:描述2例患者的临床、影像及病理特征,对第l9号染色体NOTCH3基因的1-33外显子全段测序,第l0号染色体HTRA1基因9个外显子测序。同时设正常人群对照进行HTRA1基因检测。
     结果:该家系包括2例患者,系同胞姐弟,父母近亲结婚。两例患者的发病年龄20-25岁,脑电图呈弥漫性慢波表现,头颅MRI检查均显示双侧大脑半球弥漫性白质病变,伴有皮质下多发性梗死。腓肠神经活检可见小动脉内弹力层轻度分裂、中层肥厚、血管
     腔呈向心性狭窄,PAS染色未见颗粒状沉积物,淀粉染色阴性,电镜下在小动脉平滑肌细胞层没有发现嗜锇颗粒。对第l9号染色体NOTCH3基因的1-33外显子全段测序未观察到突变。对HTRA1基因第1-9外显子测序发现第6外显子1091T>C纯合错义突变(L364P),患者父母及患者1的女儿为该位点的杂合突变。对40例对照进行HTRA1基因的测序未发现该位点突变或多态性改变。
     结论:我们对国内第一个CARASIL家系从基因水平进行了诊断,在HTRA1基因的第6外显子发现一个新的突变位点。
     第二部分HTRA1基因真核表达载体转染血管平滑肌细胞模型的建立
     研究目的:构建针对HTRA1基因的pEGFP-N1载体以及1091T>C突变质粒载体,并将两种质粒载体转染到血管平滑肌细胞。
     研究方法:根据人HTRA1基因CDS区的序列设计一对引物,上游:5’–CTCAAGCTTCGAATTCATGCAGATCCCGCGCGCCGCTCTTC-3’;下游:5’-GGCGACCGGTGGATCCCG TGGG TCAATTTCTTCGGGAA-3’。PCR扩增目的基因,将目的片段与p-EGFP-N1载体连接后转化大肠杆菌,抽提质粒后用EcoR I和BamH I双酶切后琼脂糖电泳及质粒测序验证,此为野生型质粒载体(WT)。另一试验组根据我们发现的突变位点1091T>C,设计两条包含有突变位点的中间引物,应用基因定点突变原理扩增含有突变位点的两段PCR产物,并将产物与pEGFP-N1载体进行连接反应,构建突变质粒载体(L364P)。转化感受态大肠杆菌进行扩增,提取质粒并进行双酶切及测序鉴定。用SMCM培养基培养血管平滑肌细胞,用α-SM-actin抗体免疫细胞化学鉴定细胞。将VSMC随机分为三组,分别应用DNAfect转染试剂进行转染:(1)WT组:转染HTRA1-pEGFP-N1野生型质粒;(2)L364P组:转染HTRA1-pEGFP-N1突变型质粒;(3)空白对照组:转染pEGFP-N1质粒。转染后使用流式细胞仪分析转染效率。
     结果:(1)野生型及突变型质粒OD值在1.8-2.0之间,浓度300-400ng/ul,双酶切后可见两个条带存在,分别为4.7kbp和1400bp,符合pEGFP-N1载体和HTRA1基因的长度。最后测序鉴定正确。(2)培养的细胞为长梭形,三角形、条带型、星型等多种形态,生长密集时称典型的“峰—谷”状,单克隆α-SM-actin抗体鉴定结果阳性,证实培养的细胞为平滑肌细胞。在转染后24-48小时之内观察,三组细胞均有绿色荧光表达,表明已经成功转染。流式检测转染效率在33%。
     结论:成功构建HTRA1基因的野生型和突变型质粒载体。两种质粒载体采用瞬时转染的方法转染进血管平滑肌细胞,有效的建立起HTRA1突变基因血管平滑肌细胞表达模型。
     第三部分HTRA1基因在血管平滑肌细胞的表达
     研究目的:检测HTRA1野生型及突变型基因转染血管平滑肌细胞后的HTRA1mRNA及HtrA1蛋白的表达。
     研究方法:细胞转染48小时后,收集对照组、WT组、L364P组的细胞,提取总RNA及总蛋白,分别用荧光定量PCR及Western blot方法检测HTRA1基因的表达。结果:三组细胞内均能检测到HTRA1基因的表达。RT-PCR结果显示,与对照组相比,HTRA1mRNA在L364P组和WT组表达增强,与WT组相比,L364P组表达减少;Westernblot结果显示两个转染组的HtrA1蛋白比对照组表达增多,与WT组相比,L364P组表达减少。
     结论:HTRA1基因转染血管平滑肌细胞后能在细胞内成功表达。1091T>C突变后导致HTRA1基因mRNA以及HtrA1蛋白减少。
     第四部分HTRA1基因对血管平滑肌细胞TGF-β1/Smads信号通路的影响
     研究目的:检测HTRA1野生型及突变型基因转染血管平滑肌细胞后的TGF-β1/Smads信号通路的变化。
     研究方法:细胞转染48小时后,收集对照组、WT组、L364P组三组细胞,提取总RNA及总蛋白,分别用荧光定量PCR及Western blot方法检测TGF-β1、Smad2/3/4及磷酸化Smad2/3的表达差异。
     结果:荧光定量PCR结果显示,与WT组相比,L364P组中的TGF-β1及Smad2/3的mRNA表达比WT组增强,差异有统计学意义(P<0.05),smad4的表达两组差别不明显;WB结果显示Smad2/3蛋白的表达L364P组较WT组有所增加,磷酸化的Smad2/3仅在L364P组检测到。Smad4的蛋白表达L364P组较WT组略有减少,差别不明显。
     结论: HTRA1突变型基因(1091T>C)转染VSMC后引起TGF-β1/Smads信号通路的表达上调。
Cerebral autosomal recessive arteriopathy with subcortical infarcts andleucoencephalopathy (CARASIL) is an inherited vascular diseases characterized by youngadult-onset non-hypertension stroke, progressive motor and cognitive impairment, alopeciaand lumbago. Brain MRI demonstrated diffuse leukoencephalopathy and multiple subcorticalinfarcts. Brain autopsy showed concentric thickening of vascular wall, narrowing of thelumen, mild fibrous proliferation of the intima and extensive loss of smooth muscle cells,which was similar with arteriosclerosis. About50%cases were born of the consanguineousparents. The patients would die after about10years from the onset. The first case wasreported by Japanese in1965. And then there were only a few cases reported including a fewfamilies and some sporadic cases because the understanding of the disease was insufficientand the diagnostic tools were not perfect. Up to now, only about50cases have been reportedand most of them were from Japan. In2009, some Japanese scholars collected5families ofCARASIL and found CARASIL was associated with mutations in the HTRA1gene which islocated on chromosome10q. There are9exons in HTRA1gene. To date,4missensemutations and2nonsense mutations had been reported and they were distributed in exon3,4and6where located the HtrA1protease domain. So HTRA1gene mutation might lead to thechange of its activity. But studies about that was insufficient. HtrA1serine protease waswidespread in the body and acted with a lot of target proteins, most of them were extracellularmatrix components. HtrA1serine protease was closely associated with osteoarthritis andmany types of cancers. TGF-β/Smads signaling was associated with HTRA1gene. HtrA1serine protease can inhibit the signaling. HTRA1gene mutations reduced the protease activity,and then followed with the over-expression of TGF-β/Smads, including TGF-β1、BMP-2、BMP-4. That was the cause of lesions on brain small artery and symptom of extra-nervoussystem.
     Extensive loss of vascular smooth muscle cells can be found pathologically, so studies onthe structure and function of vascular smooth muscle cells are important to explore thepathological mechanism of CARASIL. Up to date, there are no investigations about HTRA1gene transfection to vascular smooth muscle cells. We had reported a CARASIL family inChina for the first time. Our study was mainly on the detection of the HTRA1gene mutationsite, then we intend to build a model of wild and mutant HTRA1gene expressed in vascularsmooth muscle cells, and study on the TGF-β/Smads signaling which is helpful to explor thepathological mechanism of CARASIL.
     Part Ⅰ Study on the clinicalpathological and genetic characteristic
     of a CARASIL family
     Objective: To explorer the clinicopathological characteristics of a CARASIL family, andanalyze the causative gene.
     Methods: The clinical, imaging and pathological characteristics were described. Thesequence of the exons from1to33on NOTCH3in chromosome19and that of exons from1to9on HTRA1gene in chromosome10were detected. Meaningwhile the healthy control wasdetected the HTRA1gene.
     Results: Two patients were born from the consanguineous parents. The age of onset wasabout20to25years old. Electroencephalogram showed diffuse slow waves. Brain MRIdemonstrated diffuse leukoencephalopathy and multiple subcortical infarcts. Skin and suralnerve biopsy showed concentric thickening of vascular wall, narrowing of the lumen and mildfibrous proliferation of the intima. There were no amyloid, PAS granular deposition andultrastructural granular osmiophilic materials (GOMs) on the vascular wall. No mutationswere found in exons1-33of NOTCH3gene. we identified a homozygous T to C missensemutation (c.1091T>C) in exon6in the HTRA1gene of the two patients. Both parents and theproband’s daughter had the heterozygous c.1091T>C mutation. We included100healthycontrols admitted to the sequencing of the corresponding exon and didn’t find the samemutation.
     Conclusion: we analyzed the first CARASIL family genetically, and found a new mutation ofHTRA1gene.
     Part Ⅱ Model of vascular smooth muscle cells transfected witheukaryotic expression vector of HTRA1gene
     Objective: To build vector of wild HTRA1gene with pEGFP-N1plasmid and mutantHTRA1gene (1091T>C) with pEGFP-N1plasmid. Then the two plasmid vectors weretransfected to vascular smooth muscle cell.
     Methods: Design one pairs of primer according to the CDS of HTRA1gene, the forwardprimer is5’–CTCAAGCTTCG AATTCATGCAGATCCCGCGCGCCGCTCTTC-3’, the reverse primer is5’-GGCGACCGGTGGATCC CG TGGG TCAATTTCTTCGGGAA-3’.
     Target gene was amplification through PCR. Join the PCR product with the p-EGFP-N1vector, then transform to E.coli and purified the plasmids. Verified by double-enzyme leavageand gene sequencing. This is wild plasmid vector(WT). In another experimental group, wedesign two primers containing the new mutation site (1091T>C) that we have already foundand use the site-directed mutagenesis method to ampliate two pieces of PCR productscontaining the new mutation site, then join the PCR products with the p-EGFP-N1vector andthe mutant plasmid vector (L364P) is obtained. Transform to E.coli and purified the plasmids.Verified by double-enzyme cleavage and gene sequencing. Human vascular smooth musclecells were cultured with SMCM. The cells were detected by immunocytochemical stainingwith α-SM-actin antibody. VSMC were divided into three groups and transiently transfectedwith plasmid by means of DNAfect.(1) WT group: transfected with wild HTRA1-pEGFP-N1plasmid.(2) L364P group: transfected with mutant HTRA1-pEGFP-N1plasmid.(3)controlgroup: transfected with pEGFP-N1plasmid. Estimate the transfection efficiency by flowcytometry.
     Results:(1)The OD of the wild and mutant plasmid is between1.8to2.0, the concentrition isbetween300to400ng/ul. Two products of4.7kb and1400bp were observed after doubledouble-enzyme cleavage which were corresponding with the length of pEGFP-N1vector andHTRA1gene, and were verified by sequencing.(2) The cultured cells appeared fusiform,triangle and star shapes. The characteristic peak and valley features were evident, and theywere positive to α-SM-actin antibody which indicated the cells were smooth muscle cells.The green fluorescence were observed in three group cells in24to48hours after transfection.The transfection efficiency was about33%.
     Conclusions: We successfully built the wild and mutant HTRA1gene plasmid vector andtransfected the vector into vascular smooth muscle cells by transient transfection method.Model of vascular smooth muscle cell with HTRA1gene was built.
     Part Ⅲ Expression of HTRA1gene in vascular smooth musclecells
     Objective: To test the HTRA1mRNA and HtrA1expression after the wild and mutantHTRA1gene transfected into vascular smooth muscle cells.
     Methods: Collected the cells of three groups48hours after transfection and extrated the total
     RNA and proteins. The expression of HTRA1gene was detected through real-time PCR andWestern blot method.
     Results: The HTRA1gene expression can be detected in the three groups. Data of RT-PCRshowed HTRA1mRNA level in L364P group and WT group were higher than that in thecontrol group, and HTRA1mRNA in L364P was lower than that in WT group. Results ofWestern blot demonstrated that the HtrA1protein expression of the two transfection groupswere high than that of the control group and the expression was less in L364group than thatin WT group.
     Conclusions: HTRA1gene was successfully expressed in vascular smooth muscle cells aftertransfection. The mutant HTRA1gene (1091T>C) result in the low expression of HTRA1mRNA and HtrA1protein.
     Part Ⅳ Fluence on TGF-β1/Smads signaling of HTRA1gene invascular smooth muscle cells
     Objective: To test the change of TGF-β1/Smads signaling after the wild and mutant HTRA1gene transfected into vascular smooth muscle cells.
     Methods: Collected the total RNA and protein of three groups (control group, WT group andL364P group)48hours after transfection and extrated the total RNA and proteins. TGF-β1、Smad2/3/4and phosphorylated Smad2/3/were detected through real-time PCR and Westernblot method.
     Results: Data of RT-PCR showed mRNA level of TGF-β1and Smad2/3were higher inL364P group than that in WT group, and the differences were significant(P<0.05). The smad4mRNA level was not different in the two groups. Results of Western blot demonstrated thatthe Smad2/3protein expression in L364P group were high than that in WT group andphosphorylated Smad2/3/were detected only in L364P group. Smad4of L364P decreased alittle and the different was not significant.
     Conclusion: The mutant HTRA1gene (1091T>C) might increase the TGF-β1/Smadssignaling.
引文
[1] Fukutake T. Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts andLeukoencephalopathy (CARASIL): From Discovery to Gene Identification. Journal of Stroke andCerebrovascular Diseases,2011,20:85-93.
    [2] Yanagawa S, Ito N, Arima K, et al. Cerebral autosomal recessive arteriopathy with subcortical infarctsand leukoencephalopathy. Neurology,2002,58:817-820.
    [3] Arima K, Yanagawa S, Ito N, et al. Cerebral arterial pathology of CADASIL and CARASIL (Maedasyndrome). Neuropathology,2003,23:327-334.
    [4] Fukutake T, Hirayama K. Familial young-adult-onset arteriosclerotic leukoencephalopathy withalopecia and lumbago without arterial hypertension. Eur Neurol,1995,35:69-79.
    [5] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1mutations and familial ischemic cerebralsmall-vessel disease. N Engl J Med,2009,360:1729-1739.
    [6] Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1gene in-creases susceptibility to age-relatedmacular degeneration. Science,2006,314:992-993.
    [7] Nishimoto Y, Shibata M, Nihonmatsu M, et al. A novel mutation in the HTRA1gene causes CARASILwithout alopecia. Neurology,2011,76:1353-1355.
    [8] Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, et al. A missense HTRA1mutation expandsCARASIL syndrome to the Caucasian population. Neurology,2010,75:2033-2035.
    [9] Oide T, Nakayama H, Yanagawa S, et al. Extensive loss of arterial medial smooth muscle cells andmural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts andleukoencephalopathy (CARASIL). Neuropathology,2008,28:132-142.
    [10]曹秉振,郭洪伟,赵贺玲,等.伴有皮层下梗死和白质病变的常染色体隐性遗传性脑动脉病一家系.中华神经科杂志,2007,40:679-682.
    [1] Iwamoto T, UmaharaT. Cerebral autosomal recessive arteriopathy with subeortical infarcts andleukoencephalopathy(CARASIL). Nippon Rinsho,2004,62(Suppl4):180-185.
    [2] Maeda S, Nakayama H, Isaka K, et a1. Familial unusual encephalopathy of Binswanger’s type withouthypertension. Folia Psychiatr Neurol Jpn,1976,30:165-177.
    [3] Fukutake T, Hattori T, Kita K, et al. Familial juvenile encephalopathy (Binswanger type) with alopeciaand lumbago: A syndrome. Clin Neurol,1985;25:949-955.
    [4] Fukutake T, Hirayama K. Familial young-adult-onset arteriosclerotic leukoencephalopathy withalopecia and lumbago without arterial hypertension. Eur Neurol,1995,35:69-79.
    [5] Fukutake T. Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts andLeukoencephalopathy (CARASIL): From Discovery to Gene Identification. Journal of Stroke andCerebrovascular Diseases,2011,20:85-93.
    [6] Fukutake T. Carasil. Brain Nerve,2011,63:99-108.
    [7] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1mutations and familial ischemic cerebralsmall-vessel disease. N Engl J Med,2009,360:1729-1739.
    [8] Fukutake T. Young adult-onset hereditary subcortical vascular dementia: cerebral autosomal recessivearteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Clin Neurol1999,39:50–52.
    [9] Razvi, SS, Bone I. Single gene disorders causing ischaemic stroke. J Neurol,2006,253:685-700.
    [10] Nishimoto Y, Shibata M, Nihonmatsu M, et al. A novel mutation in the HTRA1gene causesCARASIL without alopecia. Neurology,2011,76:1353-1355.
    [11] Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, et al. A missense HTRA1mutation expandsCARASIL syndrome to the Caucasian population. Neurology,2010,75:2033-2035.
    [12] Yanagawa S, Ito N, Arima K, et al. Cerebral autosomal recessive arteriopathy with subcortical infarctsand leukoencephalopathy. Neurology,2002,58:817-820.
    [13] Liu X, Alexander V, Vijayachandra K, et al. Conditional epidermal expression of TGF-β1blocksneonatal lethality but causes a reversible hyperplasia and alopecia. Proc Natl Acad Sci U S A,2001,98:9139-9144.
    [14] Botchkarev VA. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. JInvest Dermatol,2003,120:36-47.
    [15] Hadfield KD, Rock CF, Inkson CA, et al. HtrA1inhibits mineral deposition by osteoblasts:requirement for the protease and PDZ domains. J Biol Chem,2008,283:5928-5938.
    [16] Onodera O, Nozaki H, Fukutake T. CARASIL. GeneReviews [Internet]. Apr27,2010.
    [17]郑东明,徐菲菲,张辉,等.常染色体隐性遗传性脑动脉病伴皮质下梗死和白质脑病的临床与影像学特点(附1家系报告).临床神经病学杂志,2009,22:84-86.
    [18] Oide T, Nakayama H, Yanagawa S, et al. Extensive loss of arterial medial smooth muscle cells andmural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts andleukoencephalopathy (CARASIL). Neuropathology,2008,28:132-142.
    [19] Wilder-Smith E, Shen Y, Ng YK, et al. Cerebral autosomal dominant arteriopathy with subcorticalinfarcts and leukoencephalopathy (CADASIL) in a Chinese family: clinical, radiological and skin biopsyfeatures. J Clin Neurosci,2004,11:304-307.
    [20] O’Sullivan M, Jarosz JM, Martin RJ, et al. MRI hyperintensities of the temporal lobe and externalcapsule in patients with CADASIL. Neurology,2001,56:628-634.
    [21] Nishimoto Y, Shibata M, Onodera O, et al. Neuroaxonal integrity evaluated by MR spectroscopy in acase of CARASIL. J Neurol Neurosurg Psychiatry,2011,82:860-861.
    [22] Arima K, Yanagawa S, Ito N, et al. Cerebral arterial pathology of CADASIL and CARASIL (Maedasyndrome). Neuropathology,2003,23:327-334.
    [23] Yokio S, Nakayama H. Chronic progressive leukoencephalopathy with systemic arteriosclerosis inyoung adults. Clin Neuropathol,1985,4:165-173.
    [24]许丹,杨春慧,王鲁宁.老年人脑淀粉样血管病的临床与病理.中华内科杂志,2003,42:541-544.
    [25] Birnbaum J, Hellmann DB. Primary angiitis of the central nervous system. Arch Neurol.2009,66:704-709.
    [26] Methem ER, Barker PB, Raymond GV, et al. X–linked adrenoleukodystrophy in children: review ofgenetic, clinical, and MR imaging characteristics. AJR,1999,173:1575-1581.
    [27] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeuticchallenges. Lancet Neurol,2010,9:689-701.
    [28] Gibbs D, Yang ZL, Constantine R, et al. Further mapping of10q26supports strong association ofHTRA1polymorphisms with age-related macular degeneration. Vision Research,2008,48:685-689.
    [29]Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1gene in-creases susceptibility toage-relatedmaculardegeneration. Science,2006,314:992-993.
    [30] Zhang L, Lim SL, Du H, et al. High temperature requirement factor A1(HTRA1) gene regulatesangiogenesis through transforming growth factor-β family member growth differentiation factor6.J BiolChem,2012,287:1520-1526. Epub2011Nov2.
    [31] Vierkotten S, Muether PS, Fauser S. Overexpression of HTRA1leads to ultrastructural changes in theelastic layer of Bruch's membrane via cleavage of extracellular matrix components. PLoS One.2011,6:e22959. Epub2011Aug2.
    [32] De Luca A, De Falco M, Severino A, et al. Distribution of the serine protease HtrA1in normal humantissues. J Histochem Cytochem,2003,51:1279-1284.
    [33] Kuzmiak HA, Maquat LE. Applying nonsense-mediated mRNA decay research to the clinic: progressand challenges. Trends Mol Med,2006,12:306-316.
    [34] Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missensemutations. Nat Methods,2010,7:248-249.
    [1] Schindelhauer D, Laner A. Visible transient expression of EGFP require intranuclear injection of largecopy numbers. Gene therapy,2002,9:727-730.
    [2] Kenju Hara, Atsushi Shiga, Toshio Fukutake, et al. Association of HTRA1mutations and familialischemic cerebral small-vesseldisease. N Engl J Med,2009,360:1729-1739.
    [3] Warrens AN, Jones MD, Lechler RI, et al. Splicing by overlap extension by PCR using asymmetricamplification: an improved technique for the generation of hybrid proteins of immunological interest.Gene,1997,186:29-35.
    [4]金琳,韩跃武.人β-防御素-3基因定点突变原核表达载体构建和融合蛋白表达.第四军医大学学报,2005,26:1638-1641.
    [5]王桂清.血液动力学在血管重构中的作用.基础医学与临床,2004,24:264-268.
    [6] Poncelet AC, Schnaper HW. Spl and smad protein cooperate to mediate transforming growthfactor-beta1-induced alpha2(1) collagen expression in human glomer Lar mesangial cells. J Bio Chem,2001,276:6983-6992.
    [7] Newby AC, George SJ. Proposed roles for growth factors in mediating smooth muscle proliferation invascular pathologies. Cardiovasc Res,1993,27:1173-1183.
    [8]赵旺,赵水平,吴鹏翠. MEF2A基因突变对血管平滑肌细胞增殖迁移及其表型的影响现代生物医学进展,2010,10:1034-1038.
    [9]田孝祥,韩雅玲,康建.小鼠胚胎干细胞来源平滑肌细胞的鉴定及其功能分析.中国组织工程研究与临床康复,2009,13:6271-6275.
    [10] Kawai-Kowase K, OhshimaT, Matsui H, et al. PIASI mediates TGFbeta-induced SM alpha-actin geneexpression through inhibition of KLF4function-expression by protein sumoylation. Arterioseler ThrombVasc Biol,2009,29:99-106.
    [11] Zhang C. MicroRNA and vascular smooth muscle cell phenotype: new therapy for atherosclerosis.Genome Med,2009,1:85-88.
    [12] Takashi Oide, Hiroshi Nakayama, Sohei Yanagawa, et al. Extensive loss of arterial medial smoothmuscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcorticalinfarcts and leukoencephalopathy (CARASIL). Neuropathology,2008,28,132-142.
    [1] Pallen MJ, Wren BW. The HtrA family of serine proteases. Mol Microbiol,1997,26:209–221.
    [2] Lipinska B, Sharma S, Georgopoulos C. Sequence analysis and regulation of the htrA gene ofEscherichia coli: a sigma32-independent mechanism of eat-inducible,transcription. Nucleic Acids Res,1988,16(21):10053-10067
    [3] Strauch KL, Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmicproteins. Proc Natl Acad Sci U S A,1988,85(5):1576-1580.
    [4] Clausen, T., Southan C,Ehrmann, M. The HtrA family of proteases: implications for proteincomposition and cell fate. Mol. Cell,2002,10:443–455.
    [5] Nitu Singh, Raja R. Kuppili, et al. The structural basis of mode of activation and functional diversity: Acase study with HtrA family of serine proteases. Archives of Biochemistry and Biophysics2011,516:85–96.
    [6] Hu SI, Carozza M, Klein M, et al. Human HtrA, an evolutionarily conserved serine protease identifiedas a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem1998,273:34406–34412.
    [7] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1mutations and familial ischemic cerebralsmall-vessel disease. N Engl J Med,2009,360:1729-1739.
    [8] Nishimoto Y, Shibata M, Nihonmatsu M, et al. A novel mutation in the HTRA1gene causes CARASILwithout alopecia. Neurology,2011,76:1353-1355.
    [9] Murwantoko, Masato Yano, Yoshifumi Ueta, et al. Binding of proteins to the PDZ domain regulatesproteolytic activity of HtrA1serine protease. Biochem J,2004,381:895–904.
    [10] Zumbrunn, J, Trueb B. Primary structure of a putative serine protease specific for IGF-bindingproteins.1996, FEBS Lett,398:187–192.
    [11] Hu S, Carozza M, Klein M, et al. Human HtrA, an evolutionarily conserved serine protease identifiedas differentially expressed gene product in osteoarthritic cartilage. J. Biol. Chem,1998,273:34406–34412.
    [12] Polur I, Lee PL, Servais JM, et al. Role of HTRA1, a serine protease, in the progression of articularcartilage degeneration. Histol Histopathol,2010,25:599–608.
    [13] Rosenthal AK, Gohr CM, Ninomiya J, et al. Proteomic analysis of articular cartilage vesicles fromnormal and osteoarthritic cartilage. Arthritis Rheum,2011,63:401–411.
    [14] Sandra Grau, Alfonso Baldi, Rossana Bussani, et al. Implications of the serine protease HtrA1inamyloid precursor protein processing. Proc Natl Acad Sci U S A,2005,102:6021-6026.
    [15] Catalano V, Mellone P, d'Avino A, et al. HtrA1, a potential predictor of response to cisplatin-basedcombination chemotherapy in gastric cancer. Histopathology,2011,58:669-678.
    [16] Mullany SA, Moslemi-Kebria M, Rattan R, et al. Expression and functional significance of HtrA1lossin endometrial cancer. Clin Cancer Res,2011,17:427-36. Epub2010Nov23.
    [17] Tsuchiya A, Yano M, Tocharus J, et al. Expression of mouse HtrA1serine protease in normal boneand cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone,2005,37:323-336.
    [18] Grau S, Richards PJ, Kerr B, et al. The role of human HtrA1in arthritic disease. J Biol Chem,2006,281:6124–6129.
    [19] Baldi A, De Luca A, Morini M, et al. The HtrA1serine protease isdown-regulated during humanmelanoma progression and repress growth of metastatic melanoma cells. Oncogene,2002,21:6684–6688.
    [20] Chien J, Staub J, Hu S, et al. A candidate tumor suppressor HtrA1is downregulated in ovarian cancer.Oncogene,2004,23:1636–1644.
    [21] Esposito V, Campioni M, De Luca A, et al. Analysis of HtrA1serine protease expression in humanlung cancer. Anticancer Res,2006,26(5A):3455-3459
    [22] Baldi A, Mottolese M, Vincenzi B, et al. The serine protease HtrA1is a novel prognostic factor forhuman mesothelioma. Pharmacogenomics,2008,9(8):1069-1077.
    [23]De Luca A, De Falco M, Severino A, et al. Distribution of the Serine Protease HtrA1in Normal HumanTissues. J Histochem Cytochem,2003,51(10):1279-1284.
    [24] Nitu Singh, Raja R. Kuppili, et al. The structural basis of mode of activation and functional diversity:A case study with HtrA family of serine proteases. Archives of Biochemistry and Biophysics,2011,516:85–96.
    [1] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1mutations and familial ischemic cerebralsmall-vessel disease. N Engl J Med,2009,360:1729-1739.
    [2] Grainger DJ. Transforming growth factor β and atherosclerosis: so far, so good for the protectivecytokine hypothesis. Arterioscler Thromb Vasc Biol,2004,24:399-404.
    [3] Ten Dijke P, Arthur HM. Extracellular control of TGFβ signaling in vascular development and disease.Nat Rev Mol Cell Biol,2007,8:857-869.
    [4] Engelse MA, Neele JM, vna Ahcterberg TA, et al. Human activin-A is expressed in the atheroscleroticlesion and promotes the contractile phenotype of smooth muscle cells. Circ Res,1999,85:931-939.
    [5] Dhore CR, Cleutjens J P, Lutgens E, et al. Differential expression of bone matrix regulatory proteins inhuman atherosclerotic plaques. Arterioscler Thromb Vasc Biol,2001,21:1998-2003.)
    [6] Ghosh AK, Wei J, Wu M, et al. Constitutive Smad signaling and Smad-dependent collagen geneexpression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-gamma.Biochem Biophys Res Commun,2008,374:231-236.
    [7] Vehvil inen P, Hyyti inen M, Keski-Oja J. Matrix association of latent TGF-beta binding protein-2(LTBP-2) is dependent on fibrillin-1. J Cell Physiol,2009,221:586-593.
    [8] Kantola AK, Keski-Oja J, Koli K. Fibronectin and heparin binding domains of latent TGF-beta bindingprotein (LTBP)-4mediate matrix targeting and cell adhesion. Exp Cell Res,2008,314:2488-2500.
    [9] Kresse H., Schonherr E. Proteoglycans of the extracellular matrix and growth control. J. Cell Physiol,2001,189:266–274.
    [10]黄文林,朱孝峰.信号转导[M].北京:人民卫生出版社,2005:203-218.
    [11] Campioni M, Severino A, Manente L, et al. Identification of protein-protein interactions of humanHtrA1. Front Biosci (Elite Ed),2011,3:1493-1499.
    [12] Oka C, Tujimoto R, Ka]ikawa M, et a1. HtrAl serine protease inhibits signaling mediated by TGF-βfamily proteins. Development,2004,131:1041-1053.
    [13] Launay S, Maubert E, Lebeurrier N, et al. HtrA1-dependent proteolysis of TGF-beta controls bothneuronal maturation and developmental survival. Cell Death Differ,2008,15:1408–1416.
    [14] Ten Dijke P, Arthur HM. Extracellular control of TGFβ signalling in vascular development anddisease. Nat Rev Mol Cell Biol,2007,8:857-869.
    [15] Grau S, Richards PJ, Kerr B, et al. The role of human HtrA1in arthritic disease. J Biol Chem,2006,281:6124–6129.
    [16] Chamberland A, Wang E, Jones AR, et al. Identification of a novel HtrA1-susceptible cleavage site inhuman aggrecan: evidence for the involvement of HtrA1in aggrecan proteolysis in vivo. J Biol Chem,2009,284:27352–27359.
    [17] Tsuchiya A, Yano M, Tocharus J, et al. Expression of mouse HtrA1serine protease in normal boneand cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone,2005,37:323-336.
    [18] Oide T, Nakayama H, Yanagawa S, et al. Extensive loss of arterial medial smooth muscle cells andmural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts andleukoencephalopathy (CARASIL). Neuropathology,2008,28:132-142.
    [19] Nishimoto Y, Shibata M, Nihonmatsu M, et al. A novel mutation in the HTRA1gene causesCARASIL without alopecia. Neurology,2011,76:1353-1355.
    [20] Liu X, Alexander V, Vijayachandra K, et al. Conditional epidermal expression of TGF-β1blocksneonatal lethality but causes a reversible hyperplasia and alopecia. Proc Natl Acad Sci U S A,2001,98:9139-9144.
    [21] Botchkarev VA. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. JInvest Dermatol,2003,120:36-47.
    [22] Hadfield KD, Rock CF, Inkson CA, et al. HtrA1inhibits mineral deposition by osteoblasts:requirement for the protease and PDZ domains. J Biol Chem,2008,283:5928-5938.
    [23] Kresse H, Schnherr E. Proteoglycans of the extra-cellular mattrix and growth control. Cell Physiol,2001,189(3):266-274.
    [24] Canfield AE, Hadfield KD, Rock CF, et al. HtrA1: a novel regulator of physiological and pathologicalmatrix mineralization? Biochem Soc Trans,2007,35(4):669-671.
    [25] Gilicze A, Kohalmi B, Pocza P, et al. HtrA1is a novel mast cell serine protease of mice and men. Mol.Immunol,2007,44:2961–2968.
    [26] Launay S, Maubert E, Lebeurrier N, et al. HtrA1-dependent proteolysis of TGF-beta controls bothneuronal maturation and developmental survival. Cell Death Diff,2008,15:1408–1416.
    [27] Atsushi Shiga1, Hiroaki Nozaki1, Akio Yokoseki, et al. Cerebral small-vessel disease protein HTRA1controls the amount of TGF-β1via cleavage of proTGF-β1. Hum Mol Genet,2011,20:1800-1810.
    [28] Kenju Hara. Molecular mechanism and therapeutic strategy for cerebral small vessel disease. RinshoShinkeigaku,2010,50:852-854.
    [1] Iwamoto T, UmaharaT. Cerebral autosomal recessive arteriopathy with subeortical infarcts andleukoencephalopathy(CARASIL). Nippon Rinsho,2004,62(Suppl4):180-185.
    [2] Maeda S, Nakayama H, Isaka K, et a1. Familial unusual encephalopathy of Binswanger’s type withouthypertension. Folia Psychiatr Neurol Jpn,1976,30:165-177.
    [3] Fukutake T, Hattori T, Kita K, et al. Familial juvenile encephalopathy (Binswanger type) with alopeciaand lumbago: A syndrome. Clin Neurol,1985,25:949-955.
    [4] Fukutake T, Hirayama K. Familial young-adult-onset arteriosclerotic leukoencephalopathy withalopecia and lumbago without arterial hypertension. Eur Neurol,1995,35:69-79.
    [5]郑东明,徐菲菲,张辉,等.常染色体隐性遗传性脑动脉病伴皮质下梗死和白质脑病的临床与影像学特点(附1家系报告).临床神经病学杂志,2009,22:84-86.
    [6]曹秉振,郭洪伟,赵贺玲,等.伴有皮层下梗死和白质病变的常染色体隐性遗传性脑动脉病一家系.中华神经科杂志,2007,40:679-682.
    [7] Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, et al. A missense HTRA1mutation expandsCARASIL syndrome to the Caucasian population. Neurology,2010,75:2033-2035.
    [8] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1mutations and familial ischemic cerebralsmall-vessel disease. N Engl J Med,2009,360:1729-1739.
    [9] Fukutake T. Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts andLeukoencephalopathy (CARASIL): From Discovery to Gene Identification. Journal of Stroke andCerebrovascular Diseases,2011,20:85-93
    [10] Fukutake T. Carasil. Brain Nerve,2011,63:99-108.
    [11] Oide T, Nakayama H, Yanagawa S, et al. Extensive loss of arterial medial smooth muscle cells andmural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts andleukoencephalopathy (CARASIL). Neuropathology,2008,28:132-142.
    [12] Yokio S, Nakayama H. Chronic progressive leukoencephalopathy with systemic arteriosclerosis inyoung adults. Clin Neuropathol,1985,4:165-173.
    [13] Nishimoto Y, Shibata M, Nihonmatsu M, et al. A novel mutation in the HTRA1gene causesCARASIL without alopecia. Neurology,2011,76:1353-1355.
    [14] Grau S, Baldi A, Bussani R, et al. Implications of the serine protease HtrA1in amyloid precursorprotein processing. Proc Natl Acad Sci U S A,2005,102:6021-6026.
    [15] Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1gene increases susceptibility to age-relatedmacular degeneration. Science,2006,314:992-993.
    [16] Baldi A, De Luca A, Morini M, et al. The HtrA1serine protease is down-regulated during humanmelanoma progression and represses growth of metastatic melanoma cells. Oncogene,2002,21:6684-6688.
    [17] Launay S, Maubert E, Lebeurrier N, et al. HtrA1-dependent proteolysis of TGF-β controls bothneuronal maturation and developmental survival. Cell Death and Differ,2008,15:1408-1416.
    [18] Ghosh AK, Wei J, Wu M, et al. Constitutive Smad signaling and Smad-dependent collagen geneexpression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-gamma.Biochem Biophys Res Commun,2008,374:231-236.
    [19] Shiga A, Nozaki H, Yokoseki A, et al. Cerebral small-vessel disease protein HTRA1controls theamount of TGF-β1via cleavage of proTGF-β1. Hum Mol Genet,2011,20:1800-1810.
    [20] Liu X, Alexander V, Vijayachandra K, et al. Conditional epidermal expression of TGFβ-1blocksneonatal lethality but causes a reversible hyperplasia and alopecia. Proc Natl Acad Sci U S A,2001,98:9139-9144.
    [21] Botchkarev VA. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. JInvest Dermatol,2003,120:36-47.
    [22] Hadfield KD, Rock CF, Inkson CA, et al. HtrA1inhibits mineral deposition by osteoblasts:requirement for the protease and PDZ domains. J Biol Chem,2008,283:5928-5938.
    [23] Canfield AE, Hadfield KD, Rock CF, et al. HtrA1: a novel regulator of physiological and pathologicalmatrix mineralization? Biochem Soc Trans,2007,35(4):669-671.
    [24] Yanagawa S, Ito N, Arima K, et al. Cerebral autosomal recessive arteriopathy with subcortical infarctsand leukoencephalopathy. Neurology,2002,58:817-820.
    [25] Arima K, Yanagawa S, Ito N, et al. Cerebral arterial pathology of CADASIL and CARASIL (Maedasyndrome). Neuropathology,2003,23:327-334.
    [26] Fukutake T. Young adult-onset hereditary subcortical vascular dementia: cerebral autosomal recessivearteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Clin Neurol1999,39:50–52.
    [27] Onodera O, Nozaki H, Fukutake T. CARASIL. GeneReviews [Internet]. Apr27,2010.
    [28] Razvi, SS, Bone I. Single gene disorders causing ischaemic stroke. J Neurol,2006,253:685-700.
    [29] Nakazato Y, Ohkuma A, Mizoi Y, et al. Late-onset leukoencephalopathy without hypertension in a caseof young-adult-onset alopecia and spondylosis: a variant of CARASIL? Rinsho hinkeigaku.2008,48:406-409.
    [30] Wilder-Smith E, Shen Y, Ng YK, et al. Cerebral autosomal dominant arteriopathy with subcorticalinfarcts and leukoencephalopathy (CADASIL) in a Chinese family: clinical, radiological and skin biopsyfeatures. J Clin Neurosci,2004,11:304-307.
    [31] O’Sullivan M, Jarosz JM, Martin RJ, et al. MRI hyperintensities of the temporal lobe and externalcapsule in patients with CADASIL. Neurology,2001,56:628-634.
    [32] Nishimoto Y, Shibata M, Onodera O, et al. Neuroaxonal integrity evaluated by MR spectroscopy in acase of CARASIL. J Neurol Neurosurg Psychiatry,2011,82:860-861.
    [33]许丹,杨春慧,王鲁宁.老年人脑淀粉样血管病的临床与病理.中华内科杂志,2003,42:541-544.
    [34] Birnbaum J, Hellmann DB. Primary angiitis of the central nervous system. Arch Neurol.2009,66:704-709.
    [35] Methem ER, Barker PB, Raymond GV, et al. X–linked adrenoleukodystrophy in children: review ofgenetic,clinical,and MR imaging characteristics. AJR,1999,173:1575-1581.
    [36] Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.Lancet Neurol,2010,9:689-701.
    [1] Pallen MJ, Wren BW. The HtrA family of serine proteases. Mol Microbiol,1997,26:209–221.
    [2] Lipinska B, Sharma S, Georgopoulos C. Sequence analysis and regulation of the htrA gene ofEscherichia coli: a sigma32-independent mechanism of eat-inducible,transcription. Nucleic Acids Res,1988,16(21):10053-10067
    [3] Strauch KL, Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmicproteins. Proc Natl Acad Sci U S A,1988,85(5):1576-1580.
    [4] Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein compositionand cell fate. Mol. Cell,2002,10(3):443–455.
    [5] Nitu Singh, Raja R. Kuppili, et al. The structural basis of mode of activation and functional diversity: Acase study with HtrA family of serine proteases. Archives of Biochemistry and Biophysics2011,516:85–96.
    [6] Hu, SI, Carozza M, Klein M, et al. Human HtrA, an evolutionarily conserved serine protease identifiedas a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem1998,273:34406–34412.
    [7] Truebestein L, Tennstaedt A, M nig T, et al. Substrate-induced remodeling of the active site regulateshuman HTRA1activity. Nat Struct Mol Biol,2011,18(3):386-388.
    [8] De Luca A, De Falco M, De Luca L, et al. Pattern of expression of HtrA1during mouse development. JHistochem Cytochem,2004,52(12):1609-1617.
    [9] Lorenzi T, Marzioni D, Giannubilo S,et al. Expression patterns of two serine protease HtrA1forms inhuman placentas complicated by preeclampsia with and without intrauterine growth restriction. Placenta,2009,30(1):35-40.
    [10] De Luca A, De Falco M, Severino A, et al. Distribution of the Serine Protease HtrA1in NormalHuman Tissues. J Histochem Cytochem,2003,51(10):1279-1284.
    [11] Grau S, Richards PJ, Kerr B, et al. The role of human HtrA1in arthritic disease. J Biol Chem,2006,281:6124–6129.
    [12] Chamberland A, Wang E, Jones AR, et al. Identification of a novel HtrA1-susceptible cleavage site inhuman aggrecan: evidence for the involvement of HtrA1in aggrecan proteolysis in vivo. J Biol Chem.2009,284:27352–27359.
    [13] Tsuchiya A, Yano M, Tocharus J, et al. Expression of mouse HtrA1serine protease in normal boneand cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone,2005,37(3):323-336.
    [14] Campioni M, Severino A, Manente L, et al. Identification of protein-protein interactions of humanHtrA1Front Biosci (Elite Ed),2011,3:1493-1499.
    [15] Brocker CN, Vasiliou V, Nebert DW. Evolutionary divergence and functions of the ADAM andADAMTS gene families. Hum Genomics,2009,4(1):43-55.
    [16] Liu CJ, Kong W, Ilalov K, et al. ADAMTS-7: a metalloproteinase that directly binds to and degradescartilage oligomeric matrix protein. FASEB J,2006,20(7):988-990.
    [17] An E, Sen S, Park SK, et al. Identification of novel substrates for the serine protease HTRA1in thehuman RPE secretome. Invest Ophthalmol Vis Sci,2010,51(7):3379-3386.
    [18] Lu Q, Dobbs LJ, Gregory CW, et al. Increased expression of deltacatenin/neural plakophilin-relatedarmadillo protein is associated with the down-regulation and redistribution of E-cadherin and p120ctn inhuman prostate cancer. Hum Pathol,2005,36(10):1037-1048.
    [19] Welsh JB, Sapinoso LM, Su AI, et al. Analysis of gene expression identifies candidate markers andpharmacological targets in prostate cancer. Cancer Res.2006,61(16),5974-5978.
    [20] Varambally S, Yu J, Laxman B, et al. Integrative genomic and proteomic analysis of prostate cancerreveals signatures of metastatic progression.Cancer Cell,2005,8(5):393-406.
    [21] Chien J, Ota T, Aletti G, et al. Serine protease HtrA1associates with microtubules and inhibits cellmigration. Mol Cell Biol,2009,29(15):4177-4187.
    [22] Campioni M, Severino A, Manente L, et al. The serine protease HtrA1specifically interacts anddegrades the Tuberous Sclerosis Complex2protein (TSC2). Mol Cance Res,2010,8(9):1248-1260.
    [23] Oka C,Tujimoto R, Ka]ikawa M, et a1. HtrAl serine protease inhibits signaling mediated by TGF-βfamily proteins. Development,2004,131(4): l1041-1053.
    [24] Launay S, Maubert E, Lebeurrier N, et al. HtrA1-dependent proteolysis of TGF-beta controls bothneuronal maturation and developmental survival. Cell Death Differ,2008,15:1408-1416.
    [25] Zumbrunn J, Trueb B. Primary structure of a putative serine protease specific for IGF-binding proteins.FEBS Lett,1996,398(2-3):187-192.
    [26] Hu S, Carozza M, Klein M, et al. Human HtrA, an evolutionarily conserved serine protease identifiedas differentially expressed gene product in osteoarthritic cartilage. J Biol Chem,1998,273:34406–34412.
    [27] Rosenthal AK, Gohr CM, Ninomiya J, et al. Proteomic analysis of articular cartilage vesicles fromnormal and osteoarthritic cartilage. Arthritis Rheum,2011,63:401–411.
    [28] Kresse H, Schnherr E. Proteoglycans of the extra-cellular mattrix and growth control. Cell Physiol,2001,189(3):266-274.
    [29] Canfield AE, Hadfield KD, Rock CF, et al. HtrA1: a novel regulator of physiological and pathologicalmatrix mineralization? Biochem Soc Trans,2007,35(4):669-671.
    [30] Sandra Grau, Alfonso Baldi, Rossana Bussani et al. Implications of the serine protease HtrA1inamyloid precursor protein processing. Proc Natl Acad Sci U S A,2005,102(17):6021-6026.
    [31] Gibbs D, Yang ZL, Constantine R, et al. Further mapping of10q26supports strong association ofHTRA1polymorphisms with age-related macular degeneration. Vision Research,2008,48:685-689.
    [32] Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1gene in-creases susceptibility toage-relatedmaculardegeneration. Science,2006,314:992-993.
    [33] Dewan A, Liu M, Hartman SS, et al. HTRA1promoter poly-morphsm in wet age-related maculardegeneration. Science,2006,314(5801):989-992.
    [34] Vierkotten S, Muether PS, Fauser S. Overexpression of HTRA1Leads to Ultrastructural Changes inthe Elastic Layer of Bruch's Membrane via Cleavage of Extracellular Matrix Components. PLoS One,2011,6(8): e22959. Epub2011Aug2.
    [35] Baldi A, De Luca, A, Morini M, et al. The HtrA1serine protease isdown-regulated during humanmelanoma progression and repress growth of metastatic melanoma cells. Oncogene,2002,21:6684–6688.
    [36] Chien J, Staub J, Hu S, et al. A candidate tumor suppressor HtrA1is downregulated in ovarian cancer.Oncogene.23,1636–1644.
    [37] Esposito V, Campioni M, De Luca A, et al. Analysis of HtrA1serine protease expression in humanlung cancer. Anticancer Res,2006,26(5A):3455-3459.
    [38] Baldi A, Mottolese M, Vincenzi B, et al. The serine protease HtrA1is a novel prognostic factor forhuman mesothelioma. Pharmacogenomics,2008,9(8):1069-1077.
    [39] Burger AM, Zhang X, Li H, et al. Down-regulation of T1A12/mac25, a novel insulin-like growthfactor binding protein related gene,is associated with disease progression in breast carcinomas. Oncogene,1998,16(19):2459-2467.
    [40] He X, Ota T, Liu P, et al. Downregulation of HtrA1promotes resistance to anoikis and peritonealdissemination of ovarian cancer cells. Cancer Res,2010,70(8):3109-3118.
    [41] Pallen MJ, Wren BW. The HtrA family of serine proteases. Mol Microbiol,1997,26:209-221.
    [42] Iwamoto T, UmaharaT. Cerebral autosomal recessive arteriopathy with subeortical infarcts andleukoencephalopathy(CARASIL). Nippon Rinsho,2004,62(Suppl4):180-185.
    [43] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1mutations and familial ischemic cerebralsmall-vessel disease. N Engl J Med,2009,360:1729-1739.
    [44] Botchkarev VA. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. JInvest Dermatol,2003,120:36-47.
    [45] Hadfield KD, Rock CF, Inkson CA, et al. HtrA1inhibits mineral deposition by osteoblasts:requirement for the protease and PDZ domains. J Biol Chem,2008,283:5928-5938.
    [46] Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, et al. A missense HTRA1mutation expandsCARASIL syndrome to the Caucasian population. Neurology,2010,75:2033-2035.
    [47] Nishimoto Y, Shibata M, Nihonmatsu M, et al. A novel mutation in the HTRA1gene causesCARASIL without alopecia. Neurology,2011,76:1353-1355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700